
The Qualitas Corpus: A Curated Collection of Java Code

for Empirical Studies

Ewan Tempero∗, Craig Anslow§, Jens Dietrich†, Ted Han∗, Jing Li∗,

Markus Lumpe‡, Hayden Melton∗, James Noble§

∗Department of Computer Science, The University of Auckland

Auckland, New Zealand. e.tempero@cs.auckland.ac.nz
† Massey University, School of Engineering and Advanced Technology

Palmerston North, New Zealand. j.b.dietrich@massey.ac.nz
‡ Faculty of Information & Communication Technologies, Swinburne University of Technology

Hawthorn, Australia. mlumpe@ict.swin.edu.au
§ School of Engineering and Computer Science, Victoria University of Wellington

Wellington, New Zealand. kjx@ecs.vuw.ac.nz

Abstract—In order to increase our ability to use measure-
ment to support software development practise we need to
do more analysis of code. However, empirical studies of code
are expensive and their results are difficult to compare. We
describe the Qualitas Corpus, a large curated collection of open
source Java systems. The corpus reduces the cost of performing
large empirical studies of code and supports comparison of
measurements of the same artifacts. We discuss its design,
organisation, and issues associated with its development.

Keywords-Empirical studies; curated code corpus; experi-
mental infrastructure

I. INTRODUCTION

Measurement is fundamental to engineering, however its

use in engineering software has been limited. While many

software metrics have been proposed (e.g. [1]), few are

regularly used in industry to support decision making. A key

reason for this is that our understanding of the relationship

between measurements we know how to make and quality

attributes, such as modifiability, understandability, extensi-

bility, reusability, and testability, that we care about is poor.

This is particularly true with respect to theories regarding

characteristics of software structure such as encapsulation,

inheritance, coupling, and cohesion. Traditional engineering

disciplines have had hundreds or thousands of years of expe-

rience of comparing measurements with quality outcomes,

but central to this experience is the taking and sharing of

measurements and outcomes. In contrast there have been

few useful measurements of code. In this paper we describe

the Qualitas Corpus, infrastructure that supports taking and

sharing measurements of code artifacts.

Barriers to measuring code and understanding what the

measurements mean include access to code to measure and

the tools to do the measurement. The advent of open source

software (OSS) has meant significantly more code is now

accessible for measurement than in the past. This has led to

an increase in interest in empirical studies of code. However,

there is still a non trivial cost to gathering the artifacts from

enough OSS projects to make a study useful. One of the

main goals of the Qualitas Corpus is to substantially reduce

the cost of performing large empirical studies of code.

However, just measuring code is not enough. We need

models explaining the relationship between the measure-

ments and the quality attributes, and we need experiments

to validate those models. Validation does not come through

a single experiment — experiments must be replicated.

Replication requires at least understanding of the relation-

ship between the artifacts used in the different experiments.

In some forms of experiments, we want to use the same

artifacts so as to be able to compare results in a meaningful

way. This means we need to know in detail what artifacts

are used in any experiment, meaning an ad hoc collection

of code whose contents is unknown is not sufficient. What

is needed is a curated collection of code artifacts. A second

goal of the Qualitas Corpus is to support comparison of

measurements of the same artifacts, that is, to provide a

reference corpus for empirical studies of code.

The contributions of this paper are:

• We present arguments for the provision of a reference

corpus of code for empirical studies of code.

• We identify the issues regarding performing replication

of studies that analyse Java code.

• We describe the Qualitas Corpus, a curated collection

of Java code that reduces the cost and increases the

replicability of empirical studies.

The rest of the paper is organised as follows. In the

next section we present the motivation for our work, which

includes inspiration from the use of corpora in applied

linguistics and the limited empirical studies of code that have

been performed. We also discuss the use of reference collec-

tions in other areas of software engineering and in computer

science, and discuss the need for a curated collection of

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE

DOI 10.1109/APSEC.2010.46

336

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE

DOI 10.1109/APSEC.2010.46

336

code. In section III we discuss the challenges faced when

doing empirical studies of code, and from that, determine

the requirements of a curated corpus. Section IV presents

the details of the Qualitas Corpus, its current organisation,

immediate future plans, and rationale of the decisions we

have taken. Section V evaluates the Qualitas Corpus. Finally

we present our conclusions in section VI.

II. MOTIVATION AND RELATED WORK

The use of a standard collection of artifacts to support

study in an area is not new, neither in general nor in software

engineering. One area is that of applied linguistics, where

standard corpora are the basis for much of the research being

done. Hunston [2] opens her book with “It is no exagger-

ation to say that corpora, and the study of corpora, have

revolutionised the study of language, and of the applications

of language, over the last few decades.” Ironically, it is the

availability of software systems support for language corpora

that has enabled this form of research, whereas researchers

examining code artifacts have been slow to adopt this idea.

While the goals of applied linguistics research is not exactly

the same as ours, the similarities are close enough to warrant

examining how corpora are used in that field. Their use of

corpora is a major motivation for the Qualitas Corpus. We

will discuss language corpora in more detail in section III.

A. Empirical studies of Code

To answer the question of whether a code corpus is

necessary, we sample past empirical studies of code. By

“empirical study of code” we mean a study in which the

artifacts under investigation consist of source code, there

are multiple, unrelated, artifacts, and the artifacts were

developed independently of the study. This rules out, for

example, studies that included the creation of the code

artifacts, such as those by Briand et al. [3] or Lewis et al.

