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ABSTRACT
Surprisingly, console logs rarely help operators detect prob-
lems in large-scale datacenter services, for they often consist
of the voluminous intermixing of messages from many soft-
ware components written by independent developers. We
propose a general methodology to mine this rich source of in-
formation to automatically detect system runtime problems.
We first parse console logs by combining source code anal-
ysis with information retrieval to create composite features.
We then analyze these features using machine learning to
detect operational problems. We show that our method en-
ables analyses that are impossible with previous methods
because of its superior ability to create sophisticated fea-
tures. We also show how to distill the results of our analysis
to an operator-friendly one-page decision tree showing the
critical messages associated with the detected problems. We
validate our approach using the Darkstar online game server
and the Hadoop File System, where we detect numerous real
problems with high accuracy and few false positives. In the
Hadoop case, we are able to analyze 24 million lines of con-
sole logs in 3 minutes. Our methodology works on textual
console logs of any size and requires no changes to the ser-
vice software, no human input, and no knowledge of the
software’s internals.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—monitoring; prob-
lem detection; D.2.5 [Software Engineering]: Testing and
Debugging—logging

General Terms
Reliability, Management, Design, Experimentation

Keywords
console log analysis, problem detection, monitoring, tracing,
PCA, statistical learning, source code analysis
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1. INTRODUCTION
When a datacenter-scale service consisting of hundreds

of software components running on thousands of comput-
ers misbehaves, developer-operators need every tool at their
disposal to troubleshoot and diagnose operational problems.
Ironically, there is one source of information that is built
into almost every piece of software that provides detailed in-
formation that reflects the original developers’ ideas about
noteworthy or unusual events, but is typically ignored: the
humble console log.

Since the dawn of programming, developers have used ev-
erything from printf to complex logging and monitoring li-
braries [8, 9] to record program variable values, trace ex-
ecution, report runtime statistics, and even print out full-
sentence messages designed to be read by a human—usually
by the developer herself. However, modern large-scale ser-
vices usually combine large open-source components authored
by hundreds of developers, and the people scouring the logs—
part integrator, part developer, part operator, and charged
with fixing the problem—are usually not the people who
chose what to log or why. (We’ll use the term operator
to represent a potentially diverse set of people trying to de-
tect operational problems.) Furthermore, even in well-tested
code, many operational problems are dependent on the de-
ployment and runtime environment and cannot be easily
reproduced by the developer. To make things worse, mod-
ern systems integrate external (often open source) compo-
nents that are frequently revised or upgraded, which may
change what’s in the logs or the relevance of certain mes-
sages. Keeping up with this churn rate exacerbates the op-
erators’ dilemma. Our goal is to provide them with better
tools to extract value from the console logs.

As logs are too large to examine manually [14, 22] and too
unstructured to analyze automatically, operators typically
create ad hoc scripts to search for keywords such as “error”
or “critical,” but this has been shown to be insufficient for
determining problems [14, 22]. Rule-based processing [24] is
an improvement, but the operators’ lack of detailed knowl-
edge about specific components and their interactions makes
it difficult to write rules that pick out the most relevant sets
of events for problem detection. Instead of asking users to
search, we provide tools to automatically find “interesting”
log messages.

Since unusual log messages often indicate the source of the
problem, it is natural to formalize log analysis as an anomaly
detection problem in machine learning. However, it is not
always the case that the presence, absence or frequency of a
single type of message is sufficient to pinpoint the problem;
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more often, a problem manifests as an abnormality in the
relationships among different types of log messages (corre-
lations, relative frequencies, and so on). Therefore, instead
of analyzing the words in textual logs (as done, for example,
in [27]), we create features that accurately capture various
correlations among log messages, and perform anomaly de-
tection on these features. Creating these features requires
augmenting log parsing with information about source code;
our method for doing this augmentation is part of our con-
tribution.

We studied logs and source code of many popular soft-
ware systems used in Internet services, and observed that
a typical console log is much more structured than it ap-
pears: the definition of its “schema” is implicit in the log
printing statements, which can be recovered from program
source code. This observation is key to our log parsing ap-
proach, which yields detailed and accurate features. Given
the ubiquitous presence of open-source software in many In-
ternet systems, we believe the need for source code is not a
practical drawback to our approach.

Our contribution is a general four-step methodology that
allows machine learning and information retrieval techniques
to be applied to free-text logs to find the “needles in the
haystack”that might indicate operational problems, without
any manual input. Specifically, our methodology involves
the following four contributions:

1) A technique for analyzing source code to recover the
structure inherent in console logs;

2) The identification of common information in logs—
state variables and object identifiers—and the automatic
creation of features from the logs (exploiting the structure
found) that can be subjected to analysis by a variety of ma-
chine learning algorithms;

3) Demonstration of a machine learning and information
retrieval methodology that effectively detects unusual pat-
terns or anomalies across large collections of such features
extracted from a console log;

4) Where appropriate, automatic construction of a visu-
alization that distills the results of anomaly detection in a
compact and operator-friendly format that assumes no un-
derstanding of the details of the algorithms used to analyze
the features.

The combination of elements in our approach, including
our novel combination of source code analysis with log analy-
sis and automatic creation of features for anomaly detection,
enables a level of detail in log analysis that was previously
impossible due to the inability of previous methods to cor-
rectly identify the features necessary for problem identifica-
tion.

Our approach requires no changes to existing software and
works on existing textual console logs of any size, and some
of the more computationally expensive steps are embarrass-
ingly parallel, allowing us to run them as Hadoop [2] map-
reduce jobs using cloud computing, achieving nearly linear
speedup for a few dollars per run.

We evaluate our approach and demonstrate its capabil-
ity and scalability with two real-world systems: the Dark-
star online game server [28] and the Hadoop File System.
For Darkstar, our method accurately detects performance
anomalies immediately after they happen and provides hints
as to the root cause. For Hadoop, we detect runtime anoma-
lies that are commonly overlooked, and distill over 24 million
lines of console logs (collected from 203 Hadoop nodes) to a

starting: xact 325 is COMMITTING
starting: xact 346 is ABORTING

1 CLog.info("starting: " + txn);
2 Class Transaction {
3 public String toString() {
4 return "xact " + this.tid +
5 " is " + this.state;
6 }
7 }

Figure 1: Top: two lines from a simple console log.
Bottom: Java code that could produce these lines.

one-page decision tree that a domain expert can readily un-
derstand. This automated process can be done with Hadoop
map-reduce on 60 Amazon EC2 nodes within 3 minutes.

Section 2 provides an overview of our approach, Section 3
describes our log parsing technique in detail, Sections 4 and 5
present our solutions for feature creation and anomaly de-
tection, Section 6 evaluates our approach and discusses the
visualization technique, Section 7 discusses extensions and
provide suggestions to improve log quality, Section 8 summa-
rizes related work, and Section 9 draws some conclusions.

2. OVERVIEW OF APPROACH

2.1 Information buried in textual logs
Important information is buried in the millions of lines

of free-text console logs. To analyze logs automatically, we
need to create high quality features, the numerical represen-
tation of log information that is understandable by a ma-
chine learning algorithm. The following three key observa-
tions lead to our solution to this problem.

Source code is the “schema” of logs. Although console
logs appear in free text form, they are in fact quite struc-
tured because they are generated entirely from a relatively
small set of log printing statements in the system.

Consider the simple console log excerpt and the source
code that generated it in Figure 1. Intuitively, it is easier to
recover the log’s hidden “schema” using the source code in-
formation (especially for a machine). Our method leverages
source code analysis to recover the inherit structure of logs.
The most significant advantage of our approach is that we
are able to accurately parse all possible log messages, even
the ones rarely seen in actual logs. In addition, we are able
to eliminate most heuristics and guesses for log parsing used
by existing solutions.

Common log structures lead to useful features. A
person usually reads the log messages in Figure 1 as a con-
stant part (starting: xact ... is) and multiple variable
parts (325/326 and COMMITTING/ABORTING). In this paper,
we call the constant part the message type and the variable
part the message variable.