[4], and studies of one system, such as that by Barry [5].

Empirical studies of code have been performed for at least

four decades. As with many other things, Knuth was one of

the first to carry out empirical studies to understand what

code that is actually written looks like [6]. He presented a

static analysis of over 400 FORTRAN programs, totalling

about 250,000 cards, and dynamic analysis of about 25

programs. He chose programs that could “run to completion”

from job submissions to Stanford’s Computation Center,

various subroutine libraries and scientific packages, contri-

butions from IBM, and personal programs. His main moti-

vation was compiler design, with the concern that compilers

may not optimise for the typical case as no-one knew what

the typical case was. The programs used were not identified.

In another early example, Chevance and Heidet studied

50 COBOL programs also looking at how language features

are used [7]. The programs were also not identified and no

details were given of size.

Open source software has existed for several decades,

with systems such as Unix, emacs, and TEX. Their use in

empirical studies is relatively recent. For example, Miller et

al. [8] studied about 90 Unix applications (including emacs,

TEX, LATEX, yacc) to determine how they responded to input.

Frakes and Pole [9] used Unix tools as the basis for a study

on methods for searching for reusable components.

During the 1990s the number of accessible systems in-

creased, particularly those written in C++, and consequently

the number of studies increased. Chidamber and Kemerer

applied their metrics to two systems, one had 634 C++

classes, the other had 1459 Smalltalk classes [1]. No further

information on the systems was given.

Bieman and Zhao studied inheritance in 19 C++ systems,

ranging from 7 classes to 922 classes in size, with 2744

classes in total [10]. They identified the systems studied,

but did not identify the versions for all systems.

Harrison et al. applied two coupling metrics to five

collections of C++ code, consisting of 96, 197, 113, 61,

and 12 classes respectively [11]. They identified the systems

involved but not the versions studied.

Chidamber et al. studied three systems, one with 45

C++ classes, one with 27 Objective C classes, and one

identifying 25 classes in design documents [12]. They were

required to restrict information about the systems studied for

commercial reasons.

By the end of the millennium, repositories supporting

open source development such as sourceforge, as well

as the increase in effectiveness of Internet search systems,

meant a large number of systems were accessible. This

affected both the number of studies done, and often their

size. A representative set of examples include one with 3

fairly large Java systems [13], a study of 14 Java systems

[14], and a study of 35 systems, from several languages

including Java, C++, Self, and Smalltalk [15].

Two particularly large studies were by Succi et al. [16]

and Collberg et al [17]. Succi et al. studied 100 Java and 100

C++ applications. The Java applications ranged from 28 to

936 classes in size (median 83.5) and the C++ applications

ranged from 30 to 2520 classes (median 59). The actual

applications were not identified. Collberg et al. analysed

1132 Java jar files collected from the Internet. According

to their statistics they analyse a total of 102,688 classes

and 12,188 interfaces. No information was given as to what

applications were analysed.

The studies described above suggest that there is interest

in doing studies that involve analysing code and the ability

to do such studies has significantly advanced our knowledge

about the characteristics of code structure. There are several

issues with these studies however. The first is that none of

these studies use the same set of systems, making it difficult

to compare or combine results. Another is that because full

details of the systems analysed are not provided, we are

limited in our ability to replicate them. A third issue is that

337337

it is not clear that even the authors are fully aware of what

they have studied, which we discuss further below. Finally,

while the authors have gone to some effort to gather the

artifacts needed for their study, few others are able to benefit

from that effort, meaning each new study requires duplicated

effort. The Qualitas Corpus addresses these issues.

B. Infrastructure for empirical studies

Of course the use of standard collections of artifacts to

support research in computer science and software engi-

neering is not new. The use of benchmarks for various

forms of performance testing and comparison is very mature.

One recent example is the DaCapo benchmark suite by

Blackburn et al. [18], which consists of a set of open

source, real world Java applications with non-trivial memory

loads. Another example of research infrastructure is the

New Zealand Digital Library project, which provides the

technology for the creation of digital libraries and is publicly

available so that others can use it [19].

There are also some examples in Software Engineering.

One is the Software-artifact Infrastructure Repository (SIR)

[20]. The explicit goal of SIR is to support controlled

experimentation in software testing techniques. SIR provides

a curated set of artifacts, including the code, test suites, and

fault data. SIR represents the kind of support the Qualitas

Corpus is intended to provide. We discuss SIR’s motivation

in the section III.

Bajracharya et al. describe Sourcerer, which provides

infrastructure to support code search [21]. At the time of

publication, the Sourcerer database held 1500 real-world

open source projects, a total of 254,049 Java classes, gath-

ered from Sourceforge. Their goals are different to ours, but

it does give an indication as to what is available.

Finally, we must mention the Purdue Benchmark Suite.

This was described by Grothoff et al. in support of their

work on confined types [22]. It consisted of 33 Java systems,

5 with more than 200 classes, and a total of 46,165 classes.

At the time it was probably the largest organised collection

of Java code, and was the starting point for our work.

C. The need for curation

If two studies that analyse code give conflicting reports

of some phenomena, one obvious possible explanation is

that the studies were applied to different samples. If the two

studies claimed to be analysing the same set of systems, we

might suspect error somewhere, although it could just be that

the specific versions analysed were different. In fact, even if

we limit our sample to be from open source Java systems,

there is still room for variation even within specific versions,

as we will now discuss.

In an ideal world, it would be sufficient for a researcher to

just analyse what was provided on the system’s download

website. However, it is not that simple. Open source Java

systems come in both deployable (“binary”) and source

versions of the code. While we are interested in analysing

the source code, in some cases it is easier to analyse the

binary version. However, it is frequently the case that what

is distributed in the source version is not the same as

what is in the binary version. The source often includes

“infrastructure” code, such as that used for testing, code

demonstrating aspects of the system, and code that supports

the installation, building, or other management tasks of the

code. Such code may not be representative of the deployed

code, and so could bias the results of the study.

In some cases, this extra code can be a significant propor-

tion of what is available. For example, jFin_DateMath

version R1-0.0 has 109 top-level non-test classes and 38

JUnit test classes. If the goal of a study is to characterise

how inheritance is used, then the JUnit classes (which

extend TestCase) could bias the result. Another example

is fitjava version 1.1, which has 37 top level classes,

and, in addition, 22 example classes. If there are many

example classes, which are typically quite simple, then they

would bias the results in a study to characterise some aspect

of the complexity of the system design.

Another issue is identifying the infrastructure code. Dif-

ferent systems organise their source code in different ways.

In many cases, the source code is organised as different

source directories, one for the system source, one for the test

infrastructure, one for examples, and so on. However there

are many other organisations. For example, gt2 version

2.2-rc3 has nearly 90 different source directories, of

which only about 40 contain source code that is distributed

in binary form.

The presence of infrastructure code means that a decision

has to be made as to what exactly to analyse. Without careful

investigation, researchers may not even be aware that the

infrastructure code exists and that a decision needs to be

made. If this decision is not reported, then it impacts other

researchers’ ability to replicate the study. It may be possible

to avoid this problem by just analysing the binary form of

the system, as this can be expected to represent how the

system was built. Unfortunately, some systems do include

infrastructure code in the deployed form.

Another complication is third-party libraries. Since such

software is usually not under the control of the developers of

the system, including it in the analysis would be misleading

in terms of understanding what decisions have been made

by developers. Some systems include these libraries in their

distribution and some do not. Also, different systems can use

the same libraries. This means that third-party library use

must be identified, and where appropriate, excluded from

the analysis, to avoid bias due to double counting.

Identifying third-party libraries is not easy. Some systems

are deployed as many archive (jar) files, meaning it is quite

time-consuming to determine which are third-party libraries

and which are not. For example, compiere version 250d

has 114 archive files in its distribution. Complicating the

338338

identification of third-party libraries is the fact that some

systems have such libraries packaged along with the system

code, that is, the library binary code has been unpacked

and then repacked with the binary system code. This means

excluding library code is not just a matter of leaving out the

relevant archive file.

Some systems are careful to identify what third-party

systems are included in the distribution (eclipse for

example). However usually this is in simple text document

that must be processed by a human, and so some judgement

is needed.

Another means to determine what to analyse might be to

look at the code that appears in both source and binary form.

Since there is no need for third-party source to be distributed,

we might reasonably expect it would only appear in binary

form. However, this is not the case. Some systems do in

fact distribute what appears to be original source of third-

party libraries (for example compiere version 250d has

a copy of the Apache Element Construction Set1 that differs

only in one class and that only by a few lines). Also, some

systems provide their own implementations of some third-

party libraries, further complicating what is system code and

what is not.

In conclusion, to study the code from a collection of

systems it is not sufficient to just analysis the downloaded

code, whether it is binary or the original source. Decisions

need to be made regarding exactly what is going to be

analysed. If these decisions are not reported, then the results

may be difficult to analyse (or even fully evaluate). If the

decisions are reported, then anyone wanting to replicate the

study has, as well as having to recreate the collection, the

additional burden of accurately recreating the decisions.

If the collection is curated, that is, the contents are

organised and clearly identified, then the issues described

above can be more easily managed. This is the purpose of

the Qualitas Corpus.

III. DESIGNING A CORPUS

In discussing the need for the Software-artifact Infrastruc-

ture Repository (SIR), Do et al. identified five challenges that

need to be addressed to support controlled experimentation:

supporting replicability across experiments; supporting ag-

gregation of findings; reducing the cost of controlled exper-

iments; obtaining sample representativeness; and isolating

the effects of individual factors [20]. Their conclusion was

that these challenges could be addressed to one degree or

other by creating a collection of relevant artifacts.

When collecting artifacts, the target of those artifacts

must be kept in mind. Researchers use the artifacts in SIR

to determine the effectiveness of techniques and tools for

testing software, that is, the artifacts themselves are not the

objects of study. Similarly, benchmarks are also a collection

1http://jakarta.apache.org/ecs

of artifacts where they are not the object of study, but provide

input to systems whose performance is the object of study.

While any collection of code may be used for a variety of

purposes, our interest is in the code itself, and so we refer

to our collection as a corpus.

Corpora are now commonly used in linguistics and there

are many used in that area, such as the International Corpus

of English [23]. The development of standard corpora for

various kinds of linguistics work is an area of research in

itself. Hunston says the main argument for using a corpus

is that it provides a reliable guide to what language is like,

more reliable than the intuition of native speakers [2, p20].

This applies to programming languages as well. While both

research and trade literature contain many claims about use

of programming language features, code corpora could be

used to provide evidence for such claims.