Message types – marked by constant strings in a log mes-
sage – are essential for analyzing console logs and have been
widely used in earlier work [17]. In our analysis, we use
the constant strings solely as markers for the message types,
completely ignoring their semantics as English words, which
is known to be ambiguous [22].

Message variables carry crucial information as well. In
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Variable Examples Distinct
values

Identifiers transaction_id in Darkstar;
block_id in Hadoop file system;
cache_key in Apache HTTP server;
task_id in Hadoop map reduce.

many

State
Vars

Transaction stages in Darkstar;
Server names in Hadoop;
HTTP status code (200, 404);
POSIX process return values.

few

Table 1: State variables and identifiers

contrast to prior work that focuses on numerical variables [17,
22, 35], we identified two important types of message vari-
ables for problem detection by studying logs from many sys-
tems and by interviewing Internet service developers / op-
erators who heavily use console logs. We acknowledge that
logs also contain other types of message variables such as
timestamps and various counts. We do not discuss those
variables in this paper as they have been well studied in
existing work [27].

Identifiers are variables used to identify an object manip-
ulated by the program (e.g., the transaction ids 325 and 346

in Figure 1), while state variables are labels that enumerate
a set of possible states an object could have in program (e.g.
COMMITTING and ABORTING in Figure 1). Table 1 provides ex-
tra examples of such variables. We can determine whether
a given variable is an identifier or a state variable progmat-
ically based on its frequency in console logs. Intuitively,
state variables have a small number of distinct values while
identifiers take a large number of distinct values (detailed in
Section 4).

Message types and variables contain important runtime
information useful to the operators. However, lacking tools
to extract these structures, operators either ignore them, or
spend hours greping and manually examining log messages,
which is tedious and inefficient.

Our accurate log parsing allows us to use structured in-
formation such as message types and variables to automat-
ically create features that capture information conveyed in
logs. To our knowledge, this is the first work extracting in-
formation at this fine level of granularity from console logs
for problem detection.

Messages are strongly correlated. When log messages
are grouped properly, there is a strong and stable correlation
among messages within the same group. For example, mes-
sages containing a certain file name are likely to be highly
correlated because they are likely to come from logically re-
lated execution steps in the program.

A group of related messages is often a better indicator
of problems than individual messages. Many anomalies
are only indicated by incomplete message sequences. For
example, if a write operation to a file fails silently (perhaps
because the developers do not handle the error correctly),
no single error message is likely to indicate the failure. By
correlating messages about the same file, however, we can
detect such cases by observing that the expected “closing
file” message is missing. Previous work grouped logs by
time windows only, and the detection accuracy suffers from
noise in the correlation [14, 27, 35]. In contrast, we create
message groups based on more accurate information, such
as the message variables described above. In this way, the
correlation is much stronger and more readily encoded so
that the abnormal correlations also become easier to detect.

2.2 Workflow of our approach
Figure 2 shows the four steps in our general framework

for mining console logs.

1) Log parsing. We first convert a log message from un-
structured text to a data structure that shows the message
type and a list of message variables in (name, value) pairs.
We get all possible log message template strings from the
source code and match these templates to each log message
to recover its structure (that is, message type and variables).
Our experiments show that we can achieve high parsing ac-
curacy in real-world systems.

There are systems that use structured tracing only, such
as BerkeleyDB (Java edition). In this case, because logs are
already structured, we can skip this first step and directly
apply our feature creation and anomaly detection methods.
Note that these structured logs still contain both identifiers
and state variables.1

2) Feature creation. Next, we construct feature vectors
from the extracted information by choosing appropriate vari-
ables and grouping related messages. In this paper, we focus
on constructing the state ratio vector and the message count
vector features, which are unexploited in prior work. In our
experiments with two large-scale real-world systems, both
features yield good detection results.

3) Anomaly detection. Then, we apply anomaly detec-
tion methods to mine feature vectors, labeling each feature
vector as normal or abnormal. We find that the Princi-
pal Component Analysis (PCA)-based anomaly detection
method [5] works very well with both features. This method
is an unsupervised learning algorithm, in which all parame-
ters can be either chosen automatically or tuned easily, elimi-
nating the need for prior input from the operators. Although
we use this specific machine learning algorithm for our case
studies, it is not intrinsic to our approach, and different algo-
rithms utilizing different extracted features could be readily
“plugged in” to our framework.

4) Visualization. Finally, in order to let system integrators
and operators better understand the PCA anomaly detec-
tion results, we visualize results in a decision tree [34]. Com-
pared to the PCA-based detector, the decision tree provides
a more detailed explanation of how the problems are de-
tected, in a form that resembles the event processing rules [10]
with which system integrators and operators are familiar.

2.3 Case study and data collection
We studied source code and logs from 22 widely deployed

open source systems. Table 2 summarizes the results. Al-
though these systems are distinct in nature, developed in
different languages by different developers at different times,
20 of the 22 systems use free text logs, and our source-code-
analysis based log parsing applies to all of the 20. Interest-
ingly, we found that about 1%-5% of code lines are logging
calls in most of the systems, but most of these calls are
rarely, if ever, executed because they represent erroneous
execution paths. It is almost impossible to maintain log-
parsing rules manually with such a large number of distinct

1In fact, the last system in Table 2 (Storage Prototype) is
an anonymous research prototype with built-in customized
structured traces. Without any context, even without know-
ing the functionality of the system, our feature creation and
anomaly detection algorithm successfully discovered log seg-
ments that the developer found insightful.
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starting: xact 325 is PREPARING
prepare: xact 325 is COMMITTING
comitted: xact 325 is COMMITTED

1. Log Parsing

type=1, tid=325, state=PREPARING
type=2, tid=325, state= COMMITTING
type=3, tid=325, state=COMMITTED

1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0

2. Feature creation 3. Anomaly 
detection

4.Visualization

Message Count Vectors

State Ratio Vector

PREPARING

COMMITTING

COMMITTED

ABORTED

PCA Anomaly Detection

325:
326:
327:

Source Code

Raw Console Log Structured Log

starting: xact (.*) is (.*)

Message template

void startTransaction(){
…
LOG.info(“starting” + transact);

}

Decision Tree

At time window 100

Figure 2: Overview of console log analysis work flow.

System Nodes Messages Log Size
Darkstar 1 1,640,985 266 MB

Hadoop (HDFS) 203 24,396,061 2412 MB

Table 3: Data sets used in evaluation.
Nodes=Number of nodes in the experiments.

logger calls, which highlights our advantage of discovering
message types automatically from source code. On aver-
age, a message reports a single variable. However, there are
many messages, such as starting server that reports no
variables, while other messages can report 10 or more.

Most C programs use printf style format strings for log-
ging, although a large portion uses wrapper functions to gen-
erate standard information such as time stamps and severity
levels. These wrappers, even if customized, can be detected
automatically from the format string parameter. In con-
trast, Java programs usually use string concatenation to gen-
erate log messages and often rely on standard logger pack-
ages (such as log4j ). Analyzing these logging calls requires
understanding data types, which we detail in Section 3. Our
source-code-analysis based log parsing approach successfully
works on most of them, and can find at least one of state
variables and identifiers in 21 of the 22 systems in Table 2
(16 have both), confirming our assumption of their preva-
lence.

To be succinct yet reveal important issues in console log
mining, we focus further discussion on two representative
systems shown in Table 2: the Darkstar online game server
and the Hadoop File System (HDFS). Both systems han-
dle persistence, an important yet complicated function in
large-scale Internet services. However, these two systems
are different in nature. Darkstar focuses on small, time sen-
sitive transactions, while HDFS is a file system designed for
storing large files and batch processing. They represent two
major open source contributors (Sun and Apache, respec-
tively) with different coding and logging styles.

We collected logs from systems running on Amazon’s Elas-
tic Compute Cloud (EC2) and we also used EC2 to analyze
these logs. Table 3 summarizes the log data sets we used.
The Darkstar example revealed a behavior that strongly de-
pended on the deployment environment, which led to prob-
lems when migrating from traditional server farms to clouds.
In particular, we found that Darkstar did not gracefully han-
dle performance variations that are common in the cloud-
computing environment. By analyzing console logs, we found

the reason for this problem, as discussed in detail in Sec-
tion 6.2.

Satisfied with Darkstar results, to further evaluate our
method we analyzed HDFS logs, which are much more com-
plex. We collected HDFS logs from a Hadoop cluster run-
ning on over 200 EC2 nodes, yielding 24 million lines of logs.
We successfully extracted log segments indicating run-time
performance problems that have been confirmed by Hadoop
developers.

All log data are collected from unmodified off-the-shelf
systems. Console logs are written directly to local disks
on each node and collected offline by simply copying log
files, which shows the convenience (no instrumentation or
configuration) of our log mining approach. In the HDFS
experiment, we used the default logging level, while in the
Darkstar experiment, we turned on debug logging (FINER
level in the logging framework).

3. LOG PARSING WITH SOURCE CODE
In addition to standard “fields” in console logs, such as

timestamps, we focus on the free text part of a log message.
For the log excerpt at the top of Figure 1, human readers
would reasonably conclude that 325, 346, COMMITTING and
ABORTING are message variables while the rest are constant
strings marking message types. They could then write a
regular expression such as starting: xact (.*) is (.*)

to “templatize” such log messages. We want to automate
the process.

The difficulty. Unless the log itself is marked with for-
matting to distinguish these elements, we must “templatize”
automatically. As discussed in Section 2.1, it is much eas-
ier for a machine to use the source code as the “schema”
for console logs. If the software is written in a language
like C, it is likely that the template can be directly inferred
from printf variants that generate the messages, such as
fprintf(LOG, "starting: xact %d is %s"), with the var-
ious escapes (%d, %f, and so on) telling us something about
the types of the variables. However, it is more challenging in
object-oriented (OO) languages such as Java, which are in-
creasingly used for open source software (Table 2). Consider
the excerpt of Java source shown in the bottom half of Fig-
ure 1, which generated the two example log lines. Clearly,
the tid variable of the txn object corresponds to the iden-
tifiers 325 and 346 in the log message of Figure 1, and the
state variable corresponds to the labels COMMITTING and
ABORTING. Trying to extract a regular expression by simply
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System Lang Logger Msg Construction LOC LOL Vars Parse ID ST
Operating system
Linux (Ubuntu) C custom printk + printf wrap 7477k 70817 70506 Y Yb Y
Low level Linux services
Bootp C custom printf wrap 11k 322 220 Y N N
DHCP server C custom printf wrap 23k 540 491 Y Yb Y
DHCP client C custom printf wrap 5k 239 205 Y Yb Y
ftpd C custom printf wrap 3k 66 67 Y Y N
openssh C custom printf wrap 124k 3341 3290 Y Y Y
crond C printf printf wrap 7k 112 131 Y N Y
Kerboros 5 C custom printf wrap 44k 6261 4971 Y Y Y
iptables C custom printf wrap 52k 2341 1528 Y N Y
Samba 3 C custom printf wrap 566k 8461 6843 Y Y Y
Internet service building blocks
Apache2 C custom printf wrap 312k 4008 2835 Y Y Y
mysql C custom printf wrap 714k 5092 5656 Y Yb Yb

postgresql C custom printf wrap 740k 12389 7135 Y Yb Yb

Squid C custom printf wrap 148k 2675 2740 Y Y Y
Jetty Java log4j string concatenation 138k 699 667 Y Y Y
Lucene Java custom custom log function 217k 143 159 Ya Y N
BDB (Java) Java custom custom structured trace 260k - - - Y N
Distributed systems
Hadoop Java custom log4j string concatenation 173k 911 1300 Y Y Y
Darkstar Java jdk-log Java format string 90k 578 658 Y Yb Yb

Nutch Java log4j string concatenation 64k 507 504 Y Y Y
Cassandra Java log4j string concatenation 46k 393 437 Y N Y
Storage Prototype C custom custom structured trace -c -c -c -c Y Y

aLogger class is not consistent in every module, so we need to manually specify the logger function name for each
module.
bSystem prints minimal amount of logs by default, so we need to enable debug logging.
cSource code not available, but logs are well structured so manual parsing is easy.

Table 2: Console logging in popular software systems. LOC = lines of codes in the system. LOL = number of
log printing statements. Vars = number of variables reported in log messages. Parse = whether our source
analysis based parsing applies. ID = whether identifier variables are reported. ST = whether state variables
are reported.

“grepping”the source code would only give us starting: (.*)

(line 1), which does not distinguish tid and state as sepa-
rate features with distinct ranges of possible values. Criti-
cally, as we will show later, we need this finer level of feature
resolution to find “interesting” problems.

Three reasons cause this difficulty to arise in OO lan-
guages. First, we need to know that CLog identifies a logger
object; that is, knowing the name of the logger class is not
enough. Second, the OO idiom for printing is for an object
to implement a toString() method that returns a print-
able representation of itself for interpolation into a string; in
this example, the toString() method of the abstract type
Transaction actually reveals the underlying structure of the
log message. Third, due to class inheritance, the actual
toString() method used in a particular call might be de-
fined in a subclass rather than the base class of the logger
object.

Our parsing approach. All three reasons are addressed
by our log parsing method that consists of two steps: a static
source code analysis step and the runtime log parsing step,
as Figure 3 illustrates. In particular, we do not claim
to handle every situation correctly (despite extensive sup-
port for language idioms), but we do show that some of the
important features used in our results cannot be extracted
using existing log parsing techniques.

The static source code analysis step takes program source

(and possibly the names of the logger class) as input. In this
step, we first generate the source code’s abstract syntax tree
(AST) [1], a popular data structure for traversing and ana-
lyzing source code. We use the AST implementations built
into the open-source Eclipse IDE [25]. We use the AST to
identify all method calls on objects of the classes (or their
subclasses), recording the filename and line number of the
call. Each call gives us only a partial message template,
since the template may involve interpolation of objects of
nonprimitive types, as in line 1 of the source code excerpt
in Figure 1. We then enumerate all toString() calls in all
classes, and look at the string formatting statements in those
calls to deduce the types of variables in message templates,
substituting this type information back into the partial tem-
plates. We do this recursively until all templates interpolate
only primitive types; if no toString() method can be found
for a particular variable anywhere along its inheritance path,
we assume that that variable can take on any string value
and we do no further semantic interpretation. A single pass
can accomplish all of these operations over the AST. The
output of the process is the complete message templates,
with a data structure containing each message’s template
(regular expression), position in the source code, and the
names and data types of all variables appearing in the mes-
sage. We describe the details of the template extraction
approach in Appendix A.
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starting: (.*) 
[transact][Transaction]
[Participant.java:345]

Partial message template

toString() definitions

starting: xact (.*) is (.*) 
[tid,state][int,String]
[at Participant.java:345]

starting: xact (.*) is (.*) at node (.*) 
[tid, state, node] [int, String, Node]
[at Participant.java:345]

Complete message templatesASTSource Code Type hierarchy info

Reverse Index

Console Logs

Parsing results
Static source code analysis Runtime log parsing

Figure 3: Using source code information to parse console logs.

To parse the logs, we first compile all message templates
into an Apache Lucene [11] reverse index [20], which allows
us to quickly associate any log message with the correspond-
ing template. Following established heuristics in log analy-
sis [17, 30], we construct an index query from each log mes-
sage by removing all numbers and special symbols. From
the list of relevance-ranked candidate results returned by
the reverse-index search, we pick the highest-ranked result
that allows a regular expression match to succeed against
the log message. We note that once the reverse index is
constructed (it usually fits in memory), the parsing step is
embarrassingly parallel; we implement it as a Hadoop map-
reduce job by replicating the index to every worker node
and partitioning the log among the workers, achieving near
linear speedup. The map stage performs the reverse-index
search; the reduce stage processing depends on the features
to be constructed, and Section 4 shows 2 examples.