Hunston lists four aspects that should be considered when

designing a corpus: size, content, representativeness, and

permanence. Regarding size, she makes the point that it is

possible to have too much information, making it difficult

to process it in any useful way, but that generally linguistics

researchers will take as much data as is available. For the

Qualitas Corpus, our intent is to make it as big as is practical,

given our goal of supporting replication.

According to Hunston, the content of a corpus primarily

depends on the purpose it used for, and there are usually

questions specific to a purpose that must be addressed in the

design of the corpus. However, the design of a corpus is also

impacted by what is available, and pragmatic issues such

as whether the corpus creators have permission from the

authors and publishers to make the contents available. The

primary purpose that has guided the design of the Qualitas

Corpus has been to support studies involving static analysis

of code. The choice of contents is due to the large number

of open source Java systems that are available.

The representativeness of a corpus is important for making

statements about the population it is a sample of, that is,

the generalisability of any conclusions based on its study.

Hunston describes a number of issues that impact the design

of the corpus, but notes that the real question is how the

representativeness of the corpus should be taken into account

when interpreting results. The Qualitas Corpus supports this

assessment by providing full details of where its entries came

from, as well as metadata on such things as the domain of

an entry.

Finally, Hunston notes that a corpus needs to be regularly

updated in order to remain representative of the current

usage, and so its design must support that.

IV. THE QUALITAS CORPUS

The current release is 20100719. It has 100 systems, 23

systems with multiple versions, with 495 versions total. The

full distribution is 9.42GiB in size, which is 32.8GiB once

installed. It contains the source and binary forms of each

339339

Systems

src

ant

ant−1.1

.properties

bin

Contents omitted

compressed

Contents omitted

metadata

contents.txt

Other versions omitted

ant−1.8.0

apache−ant−1.8.0−bin.zip

apache−ant−1.8.0−src.zip

Figure 1. Organisation of Qualitas Corpus.

system version as distributed by the developers (section

IV-B). The 100 systems had to meet certain criteria (section

IV-C). These criteria were developed for the first external

release, one consequence of which is that some systems that

were considered part of the corpus previously now are not

as they do not meet the criteria (section IV-I). There are

questions regarding what things are in the corpus (section

IV-E). The next release is scheduled for the end of October

2010 (section IV-J).

As discussed previously, the main goals for the corpus are

that it reduces the costs of studies and supports replication of

studies. These goals have impacted the criteria for inclusion

and the corpus organisation.

A. Organisation

The corpus contains of a collection of systems, each of

which consists of a set of versions. Each version consists of

the original distribution (compressed) and two “unpacked”

forms, bin and src. The unpacked forms are provided in

order to reduce the costs of performing studies. The bin form

contains the binary system as it was intended to be used,

that is, Java bytecode. The src form contains everything

in the source distribution. If the binary and source forms

are distributed as a single archive file, then it is unpacked

ant antlr aoi argouml aspectJ axion azureus c jdbc checkstyle

cobertura colt columba compiere derby displaytag drawswf drjava

eclipse SDK emma exoportal findbugs fitjava fitlibraryforfitnesse

freecol freecs galleon ganttproject gt2 heritrix hibernate hsqldb htm-

lunit informa ireport itext ivatagroupware jFin DateMath jag james

jasml jasperreports javacc jchempaint jedit jena jext jfreechart jgraph

jgraphpad jgrapht jgroupsn jhotdraw jmeter jmoney joggplayer jparse

jpf jrat jre jrefactory jruby jsXe jspwiki jtopen jung junit log4j lucene

marauroa megamek mvnforum myfaces core nakedobjects nekohtml

openjms oscache picocontainer pmd poi pooka proguard quartz

quickserver quilt roller rssowl sablecc sandmark springframework

squirrel sql struts sunflow tomcat trove velocity webmail weka xalan

xerces xmojo

Figure 2. Systems in the Qualitas Corpus.

in src and the relevant files are copied into bin. There is

also a metadata directory that contains detailed information

about the contents of the version and a file .properties

that contains information on specific attributes of the version

(section IV-D).

The original distribution is provided exactly as down-

loaded from the system’s download site. This serves several

purposes. First, it means we can distribute the corpus without

creating the bin and src forms, as they can be automatically

created from the distributed forms, thus reducing the size

of the corpus distribution. Second, it allows any user of the

corpus to verify that the bin and src forms match what was

distributed, or even create their own form of the corpus.

Third, many distributions contain artifacts other than the

code in the system, such as test and build infrastructure and

so we want to keep these in case someone wishes to analyse

them as well.

We use a standard naming convention to identify systems

and versions. A system is identified by a string that cannot

contain any occurrence of “-”. A version is identified

by <system>-<versionid>, where <system> is the

system name, and <versionid> is some system-specific

version identifier. Where possible, we use the names used by

the original distribution. So far, the only case where we have

not been able to do this is when the system name contains

“-”, which we typically replace with “_”.

Figure 1 shows an example of the distribution for ant.

There are 19 versions of ant, from ant-1.1 to ant-1.

8.0. The original distribution of ant-1.8.0 consists

of apache-ant-1.8.0-bin.zip, containing the de-

ployable form of ant, which is unpacked in bin, and

apache-ant-1.8.0-src.zip containing the source

code, unpacked in src.