To summarize, unlike existing log-parsing methods, the
fine granularity of structure revealed by our method enables
analyses that are traditionally possible only with structured
logs. Section 7 discusses the many intrinsic subtleties in
source code analysis and log parsing.

4. FEATURE CREATION
This section describes our technique for constructing fea-

tures from parsed logs. We focus on two features, the state
ratio vector and the message count vector, based on state
variables and identifiers (see Section 2.1), respectively. The
state ratio vector is able to capture the aggregated behavior
of the system over a time window. The message count vector
helps detect problems related to individual operations. Both
features describe message groups constructed to have strong
correlations among their members. The features faithfully
capture these correlations, which are often good indicators
of runtime problems. Although these features are from the
same log, and similar in structure, they are constructed in-
dependently, and have different semantics.

4.1 State variables and state ratio vectors
State variables can appear in a large portion of log mes-

sages. In fact, 32% of the log messages from Hadoop and
28% of messages from Darkstar contain state variables.

In many systems, during normal execution the relative
frequency of each value of a state variable in a time window
usually stays the same. For example, in Darkstar, the ra-
tio between ABORTING and COMMITTING is very stable during
normal execution, but changes significantly when a problem
occurs. Notice that the actual number does not matter (as it

depends on workload), but the ratio among different values
matters.

We construct state ratio vectors y to encode this corre-
lation: Each state ratio vector represents a group of state
variables in a time window, while each dimension of the vec-
tor corresponds to a distinct state variable value , and the
value of the dimension is how many times this state value
appears in the time window.

In creating features based on state variables we used an
automatic procedure that combined two desiderata: 1) mes-
sage variables should be frequently reported, but 2) they
should range across a small constant number of distinct val-
ues that do not depend on the number of messages. Specifi-
cally in our experiments, we chose state variables that were
reported at least 0.2N times, with N the number of mes-
sages, and had a number of distinct values not increasing
with N for large values of N (e.g., more than a few thou-
sand). Our results were not sensitive to the choice of 0.2.

The time window size is also automatically determined.
Currently we choose a size that allows the variable to appear
at least 10D times in 80% of all the time windows, where
D is the number of distinct values. This choice of time
window allows the variable to appear enough times in each
window to make the count statistically significant [4] while
keeping the time window small enough to capture transient
problems. We tried with other parameters than 10 and 80%
and we did not see a significant change in detection results.

We stack all n-dimensional y’s from m time windows to
construct the m × n state ratio matrix Ys.

4.2 Identifiers and message count vectors
Identifiers are also prevalent in logs. For example, almost

50% of messages in HDFS logs contain identifiers. We ob-
serve that all log messages reporting the same identifier con-
vey a single piece of information about the identifier. For
instance, in HDFS, there are multiple log messages about
a block when the block is allocated, written, replicated, or
deleted. By grouping these messages, we get the message
count vector, which is similar to an execution path [8] (from
custom instrumentation).

To form the message count vector, we first automatically
discover identifiers, then group together messages with the
same identifier values, and create a vector per group. Each
vector dimension corresponds to a different message type,
and the value of the dimension tells how many messages of
that type appear in the message group.

The structure of this feature is analogous to the bag of
words model in information retrieval [6]. In our application,
the “document” is the message group. The dimensions of
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Algorithm 1 Message count vector construction

1. Find all message variables reported in the log with the
following properties:
a. Reported many times;
b. Has many distinct values;
c. Appears in multiple message types.

2. Group messages by values of the variables
chosen above.

3. For each message group, create a message count
vector y = [y1, y2, . . . , yn], where yi is the number of
appearances of messages of type i (i = 1 . . . n)
in the message group.

the vector consist of the union of all useful message types
across all groups (analogous to all possible “terms”), and
the value of a dimension is the number of appearances of
the corresponding message types in a group (corresponding
to “term frequency”).

Algorithm 1 summarizes our three-step process for feature
construction. We now try to provide intuition behind the
design choices in this algorithm.

In the first step of the algorithm, we automatically choose
identifiers (we do not want to require operators to specify
a search key). The intuition is that if a variable meets the
three criteria in step 1 of Algorithm 1, it is likely to identify
object such as transactions. The frequency/distinct value
pattern of identifiers is very different from other variables,
so it is easy to discover identifiers 2. We have very few false
selections in all data sets, and the small number of false
choices is easy to eliminate by a manual examination.

In the second step, the message group essentially describes
an execution path, with two major differences. First, not ev-
ery processing step is necessarily represented in the console
logs. Since the logging points are hand chosen by developers,
it is reasonable to assume that logged steps should be im-
portant for diagnosis. Second, correct ordering of messages
is not guaranteed across multiple nodes, due to unsynchro-
nized clocks across many computers. This ordering might be
a problem for diagnosing synchronization-related problems,
but it is still useful in identifying many kinds of anomalies.

In the third step, we use the bag of words model [6] to
represent the message group because: 1) it does not require
ordering among terms (message types), and 2) documents
with unusual terms are given more weight in document rank-
ing. In our case, the rare log messages are indeed likely to
be more important.

We gather all the message count vectors to construct mes-
sage count matrix Ym as an m × n matrix where each row
is a message count vector y, as described in step 3 of Al-
gorithm 1. Ym has n columns, corresponding to n message
types that reported the identifier (analogous to “terms”).
Ym has m rows, each of which corresponds to a message
group (analogous to “document”).

Although the message count matrix Ym has completely
different semantics from the state ratio matrix Ys, both can
be analyzed using matrix-based anomaly detection tools (see

2Like the state variable case, identifiers are chosen as vari-
ables reported at least 0.2N times, where N is total number
of messages. We also require the variables have at least
0.02N distinct values, and reported in at least 5 distinct
messages types.

Feature Rows Columns
Status ratio matrix Ys time window state value
Message count matrix Ym identifier message type

Table 4: Semantics of rows and columns of features
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Figure 4: The intuition behind PCA detection with
simplified data. We plot only two dimensions from
the Darkstar state variable feature. It is easy to
see high correlation between these two dimensions.
PCA determines the dominant normal pattern, sep-
arates it out, and makes it easier to identify anoma-
lies.

Section 5). Table 4 summarizes the semantics of the rows
and columns of each feature matrix.

4.3 Implementing feature creation algorithms
To improve efficiency of our feature generation algorithms

in map-reduce, we tailored the implementation. The step of
discovering state variables and/or identifiers (the first steps
in Section 4.1 and 4.2) is a single map-reduce job that calcu-
lates the number of distinct values for all variables and de-
termines which variables to include in further feature gener-
ation steps. The step of constructing features from variables
is another map-reduce job with log parsing as the map stage
and message grouping as the reduce stage. For the state ra-
tio , we sort messages by time stamp, while for the message
count vector, we sort by identifier values. Notice that the
map stage (parsing step) only needs to output the required
data rather than the entire text message, resulting in huge
I/O savings during the data shuffling and sorting before re-
duce. Feature creation time is negligible when compared to
parsing time.

5. ANOMALY DETECTION
We use anomaly detection methods to find unusual pat-

terns in logs. In this way, we can automatically find log
segments that are most likely to indicate problems. Given
the feature matrices we construct, outlier detection methods
can be applied to detect anomalies contained in the logs.
We have investigated a variety of such methods and have
found that Principal Component Analysis (PCA) [5, 16]
combined with term-weighting techniques from information
retrieval [23, 26] yields excellent anomaly detection results
on both feature matrices, while requiring little parameter
tuning.