340340

 10

 100

 1000

 10000

 100000

T
o

p
 l
e

v
e

l
ty

p
e

s
 (

lo
g

)

System ordered by top level types

System sizes

Figure 3. Distribution of sizes of systems (y is log scale).

Table I
DOMAINS REPRESENTED IN THE CORPUS.

Domain No.

3D/graphics/media 6
IDE 4
SDK 7
database 7
diagram/visualisation 9
games 3
middleware 15
parsers/generators/make 8
programming language 2
testing 12
tool 27

B. Contents

Figure 2 lists the systems that are current represented in

the corpus. Figure 3 gives an idea of how big the systems

are, when listing the latest version of each system in the

current release in order of number of top-level types (that

is, classes, interfaces, enums, and annotations). Note that the

y-axis is on a log scale. Table I shows the representativeness

of the corpus in terms of domains represented and number

of systems in each domain.

For the most part, the systems in the corpus are open

source and so the corpus can contain their distributions,

especially as what is in the corpus is exactly what was

downloaded from the system download site. One exception

to this is jre. The license agreements for the binary and

source distributions appear to not allow their inclusion in

the corpus. Since jre is an interesting system to analyse,

we consider it part of the corpus however corpus users must

download what they need from the Java distribution site.

What is provided by the corpus for jre is the metadata

similar to that for other systems.

C. Criteria for inclusion

Currently, the criteria for a system to be included in a

release of the corpus are as follows:

1) In the previous release We do not want to remove

things from a release that was in a previous release.

This allows people to have the latest release and yet

still be able to reproduce studies based on previous

releases. While we intend to continue to distributed

previous releases, we assume most people would pre-

fer not to have to juggle multiple versions of the

corpus.

2) Written in Java The choice of Java is due to both

the amount of open source code available (far more

than C# at the moment, although perhaps not as

much as C++) and the relative ease with which it can

be analysed (unlike, for example, C++). Should the

opportunity arise, other languages will be added, but

doing so is not a priority at the moment.

3) Distributes both source and binary forms One

advantage with Java is that its “compiled” form is

also fairly easy to analyse, easier than for the source

code in fact (section IV-E), however there are slight

differences between the source and binary forms.

Having both forms means that analysis results from

the binary form can be manually checked against the

source.

In order for it to make sense to have both source

and binary forms, the binary form must really be the

binary form of the source. It is expensive (in time) to

download source and then compile it as every project

has a different build technology (e.g. ant, bat files,

uses eclipse infrastructure) that takes significant

effort to understand. We have made the decision to

simply take what is distributed by the developers, and

assume that the binary form is from the source that is

distributed. For this reason, we only include systems

that do actually distribute both forms in a clearly

identifiable way.

This rules out, for example, systems whose source are

only available through a source control system. While

in theory it should be possible to extract the source

relevant to a given binary release, being confident that

we can extract exactly the right versions of each file

is sufficiently hard that we just avoid the problem at

the moment. In the future we hope to relax this, at

least for systems where the relevant source version is

clearly labelled.

4) Distribute binary forms as a set of jar files The

binary form of systems included in the corpus must be

bundled as .jar files, that is, not .war, .ear, etc,

and not unbundled .class files. This is solely due to

the expectations of our tools for managing the corpus

and doing analysis using the corpus. This criterion will

341341

probably be the first to completely go away.

5) Available to anyone independent of the corpus

This criterion is intended to avoid ephemeral systems

that crop up from time to time, or systems that are

only known to us that cannot be acquired by other

researchers. This allows the possibility of others to

independently check the decisions we have made.

This is the hardest one to meet, as we can not be

sure when development will stop on some system.

Some systems we used (and analysed) before the first

external release of the corpus have suffered this fate,

and so are not in the corpus. In fact we already have

the situation where the version of a system we have in

the corpus is now apparently no longer available, as

the developers only appear to keep (or make available

at least) the most recent versions. Due to criterion 1,

we have chosen to keep these, even though they may

not now be available to everyone.

6) Identifiable contents As discussed in section II-C,

it is not always easy to determine what the contents

of a system are. If there is uncertainty regarding the

contents of a system, we do not include it.

For example, the binary form of netbeans has 400+

jar files. Trying to determine what is relevant and what

is not has proven to be a challenge that we are still

struggling with, and so it is not in the corpus (yet).

These criteria were developed to simplify the management

of the corpus. Eventually we hope some of them will be

relaxed (e.g. 2 and 4) or will have less impact (e.g. 6).

D. Metadata

As part of the curation process we gather metadata about

each system version, and we will continue to improve what

metadata is provided (section IV-J). The corpus provides this

metadata in part to resolve the issues discussed in section

II-C. Ideally we would like have the exact specification as to

what the developers consider to be “in” the system however

it is a very time consuming process to get such information

and it is not clear that even the developers would necessarily

agree amongst themselves. Instead, we follow these two

principles:

• Do not include something in a given system if it could

also appear in some other system in the corpus. This

will avoid (or at least reduce) double-counting of code

measurements that are done over the entire corpus.

• Make some decision about what is in a system and

document it. This means that even if the decision is

not necessarily the best, others trying to reproduce a

given analysis will know what actually was analysed.

One place where metadata is kept is in a .properties

file (see Figure 1). This file is formatted so that it

can be easily managed using java.util.Properties.