PCA is a statistical method that captures patterns in
high-dimensional data by automatically choosing a set of
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Feature data sets n k
Darkstar - message count 18 3
Darkstar - state ratio 6 1
HDFS - message count 28 4
HDFS - state ratio 202 2

Table 5: Low effective dimensionality of feature
data. n = Dimensionality of feature vector y; k =
Dimensionality required to capture 95% of variance
in the data.In all of our data, we have k � n, ex-
hibiting low effective dimensionality.

coordinates—the principal components—that reflect covari-
ation among the original coordinates. We use PCA to sepa-
rate out repeating patterns in feature vectors, thereby mak-
ing abnormal message patterns easier to detect. PCA has
runtime linear in the number of feature vectors; therefore,
detection can scale to large logs.

Intuition behind PCA anomaly detection. (The math-
challenged may want to skip to the results in Section 6.) By
construction, dimensions in our feature vectors are highly
correlated, due to the strong correlation among log messages
within a group. We aim to identify abnormal vectors that
deviate from such correlation patterns. Figure 4 illustrates a
simplified example using two dimensions (number of ACTIVE
and COMMITTING per second) from Darkstar state ratio vec-
tors. We see most data points reside close to a straight line
(a one-dimensional subspace). In this case, we say the data
have low effective dimensionality. The axis Sd captures the
strong correlations between the two dimensions. Intuitively,
a data point far from the Sd (such as point A) shows unusual
correlation, and thus represents an anomaly. In contrast,
point B, although far from most other points, resides close
to the Sd, and is thus normal. In fact, both ACTIVE and
COMMITTING are larger in this case, which simply indicates
that the system is busier.

Indeed, we do observe low effective dimensionality in the
feature matrices Ys and Ym in many systems. Table 5
shows k, the number of dimensions required to capture 95%
of the variance in data 3. Intuitively, in the case of the state
ratio , when the system is in a stable state, the ratios among
different state variable values are roughly constant. For the
message count vector, as each dimension corresponds to a
certain stage in the program and the stages are determined
by the program logic, the messages in a group are correlated.
The correlations among messages, determined by the normal
program execution, result in highly correlated dimensions for
both features.

In summary, PCA captures dominant patterns in data
to construct a (low) k-dimensional normal subspace Sd in
the original n-dimensional space. The remaining (n − k)
dimensions form the abnormal subspace Sa. By projecting
the vector y on Sa (separating out its component on Sd), it
is much easier to identify abnormal vectors. This forms the
basis for anomaly detection [5, 16].

Detecting anomalies. Intuitively, we use the “distance”
from the end point of a vector y to the normal subspace Sd to
determine whether y is abnormal. This can be formalized by
computing the squared prediction error SPE ≡ ‖ya‖2 (the

3This is a common heuristic for determining k in PCA de-
tectors [15]; we use this number in all of our experiments.

squared length of vector ya), where ya is the projection of
y onto the abnormal subspace Sa, and can be computed as
ya = (I − PPT )y, where P = [v1,v2, . . . , vk], is formed by
the first k principal components chosen by PCA algorithm.

As Figure 4 shows, abnormal vectors are typically far away
from the normal subspace Sd. Thus, the “detection rule” is
simple: we mark y is abnormal if

SPE = ‖ya‖2 > Qα, (1)

where Qα denotes the threshold statistic for the SPE resid-
ual function at the (1 − α) confidence level.

Automatically determine detection threshold. To
compute Qα we make use of the Q-statistic, a well-known
test statistic for the SPE residual function [13]. The com-
puted threshold Qα guarantees that the false alarm proba-
bility is no more than α under the assumption that data ma-
trix Y has a multivariate Gaussian distribution. However,
as pointed out by Jensen and Solomon [13], and as verified
in our empirical work, the Q-statistic is robust even when
the underlying distribution of the data differs substantially
from Gaussian.

The choice of the confidence parameter α for anomaly
detection has been studied in previous work [16], and we
follow standard recommendations in choosing α = 0.001 in
our experiments. We found that our detection results are
not sensitive to this parameter choice.

Improving PCA detection results. Our message count
vector is constructed in a way similar to the bag-of-words
model, so it is natural to consider term weighting techniques
from information retrieval. We applied Term Frequency /
Inverse Document Frequency (TF-IDF), a well-established
heuristic in information retrieval [23, 26], to pre-process the
data. Instead of applying PCA directly to the feature ma-
trix Ym we replace each entry yi,j in Ym with a weighted
entry wi,j ≡ yi,j log(n/dfj), where dfj is total number of
message groups that contain the j-th message type. Intu-
itively, multiplying the original count with the IDF reduces
the weight of common message types that appear in most
groups, which are less likely to indicate problems. We found
this step to be essential for improving detection accuracy.

TF-IDF does not apply to the state ratio feature. This
is because the state ratio matrix is a dense matrix that is
not amenable to an interpretation as a bag-of-words model.
However, applying the PCA method directly to Ys gives
good results on the state ratio feature.

6. EVALUATION AND VISUALIZATION
We first show the accuracy and scalability achieved by

our log parsing method (Section 6.1) and then discuss our
experiences with the two real-world systems.

We began our experiments of problem detection with Dark-
star, in which both features give simple yet insightful results
(Section 6.2). Satisfied with these results, we applied our
techniques to the much more complex HDFS logs. We also
achieve high detection accuracy (Section 6.3). However, the
results are less intuitive to system operators and developers,
so we developed a decision tree visualization method, which
summarizes the PCA detection results in a single, intuitive
picture (Section 6.4) that is more operator friendly because
the tree resembles the rule-based event processing systems
operators use [10].
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System Total Log Failed Failed %
HDFS 24,396,061 29,636 0.121%

Darkstar 1,640,985 35 0.002%

Table 6: Parsing accuracy. Parse fails on a mes-
sage when we cannot find a message template that
matches the message and extract message variables.
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Figure 5: Scalability of log parsing with number of

nodes used. The x-axis is the number of nodes used,

while the y-axis is the number of messages processed per

minute. All nodes are Amazon EC2 high-CPU medium

instances. We used the HDFS data set (described in

(Table 3) with over 24 million lines. We parsed raw tex-

tual logs and generated the message count vector feature

(see Section 4.2). Each experiment was repeated 4 times

and the reported data point is the mean.

6.1 Log parsing accuracy and scalability
Accuracy. Table 6 shows that our log parsing method
achieves over 99.8% accuracy on both systems. Specifically,
our technique successfully handled rare messages types, even
those that appeared only twice in over 24 million messages
in HDFS. On the contrary, word-frequency based console
log analysis tools, such as SLCT [32], do not recover ei-
ther of the features we use in this paper. State variables
are too common to be separated from constant strings by
word frequency only. In addition, these tools ignore all rare
messages, which are required to construct message count
vectors.

There are only a few message types that our parser fails
to handle. Almost all of these messages contain long string
variables. These long strings may overwhelm the constant
strings we are searching for, preventing reverse index search
from finding the correct message template. However, these
messages typically appear at the initialization or termination
phase of a system (or a subsystem), when the state of the
system is dumped to the console. Thus, we did not see any
impact of missing these messages on our detection results.

We believe the accuracy of our approach to parsing is
essential; only with an accurate parsing system can we ex-
tract state variables and identifiers—the basis for our feature
construction—from textual logs. Thus, we consider the re-
quirement of access to source code to be a small price to pay
(especially given that many modules are open-source), given
the high quality parsing results that our technique produces.

Scalability. We evaluated the scalability of our log parsing
approach with a varying number of EC2 nodes. Figure 5
shows the result: Our log parsing and feature extraction al-
gorithms scale almost linearly with up to about 50 nodes.

Even though we parsed all messages generated by 200 HDFS
nodes (with aggressive logging) over 48 hours, log parsing
only takes less than 3 minutes with 50 nodes, or less than 10
minutes with 10 nodes. When we use more than 60 nodes,
the overhead of index dissemination and job scheduling dom-
inate running time.

6.2 Darkstar experiment results
As mentioned in Section 2.3, we observed high perfor-

mance (i.e., client side response time) variability when de-
ploying the Darkstar server on a cloud-computing environ-
ment such as EC2 during performance disturbances, espe-
cially for CPU contention. We wanted to see if we could
understand the reason for this high performance variability
solely from console logs. Indeed, we were unfamiliar with
Darkstar, so our setting was realistic as the operator often
knows little about system internals.