For example, the decision we have made regarding what

is identified as being in a given version of a sys-

tem is recorded in the sourcepackages field of the

.properties file. This is a space-separated list of pre-

fixes of packages of Java types. Any type whose fully-

qualified name has one of the listed package prefixes as

a prefix of the name is considered a type that was de-

veloped for the system, and everything else is considered

as being a library type. For example, for azureus-3.

0.3.4, its sourcepackages value is “org.gudy

com.aelitis”, indicating that types such as com.

aelitis.azureus.core.AzureusCore and org.

gudy.azureus2.core3.util.FileUtil are con-

sidered part of that version of azureus, whereas org.pf.

file.FileUtil (which is distributed in with azureus)

would not.

Other metadata we keep in .properties includes the

release date of the version, notes regarding the system

and individual versions, domain information, and where the

system distribution came from. The latter allows users of the

corpus to check corpus contents for themselves.

The most significant development in the latest release has

been the addition of significantly more metadata. We have

improved the domain identification to use a more rigorous

classification system (as shown in table I). We now also

list, for every .java file in src and every .class file

found in an archive in bin, the actual location of the file,

plus information regarding how the Java type these files

corresponds to is classified in the corpus.

Figure 4 shows an example of the data provided. It shows

three entries for ant-1.8.0 (out of 2786). The first and

third entries show that there are both .class (column

2) and .java files (column 3) corresponding to the Java

types org.apache.tools.zip.ZipEntry and org.

apache.tools.zip.ZipExtraField. The middle

entry, for org.apache.tools.zip.ZipEntry, does

not have data in column 2 indicating that while there is

source code for it, it is not part of the ant deployment.

Column 4 indicates whether the entry corresponds to a

type identified as being in the system (that is, matches

the sourcepackages value), with 0 indicating it does.

Column 5 provides a summary of what forms the type exists

in the corpus (0 meaning it is in both src and bin, 1 for

bin only, and 2 for src only). The next column indicates

whether or not the entry is for a type that is considered

“distributed”. Such types should also occur in bin, so this

information can be used to identify non-public types —

types that are declared in files with different names. Such

types would be recorded as being not distributed but in

bin. The remaining columns show whether types are public

or non-public, number of physical lines of code, and the

number of non-commented non-blank lines.

The information shown in Figure 4 is provided in a tab-

separated file, along with scripts that do basic analysis and

which can be extended by users of the corpus.

342342

...

org.[..].ZipEntry apache-[..]/ant.jar apache-ant-1.8.0/[..]/ZipEntry.java 0 0 0 0 435 195

org.[..].ZipEntryTest apache-ant-1.8.0/[..]/ZipEntryTest.java 0 2 0 0 208 144

org.[..].ZipExtraField apache-[..]/ant.jar apache-ant-1.8.0/[..]/ZipExtraField.java 0 0 0 0 85 11

...

Figure 4. Metadata for system version content details for ant-1.7.1. Some names have been elided for space.

E. Issues

Given the goal of replication of studies, the biggest

challenge we have faced is clearly identifying the entities, as

discussed in section II-C. There are, however, other issues

we face. One is that systems change their name, such as the

system that used to be called azureus now being called

vuze. This creates the problem of whether the corpus entry

should also change its name, meaning corpus users would

have to be aware of this change when comparing studies

done on different releases of the corpus, or maintaining the

old name in the corpus. We have chosen the latter approach.

Another issue is what to do when systems stop being

supported or otherwise become unavailable. One example of

this issue is jgraph, which is no longer open source. Since

we keep the original distribution as part of the corpus, there

should be no problem with simply keeping such systems in

the corpus. While we target systems we hope will be long-

lived for inclusion in the corpus, we cannot guarantee that

the systems will in fact continue to exist. Already there are

a number of systems in the corpus that no longer appear

to be actively developed (e.g., fitjava, jasml, jparse

— see section IV-J). For now we will just note the status of

such systems.

F. Content Management

Following criterion 1, a new release of the corpus contains

all the versions of systems in the previous release. There are

however some changes between releases. If there are errors

in a previous release (e.g. missing or wrong metadata, mis-

named systems or versions, problems with installation) then

we will fix them, while providing enough information to

allow people to determine how much the changes may affect

attempts to reproduce previous studies.

We have developed processes over time to support the

management of the corpus. The two main processes are for

making a new entry of a version of a system into the corpus,

and creating a distribution for release. In the early days, these

were all manual, but now, with each new release, scripts are

being developed to automate more parts of the process.

G. Distributing the Corpus

To install the copy one acquires a distribution for a

particular release. The release indicates the decision point

as to what is in the corpus and so is used for identification

in studies (section IV-H). A given distribution of a release

provides support for particular kinds of studies. For example,

one distribution contains just the most recent version of each

system in the corpus. For those interested in just “breadth”

studies, this distribution is simpler to deal with (and much

smaller to download). As the corpus grows in size we

anticipate other distributions will be provided.

Releases are identified by their date of release (in ISO

8601 format). The full distribution uses the release date,

whereas any other distribution will use the release date an-

notated to indicate which distribution it is. For example, the

current release is 20100719 and the distribution containing

only the most recent versions of systems is 20100719r.

H. Using the corpus

The corpus is designed to be used in a specific way. A

properly-installed distribution has the structure described in

section IV-A. If every study is performed on the complete

contents of a given release, using the metadata provided in

the corpus to identify the contents of a system (in particular

sourcepackages, section IV-D), then the results of those

studies can be compared with good confidence that compar-

ison is meaningful. Furthermore, what is actually studied

can be described succinctly by just by indicating the release

(and if necessary, particular distribution) used.