In the experiment, we deployed an unmodified Darkstar
0.95 distribution on a single node (because the Darkstar
version we use supports only one node). Darkstar does not
log much by default, so we turned on the debug-level log-
ging. We deployed a simple game, DarkMud, provided by
the Darkstar team, and created a workload generator that
emulated 60 user clients in the DarkMud virtual world per-
forming random operations such as flipping switches, picking
up and dropping items. The client emulator recorded the
latency of each operation. We ran the experiment for 4800
seconds and injected a performance disturbance by capping
the CPU available to Darkstar to 50% of the normal level
during time 1400 to 1800.

Detection by state ratio vectors. The only state vari-
able chosen by our feature generation algorithm is state,
which is reported in 456, 996 messages (about 28% of all log
messages in our data set). It has 8 distinct values, includ-
ing PREPARING, ACTIVE, COMMITTING, ABORTING and so on,
so our state ratio matrix Ys has 8 columns (dimensions).
The time window (automatically determined according to
Section 4.1) is 3 seconds; we restricted the choice to whole
seconds.

Figures 6 (a) and (b) show the results between time 1000
and 2500, where plot (a) displays the average latency re-
ported by the client emulator, which acts as a ground truth
for evaluating our method, and plot (b) displays the PCA
anomaly detection results on the state ratio matrix Ys. We
see that anomalies detected by our method during the time
interval (1400, 1800) match the high client-side latency very
well; i.e., the anomalies detected in the state ratio matrix
correlate very well with the increases in client latency. Com-
paring the abnormal vectors to the normal vectors, we see
that the ratio between number of ABORTING to COMMITTING

increases from about 1:2000 to about 1:2, indicating that
a disproportionate number of ABORTING transactions are re-
lated to the poor client latency.

Generally, the abnormal state ratio may be the cause,
symptom, or consequence of the performance degradation.
In the Darkstar case, the ratio reflects the cause of the
problem: when the system performance gets worse, Dark-
star does not adjust transaction timeout accordingly, caus-
ing many normal transactions to be aborted and restarted,
resulting in further load increase to the system.

Notice that a traditional grep-based method does not help
in this case for two reasons: 1) As a normal user of Darkstar—
without having knowledge about its internals—the transac-
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Figure 6: Darkstar detection results. (a) shows that the disturbance injection caused a huge increase in
client response time. (b) shows PCA anomaly detection results on the state ratio vector created from
message variable state. The dashed line shows the threshold Qα. The solid line with spikes is the SPE
calculated according to Eq. (1). The circles denote the anomalous vectors detected by our method, whose
SPE values exceed threshold Qα. (c) shows detection results with the message count vector. The SPE value
of each vector (the solid line) is plotted at the time when the last message of the group occurs.

tion states are obscure implementation details. Thus, it is
difficult for a user to choose the correct ones from many
variables to search for. In contrast, we systematically dis-
cover and analyze all state variables. 2) ABORTING happens
even during normal operation times, due to the optimistic
concurrency model used in Darkstar, where aborting is used
to handle access conflicts. It is not a single ABORTING mes-
sage, but the ratio of ABORTING to other values of the state

variable that captures the problem.

Detection by message count vectors. From Darkstar
logs, Algorithm 1 automatically chooses two identifier vari-
ables, the transaction id and the asynchronous channel id.
Figure 6(c) shows detection results on the message count
vector constructed from the transaction id variable. There
are 68,029 transaction ids reported in 18 different message
types. Thus, the dimension of matrix Ym is 68, 029 × 18.
By construction, each message count vector represents a set
of operations (message types) occurring when executing a
transaction. PCA identifies the normal vectors correspond-
ing to a common set of operations (simplified for presen-
tation): {create, join txn, commit, prepareAndCommit}.
Abnormal transactions can deviate from this set by miss-
ing a few message types, or having rare message types such
as abort txn instead of commit and join txn. We de-
tected 504 of these as abnormal. To validate our result,
we augmented each feature vector using the timestamp of
the last message in that group, and we found that almost
all abnormal transactions occur when the disturbance is in-
jected. We see that the anomalies continue to appear (with
a smaller frequency) for a short time period after the dis-
turbance stopped due to the queueing effect as the system
recovered from the disturbance. Notice that the state ratio
vector method did not mark the recovery period as abnor-
mal, demonstrating that the message count vector method
was more sensitive because it modeled individual operations
while state ratio vector method captured only aggregate be-
havior.

There were no anomalies on the channel id variable dur-
ing the entire experiment, suggesting that the channel id
variable is not related to this performance anomaly.

This result is consistent with the state ratio vector de-
tection result. In console logs, it is common that there are
several different pieces of information that describe the same
system behavior. This commonality suggests an important
direction for future research: to exploit multi-source learn-
ing algorithms, which combine multiple detection results to
further improve accuracy.

6.3 Hadoop experiment results
Compared to Darkstar, HDFS is larger scale and the logic

is much more complex. In this experiment, we show that
we can automatically discover many abnormal behaviors in
HDFS. We generated the HDFS logs by setting up a Hadoop
cluster on 203 EC2 nodes and running sample Hadoop map-
reduce jobs for 48 hours, generating and processing over 200
TB of random data. We collected over 24 million lines of
logs from HDFS.

Detection on message count vector. From HDFS logs,
Algorithm 1 automatically chooses one identifier variable,
the blockid, which is reported in 11, 197, 954 messages (about
50% of all messages) in 29 message types. Also, there are
575, 139 distinct blockids reported in the log, so the mes-
sage count matrix Ym has a dimension of 575, 139×29. The
PCA detector gives very good separation between normal
and abnormal row vectors in the matrix: Using an automat-
ically determined threshold (Qα in Eq. (1) in Section 5), it
can successfully detect abnormal vectors corresponding to
blocks that went through abnormal execution paths.

To further validate our results, we manually labeled each
distinct message vector, not only marking them as normal
or abnormal, but also determining the type of problems for
each vector. The labeling was done by carefully studying
HDFS code and by consulting with local Hadoop experts.
We show in the next section that the decision tree visual-
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ization helps both ourselves and Hadoop developers to un-
derstand our results. We emphasize that this labeling step is
done only to validate our method—it is not a required step
when using our technique. Labeling half a million vectors is
possible because many of the vectors are exactly the same.
In fact, there are only 680 distinct vectors, confirming our
intuition that most blocks go through a common execution
path.

Table 7 shows the manual labels and detection results.
We see that the PCA detector can detect a large fraction of
anomalies in the data, and significant improvement can be
achieved when we preprocess data with TF-IDF , confirming
our expectations from Section 5.

Throughout the experiment, we experienced no catastrophic
failures; thus, most problems listed in Table 7 only affect
performance.

The first anomaly in Table 7 uncovered a bug that has
been hidden in HDFS for a long time. In a certain (rela-
tively rare) code path, when a block is deleted (due to tem-
porary over-replication), the record on the namenode is not
updated until the next write to the block, causing the file
system to believe in a replica that no longer exists, which
causes subsequent block deletion to fail. Hadoop develop-
ers have recently confirmed this bug. This anomaly is hard
to find because there is no single error message indicating
the problem. However, we discover it because we analyze
abnormal execution paths.

We also notice that we do not have the problem that
causes confusion in traditional grep based log analysis. In
HDFS datanode logs, we see many messages like
#:Got Exception while serving # to #:#.

According to Apache issue tracking (jira) HADOOP-3678,
this is a normal behavior of HDFS: the HDFS data node
generates the exception when a HDFS client does not fin-
ish reading an entire block before it stops. These exception
messages have confused many users, as indicated by multiple
discussion threads on the Hadoop user mailing list. While
traditional keyword matching (e.g., searching for words like
Exception or Error) would have flagged these as errors, our
message count method successfully avoids this false positive
because this happens too many times to be abnormal.

Our algorithm does report some false positives, which are
inevitable in any unsupervised learning algorithm. For ex-
ample, the second false positive in Table 7 occurs because
a few blocks are replicated 10 times instead of 3 times for
the majority of blocks. These message groups look suspi-
cious, but Hadoop experts told us that these are normal
situations when the map-reduce system is distributing job
configuration files to all the nodes. It is indeed a rare situ-
ation compared to the data accesses, but is normal by the
system design. Eliminating this type of “rare but normal”
false positive requires domain expert knowledge. As a fu-
ture direction, we are investigating semi-supervised learning
techniques that can take operator feedback and further im-
prove our results.

Detection on state ratio vectors. The only state vari-
able chosen in HDFS logs by our feature generation algo-
rithm is the node name. Node name might not sound like a
state variable, but as the set of nodes (203 total) are rela-
tively fixed in HDFS, and their names meet the criterion of
state variable described in Section 4.1. Thus, the state ratio
vector feature reduces to per node activity count, a feature
well-studied in existing work [12, 17]. As in this previous
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work, we are able to detect transient workload imbalance,
as well as node reboot events. However, our approach is
less ad-hoc because the state ratio feature is chosen auto-
matically based on information in the console log, instead of
manually specified.

6.4 Visualizing detection results with decision
trees

From the point of view of an operator, the transforma-
tion underlying PCA is a black box algorithm: it provides
no intuitive explanation of the detection results and cannot
be interrogated. Human operators need to manually exam-
ine anomalies to understand the root cause, and PCA itself
provides little help in this regard. In this section, we show
how to augment PCA-based detection with decision trees to
make the results more easily understandable and actionable
by operators. The decision tree result resembles the (man-
ually written) rules used in many system-event-processing
programs [10], so it is easier for non-machine learning ex-
perts. This technique is especially useful for features with
many dimensions, such as the message count vector feature
in HDFS.

Decision trees have been widely used for classification. Be-
cause decision tree construction works in the original coor-
dinates of the input data, its classification decisions tend to
be easy to visualize and understand [34]. Constructing a de-
cision tree requires a training set with class labels. We use
the automatically generated PCA detection results (normal
vs. abnormal) as class labels, in contrast to the normal use
of decision trees. Our decision tree is constructed to explain
the underlying logic of the detection algorithm, rather than
the nature of the dataset.

Figure 7 is the decision tree generated using RapidMiner [21]
from the anomaly detection results of the HDFS log. It
clearly shows the most important message types. For exam-
ple, the first level shows that if blockMap (the data structure
that keeps block locations) is updated more than 3 times,
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# Anomaly Description Actual Raw TF-IDF
1 Namenode not updated after deleting block 4297 475 4297
2 Write exception client give up 3225 3225 3225
3 Write failed at beginning 2950 2950 2950
4 Replica immediately deleted 2809 2803 2788
5 Received block that does not belong to any file 1240 20 1228
6 Redundant addStoredBlock 953 33 953
7 Delete a block that no longer exists on data node 724 18 650
8 Empty packet for block 476 476 476
9 Receive block exception 89 89 89
10 Replication Monitor timedout 45 37 45
11 Other anomalies 108 91 107

Total 16916 10217 16808

# False Positive Description Raw TF-IDF
1 Normal background migration 1399 1397
2 Multiple replica (for task / job desc files) 372 349
3 Unknown Reason 26 0

Total 1797 1746

Table 7: Detected anomalies and false positives using PCA on Hadoop message count vector feature. Actual
is the number of anomalies labeled manually. Raw is PCA detection result on raw data, TF-IDF is detection
result on data preprocessed with TF-IDF and normalized by vector length (Section 5).

it is abnormal. This indicates the over-replication problem
(Anomaly 4 or False Positive 1 in Table 7). The second level
shows that if a block is received 2 times or less, it is abnor-
mal; this indicates under-replication or block-write failure
(Anomaly 2 and 3 in Table 7). Level 3 of the decision tree
is related to the bug we discussed in Section 6.3.

In summary, the visualization of results with decision trees
helps operators and developers notice types of abnormal be-
haviors instead of individual abnormal events, which can
greatly improve the efficiency of finding root causes and pre-
venting future alarms.

7. DISCUSSION
Should we completely replace console logs with struc-
tured tracing? There are various such efforts [8, 29].
Progress has been slow, however, mainly because there is no
standard for structured tracing embraced by all open source
developers. It is also technically difficult to design a global
“schema” to accommodate all information contained in con-
sole logs in a structured format4. Even if such a standard ex-
isted, manually porting all legacy codes to the schema would
be expensive. Automatic porting of legacy logging code to
structured logging would be no simpler than our log parsing.
Our feature creation and anomaly detection algorithm can
be used withoutlog parsing in systems with structured traces
only, and we described a successful example in Section 2.2

Improving console logs. We have discovered some bad
logging practices that significantly reduced the usefulness of
the console log. Some of them are easy to fix. For example,
Facebook’s Cassandra storage system traces all operations of
nodes sending messages to each other, but it does not write
the sequence number or ID of messages logged. This renders
the log almost useless if multiple threads on a single machine
are sending messages concurrently. However, just by adding
the message ID, our message count method readily applies
and would help detect node communication problems.

4syslog is not structured because it uses the free text field
heavily.

Another bad logging practice, which has been discovered
in prior work, is the poor estimate of event severity. Many
“FATAL” or “ERROR” events are not as bad as the devel-
oper thinks [14, 22]. This mistake is because each developer
judges the severity only in the context of his own module in-
stead of in the context of the entire system. As we show in
the Hadoop read exception example, our tool, based on the
frequency of the events, can provide developers with insight
into the real severity of individual events and thus improve
quality of future logging.

Challenges in log parsing. Since we rely on static source
code analysis to extract structure from the logs, our method
may fail in some cases and fall back on identifying a large
chunk of a log message as an unparsed string. For example,
if programmers use very general types such as Object in Java
(very rare in practice), our type resolution step fails because
there are too many possibilities. We guard against this by
limiting the number of descendants of a class to 100, which is
large enough to accommodate all logs we studied but small
enough to filter out genuine JDK, AWT and Swing classes
with many subclasses (such as Object). Features such as
generics and mix-ins in modern OO languages provide the
mechanisms usually needed to avoid having to declare an
object in a very general class. In addition, some log messages
are undecorated, emitting only a variable of some primitive
type without any constant label. These messages are usually
leftovers from the debugging phase, and we simply ignore
these messages.

8. RELATED WORK
Most existing work treats the entire log as a single se-

quence of repeating message types and mines it with time
series analysis methods. Hellerstein et al. developed a novel
method to mine important patterns such as message burst,
periodicity and dependencies from SNMP data in an enter-
prise network [12, 18]. Yamanishi et al. modeled syslog
sequences as a mixture of Hidden Markov Models (HMM),
in order to find messages that are likely to be related to
critical failures [35]. Lim et al. analyzed a large-scale en-
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terprise telephony system log with multiple heuristic filters
to find messages related to actual failures [17]. Treating a
log as a single time series, however, does not perform well
in large-scale clusters with multiple independent processes
that generate interleaved logs. The model becomes overly
complex and parameters are hard to tune with interleaved
logs [35]. Our analysis is based on message groups rather
than a time series of individual messages. The grouping ap-
proach makes it possible to obtain useful results with simple,
efficient algorithms such as PCA.

A crucial but questionable assumption in previous work
is that message types can be detected accurately. Some
projects [12, 18] use manual type labels from SNMP data,
which are not generally available in console logs. Many
other projects use simple heuristics—such as removing all
numeric values and strings that resemble IP addresses—to
detect message types [17, 35]. These heuristics are not suffi-
ciently general. If the heuristics fail to capture some relevant
variables, the resulting message types can be in the tens of
thousands [17]. SLCT [32], Loghound [33], Sisyphus [27],
and [7] use more advanced clustering and association rules,
as well as scoring methods from information retrieval to ex-
tract message templates for log parsing. IPLoM [19] used
a series of heuristics to capture the differences of similar
log messages to determine message types. Although these
methods can successfully detect recurring patterns, they do
so by considering textual properties of logs. In contrast, our
approach extracts information about program objects from
log messages, and our detection is based on event traces re-
lated to those objects, rather than on textual properties.
Indeed, our message count vector feature is more similar
to path-based problem detection approaches such as Pin-
point [3, 8], as we pointed out in Section 4.2.