There is, however, no restriction on how the corpus can

be used. It has been quite common, for example, to use a

subset of its contents in studies. In such cases, in addition to

identifying the release, we recommend that either what has

been included be identified by listing the system versions

used, or what has been left out be similarly identified. If

systems not in the corpus are also used in a study, then not

only do the system versions need to be identified, but some

discussion regarding how the issues described in section II-C

have been resolved, and, ideally, some indication as to how

others can acquire the same system code distributions.

I. History

The Qualitas Corpus was initially conceived and devel-

oped by one of us (Melton) for Ph.D. research during 2005.

Many of the systems were chosen because they have been

used in other studies (e.g., [22], [14], [15]) although not all

were still available. In its first published use (the work was

done in 2005 but published later) there were 21 systems in

the corpus [24].

343343

The original corpus was used and added to by members of

the University of Auckland group over the next three years,

growing from 21 systems initially. It was made available for

external release in January of 2008, containing 88 systems,

21 systems with multiple versions, a total of 214 entries.

As noted earlier, some of the systems that were originally

in the corpus and used in studies before its release did not

meet the criteria used for the external distributions. By the

end of 2008, there were 100 systems in the corpus. Since

then, development of the corpus has focused on improving

the quality of the corpus, in particular the metadata.

As the corpus has developed it has undergone some

changes. The main changes have been in terms of the

metadata that is maintained, however there has also been

a change in terminology. Initially, the terminology used

was that the corpus contained “versions” of “applications”,

however “application” implied something that functioned

independently. This created confusion for such things as

jgraph or springframework, which are not useful by

themselves. We now use “versions” of “systems”.

J. Future Plans

Our plans for the future of the corpus include growing it

in size and representativeness (section V), making it easier

to use for studies, and providing more “value add” in terms

of metadata. As noted earlier, the next release is planned

for late October 2010. The main goals for this release are

to add new systems and to add the latest version of each of

the existing systems.

One consequence of those outside the University of

Auckland group using the corpus has been suggestions for

systems to add. These will be the main candidates for new

systems to be added. We will mainly consider large systems

for this release. In the past such systems have typically been

very expensive to process, however the scripts that produce

the metadata described above will reduce that cost, making it

easier to grow the corpus this way. This should allow us to,

for example, include systems with complex structures such

as netbeans.

Another consequence of people using the corpus is the

need to perform studies different to what we originally

envisaged. One example of this is that some studies need

to have a complete deployable version of a system (e.g. for

dynamic analysis). As we originally were only thinking of

doing static analysis, we did not by default include third-

party libraries in the corpus. We have now begun developing

the infrastructure to provide versions that are deployable.

As there are more users of the corpus, more information

(such as measurements from metrics) about the systems in

the corpus is being gathered. We would like to include some

of these measurements as part of the metadata in the future.

V. DISCUSSION

The Qualitas Corpus has been in use now for 5 years, and

has been made externally available for just over 2 years.

There have been over 30 publications describing studies

based on its use (see the website for details [25]). Increas-

ingly, the publications are by researchers not connected to

the original development group. It is in use by about 15

research groups spread across 9 countries. It is being used

for Ph.D., Masters, and undergraduate research. Some of

the users have started contributing to the development of

the corpus, as evidenced by the author list of this paper.

Looking at how the corpus has been used, primarily it has

been used to reduce the cost for developing experiments.

It is difficult to determine the cost of the development of

the corpus since early on it was done as an adjunct to

research, rather than the main goal. However it is certainly

more than 1000 hours and could easily be double that. Any

user of the corpus directly benefits from this effort. Some

users have in fact used the corpus merely as a starting point

and added other systems of interest to them. In some cases,

those other systems have been commercial systems, allowing

relatively cheap comparison between commercial and open

source code.

There has been less use of the ability to replicate exper-

iments or compare results across experiments. Given that

the corpus has only been available relatively recently, this

is perhaps not surprising. Once other measurements and

metadata become part of the corpus itself, we hope this will

change.

As Do et al. note, use of infrastructure such as the Qualitas

Corpus can be both of benefit and can introduce problems

[20]. They note that misuse by users who have not followed

directions carefully can be a problem, as we have also ex-

perienced. An example of where that can be a problem with

the corpus is not using the sourcepackages metadata

to identify system contents, meaning it is not clear which

entities have being studied.

The main issue with the corpus is its representativeness.

For now, it contains only open source Java systems. This

issue is faced by any empirical study, but any users of the

corpus must address it when discussing their results.

Hunston observes that there are limitations on the use

of corpora [2]. While the points she raises (other than

representativeness) do not directly relate to the Qualitas

Corpus, they do raise an issue that does apply. The code

in the corpus shows us what a software developer wrote,

but what it cannot tell us is the intent of the developer.

VI. CONCLUSIONS

In order to increase our ability to use measurement of

code to support software development practise we need to do

more measurement of code in research. We have argued that

this requires large, curated, corpora with which to conduct

code analysis empirical studies. We have discussed the issues

associated with developing such corpora and how these

might impact their design.

344344

In this paper we have presented the Qualitas Corpus, a

curated collection of open-source Java systems. This corpus

significantly reduces the cost of empirical studies of code

by reducing the time needed to find, collect, and organise

the necessary code sets to the time needed to download the

corpus. The metadata provided with the corpus provides an

explicit record of decisions regarding what is being studied.