Software development involves other textual information
than console logs. By making use of source code, Tan et al.
proposed a novel approach to detect inconsistencies between
textual comments and the program logic [31]. Our idea is
similar in that we can make textual information designed for
human also machine-understandable by using highly struc-
tured source code. However, there are unique challenges in
console log analysis, because we must analyze runtime in-
formation in addition to source code.

9. CONCLUSIONS AND FUTURE WORK
We propose a general approach to problem detection via

the analysis of console logs, the built-in monitoring infor-
mation in most software systems. Using source code as a
reference to understand the structure of console logs, we are
able to parse logs accurately. The accuracy in log parsing
allows us to extract the identifiers and state variables, which
are widely found in logs yet are usually ignored due to dif-
ficulties in log parsing. Using console logs, we are able to
construct powerful features that were previously exploited
only in structured traces. These features reveal accurate
information on system execution; thus, efficient algorithms
such as PCA yield promising anomaly detection results. In
addition, we summarize detection results with decision tree
visualization, which helps operators/integrators/developers
to quickly understand the detection result.

Our work has opened up many new opportunities for turn-
ing built-in console logs into a powerful monitoring system
for problem detection, and suggests a variety of future direc-
tions that can be explored, including: 1) extracting log tem-

plates from program binaries instead of source code, which
not only makes our approach work on non-open-source mod-
ules but also brings much operational convenience; 2) de-
signing other features to fully utilize the rich information in
console logs; 3) developing online detection algorithms in-
stead of current postmortem analysis; and 4) investigating
methods to correlate logs from multiple related applications
and detect more complex failure cases.
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0 Transaction transact = ...;
1 Log.info("starting: " + transact);

2 Class Transaction {
3 public String toString() {
4 return "xact " + this.tid +
5 " is " + this.state;
6 }
7 }

8 Class SubTransaction extends Transaction{
9 private Node node = ....;
10 public String toString() {
11 return "xact " + this.tid +
12 " is " + this.state +" at "+ node;
13 }
14 }

15 Class TransactExec extends Transaction {
16 .....

Figure 8: Example source code segments. Notice
that the logger call in line 1 may generate different
log messages at runtime due to the class hierarchies.

APPENDIX
A. EXTRACTING MESSAGE TEMPLATES

FROM SOURCE CODE
We illustrate the details of our source code analysis tech-

niques for message template extraction with a running exam-
ple in Java, though the general idea applies to other object-
oriented languages as well.

Line 1 of Figure 8 is a simple logger call. However, as we
discussed in Section 3, it might generate different kinds of
messages such as
starting: xact 325 is COMMITTING

starting: xact 346 is ABORTING at n1:8080 (1)

This is because the variable transact is a complex data
type with multiple toString() definitions (Line 2-15). Our
goal is to discover all possible message templates that Line
1 can generate, so we need to resolve the type hierarchy
information of transact.

Figure 9 illustrates the major steps of our approach. All
analysis is done on the abstract syntax tree (AST) [1] gener-
ated by the Eclipse IDE. Our analysis uses three data struc-
tures created from the AST: a list of partial message tem-
plates, a table of templates representing toString() meth-
ods for all declared types (the“toString Table”), and a Class
Hierarchy table. Although logically the data structures are
independent of each other, our implementation builds them
using a single pass over the AST.

Partial message template extraction. We first look for
all method invocations on objects of the logger class. This
gives us the list of all log messages that could possibly be
generated, whether they actually appear in the log or not.
Common logger class libraries such as log4j -based loggers [9]
can be automatically detected by examining the library the
software uses. Analyzing the parameters of the logger call in
Line 1 of Figure 8 gives the partial message template shown
in Figure 9 (a). We also record the names and types of
message variables interpolated into the log message (such as
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starting: (.*) [transact][Transaction] [Participant.java:345]

Partial message template

Transaction         xact (.*) is (.*) 
[tid, state][int, String]

SubTransction xact (.*) is (.*) at (.*) 
[tid, state, node][int, String, Node]

TransactExec ……

Class Hierarchy Table

toString Table
Transaction

SubTransaction TransactExec

starting: xact (.*) is (.*) [tid,state][int,String] [at Participant.java:345]
starting: xact (.*) is (.*) at node (.*) [tid, state, node] [int, String, Node][at Participant.java:345]
… … …

Complete message templates

(a)

(b)

(c)

Partial template extraction 

Type analysis

starting: (.*) [transact][Transaction] [Participant.java:345]

xact (.*) is (.*) [tid, state] [int, String]

starting: (.*) [transact][Transaction] [Participant.java:345]

xact (.*) is (.*) at (.*) [tid, state, node] [int, String, Node]

… … …

Type resolution

(Transaction)

(SubTransaction)

(TransactExec)… … 

(d)

Figure 9: Constructing message templates from source code analysis.

transact in Line 1 of Figure 8), which are crucial for the
final type resolution, and the filename and line number of
the logger call.

Type analysis. We next determine how each message vari-
able will be rendered as a string in the logger call. For ex-
ample, because transact is of type Transaction, we can
determine how it would appear in a log message by looking
at the toString() method of the Transaction class. We
traverse the AST to build a toString Table containing the
toString() definitions and toString templates of all classes.
Figure 9 (b) shows the toString templates extracted from
Lines 2–16 in Figure 8.

Due to the importance of class hierarchy information, we
do a third traversal on AST to build the Class Hierarchy
table. Box (c) in Figure 9 shows an example.

Type resolution. Finally, for each partial message tem-
plate containing non-primitive variables (i.e., member of a
nonprimitive class), we look up the class’s toString method
and corresponding toString templates in the toString Table,
and substitute the templates found into the partial mes-
sage template. For example, for the logger call in Line 1 of
Figure 8 that references the transact object, we lookup the
toString method of its class (Transaction). If the toString()
method is not explicitly defined in Transaction class, we
use the Class Hierarchy Table, built from the AST, to at-
tempt to resolve toString() in the object’s superclasses.
We do this recursively until either a toString() method is
found or we reach the root of the class hierarchy (in Java,
the java.lang.Object class), in which case we give up and
treat the template as an unparsed string (.*).

The sub-classing problem is also handled in this step.
We find all descendants of a declared class. If there is a
toString() method defined in any sub-classes, we gener-
ate a message template as if the sub-class is used instead of
the declared class. For example, because SubTransaction is
a sub-class of Transaction, we generate a second message
template capturing the case when transact is actually an
instance of SubTransaction. We do this for every subclass
of Transaction known at compile time.

Lastly, note that type resolution is recursive. For exam-
ple, if an object has class SubTransaction, we examine the
toString method of SubTransaction (line 8 of Figure 8) and
we find that it interpolates a variable node of nonprimitive
type (line 11). We recurse and substitute in the toString
template of Node. We do this until the type of every vari-
able becomes a primitive type or unparsed strings. We also
limit the maximum depth of recursions to deal with recursive
type definitions.

Because we are using static analysis techniques to predict
what the log output will look like at runtime, it is impos-
sible to correctly handle all cases. Examples of such cases
includes loops and recursive calls. We make our technique
robust by allowing it to fall back to unparsed string (.*)

in such cases. In the real systems we studied, these hard
cases rarely occur in log printing and rarely cause problems
in practice. There are some language-specific idioms such
as Arrays.deeoToString(array) (array dumping) in Java,
which has an implicit built-in format of using comma to sep-
arate array elements. Our parser recognize these idioms and
handle them as special cases.
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