This means that studies conducted with the corpus are easily

replicated, and the results from different kinds of studies are

more likely to be able to be sensibly compared.

The Qualitas Corpus is the largest curated corpus for code

analysis studies, with the current version having 495 code

sets, representing 100 unique systems. The next release will

significantly increase that. The corpus has been successful,

in that it is now being used by groups outside its original

creators, and the number and size of code analysis studies

has significantly increased since it has become available.

We hope that it will further encourage replication and

sharing of experimental results. The corpus will continue

to be expanded in content and in provision of metadata, in

particular its representativeness.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Trans. Softw. Eng., vol. 20,
no. 6, pp. 476–493, 1994.

[2] S. Hunston, Ed., Corpora in Applied Linguistics. Cambridge
University Press, 2002.

[3] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Explor-
ing the relationships between design measures and software
quality in object-oriented systems,” Journal of Systems and
Software, vol. 51, no. 3, pp. 245 – 273, 2000.

[4] J. A. Lewis, S. M. Henry, D. G. Kafura, and R. S. Schul-
man, “An empirical study of the object-oriented paradigm
and software reuse,” in Conference proceedings on Object-
oriented programming systems, languages, and applications,
1991, pp. 184–196.

[5] B. M. Barry, “Prototyping a real-time embedded system in
smalltalk,” in Object-Oriented Programmes Languages and
Systems, oct 1989, pp. 255–265.

[6] D. E. Knuth, “An empirical study of FORTRAN programs,”
Software–Practice and Experience, vol. 1, no. 2, pp. 105–133,
1971.

[7] R. J. Chevance and T. Heidet, “Static profile and dynamic
behavior of COBOL programs.” SIGPLAN Notices, vol. 13,
no. 4, pp. 44–57, apr 1978.

[8] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of UNIX utilities,” Communications of the
ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990.

[9] W. Frakes and T. Pole, “An empirical study of representation
methods for reusable software components,” IEEE Transac-
tions on Software Engineering, vol. 20, pp. 617–630, 1994.

[10] J. M. Bieman and J. X. Zhao, “Reuse through inheritance:
a quantitative study of C++ software,” in Proceedings of the
1995 Symposium on Software reusability. New York, NY,
USA: ACM, 1995, pp. 47–52.

[11] R. Harrison, S. Counsell, and R. Nithi, “Coupling metrics for
object-oriented design,” Software Metrics, IEEE International
Symposium on, vol. 0, p. 150, 1998.

[12] S. Chidamber, D. Darcy, and C. Kemerer, “Managerial use of
metrics for object-oriented software: an exploratory analysis,”
IEEE Trans. Software Engineering, vol. 24, no. 8, pp. 629–
639, Aug. 1998.

[13] R. Wheeldon and S. Counsell, “Power law distributions in
class relationships,” in Third IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM03), 2003.

[14] J. Y. Gil and I. Maman, “Micro patterns in Java code,” in
OOPSLA ’05: Proceedings of 20th ACM SIGPLAN confer-
ence on Object oriented programming systems languages and
applications. ACM Press, 2005, pp. 97–116.

[15] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-free
geometry in OO programs,” Commun. ACM, vol. 48, no. 5,
pp. 99–103, 2005.

[16] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, “An
empirical exploration of the distributions of the Chidamber
and Kemerer object-oriented metrics suite,” Empirical Softw.
Engg., vol. 10, no. 1, pp. 81–104, 2005.

[17] C. Collberg, G. Myles, and M. Stepp, “An empirical study of
Java bytecode programs,” Softw. Pract. Exper., vol. 37, no. 6,
pp. 581–641, 2007.

[18] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. B.
Moss, B. Moss, A. Phansalkar, D. Stefanovi, T. VanDrunen,
D. von Dincklage, , and B. Wiedermann, “The DaCapo
benchmarks: Java benchmarking development and analysis,”
in Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and
Applications, Portland, Oregan, oct 2006, pp. 169–190.

[19] I. Witten, S. Cunningham, and M. Apperley, “The New
Zealand Digital Library project,” New Zealand Libraries,
vol. 48, no. 8, pp. 146–152, 1996.

[20] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Empirical Softw. Engg., vol. 10,
no. 4, pp. 405–435, 2005.

[21] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi,
and C. Lopes, “Sourcerer: a search engine for open source
code supporting structure-based search,” in Companion To
OOPSLA 2006, 2006, pp. 681–682.

[22] C. Grothoff, J. Palsberg, and J. Vitek, “Encapsulating objects
with confined types,” in OOPSLA ’01: Proceedings of the
16th ACM SIGPLAN conference on Object oriented program-
ming, systems, languages, and applications. New York, NY,
USA: ACM Press, 2001, pp. 241–255.

[23] “International Corpus of English,” http://ice-corpora.net/ice,
accessed 28 May 2010, 2010.

[24] H. Melton and E. Tempero, “The CRSS metric for package
design quality,” in Australasian Computer Science Confer-
ence. Ballarat, Australia: Australian Computer Science Com-
munications, Jan. 2007, pp. 201–210, published as CRPIT 62.

[25] Qualitas Research Group, “Qualitas Corpus Website,” http:
//www.cs.auckland.ac.nz/∼ewan/corpus, Aug. 2010.

345345

