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The  Mining  Software  Repositories  (MSR)  field  analyzes  software  repository  data  to uncover  knowledge
and  assist  development  of  ever  growing,  complex  systems.  However,  existing  approaches  and  platforms
for  MSR  analysis  face  many  challenges  when  performing  large-scale  MSR  studies.  Such  approaches  and
platforms  rarely  scale  easily  out of  the  box.  Instead,  they  often  require  custom  scaling  tricks  and  designs
that are  costly  to  maintain  and  that are  not  reusable  for other  types  of  analysis.  We  believe  that  the web
community  has  faced  many  of  these  software  engineering  scaling  challenges  before,  as  web  analyses
oftware engineering
ining Software Repositories

ig
apReduce

have  to  cope  with  the enormous  growth  of web  data.  In this  paper,  we  report  on  our  experience  in  using
a  web-scale  platform  (i.e.,  Pig)  as  a data  preparation  language  to aid large-scale  MSR  studies.  Through
three  case  studies,  we  carefully  validate  the use  of this  web  platform  to prepare  (i.e.,  Extract,  Transform,
and  Load,  ETL)  data  for  further  analysis.  Despite  several  limitations,  we  still  encourage  MSR researchers  to
leverage  Pig  in  their  large-scale  studies  because  of  Pig’s  scalability  and  flexibility.  Our  experience  report

rs  wh
will help  other  researche

. Introduction

Software projects and systems continue to grow in size and com-
lexity. The first version of the Linux kernel,  which was released

n 1991, consisted of 10,239 lines of source code (SLOC), while
ersion 2.6.32 released in 2009 consists of 12,606,910 SLOC. In eigh-
een years, the size of the Linux kernel has increased by a factor
arger than 1200. Similarly, Gonzalez-Barahona et al. find that the
ize of the Debian Linux distribution doubles approximately every
wo years (25 mSLOC in 1998 vs. 288 mSLOC in 2007) (Gonzalez-
arahona et al., 2009; Robles et al., 2006). Moreover, recent work
y Mockus shows that a universal repository of the version history
f all open source software systems available online contains TBs
f data and that the process to collect such a repository is rather
engthy and complicated, taking over a year (Mockus, 2009). The
ize of the code available continues to grow and so do the challenges
f amassing and analyzing such large code bases.

This explosive growth in the availability and size of software
ata has led to the formation of the Mining Software Reposito-
ies (MSR) field (Hassan, 2008). The MSR  field recovers and studies

ata from a large number of software repositories, including source
ontrol repositories, bug repositories, archived communications,
eployment logs, and code repositories to uncover knowledge and
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o  want  to scale  their  analyses.
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assist software development. The process adopted by most large-
scale MSR  studies is similar to the Extract-Transform-Load (ETL)
data preparation process used by data warehouses, i.e., data is
extracted from software repositories, transformed into certain for-
mats and loaded into a data warehouse. MSR data preparation is
typically performed by specialized programming scripts in general-
purpose query or scripting languages. The prepared data is then
further analyzed using modelling tools like R (Ihaka and Gentleman,
1996), Weka (Hall et al., 2009), or other specially built tools.

As the size of software repository data increases, more complex
platforms are needed to enable rapid and efficient ETL of data. Soft-
ware engineering researchers typically try to scale up ETL by means
of specialized one-off solutions that are hard to reuse and that
are costly to maintain. For example, to identify clones across the
FreeBSD operating system (131,688 kSLOC), Livieri et al. developed
their own distributed platform dedicated to performing large-scale
code clone detection (Livieri et al., 2007). We  believe that in many
ways the ETL phase is seen as a necessary evil by most researchers.
Having to tweak tools to scale up to bigger data may distract focus
and effort from the actual MSR  analysis on the prepared data.

Many of the challenges associated with data preparation in MSR
studies have already been faced in the web field by companies
like Google and Facebook. The web field has developed several
platforms to enable the large-scale preparation and processing of

web-scale data sets, for example to analyze web  crawl data or to
process personal messages. Hadoop (White, 2009) and Pig (Olston
et al., 2008) are examples of such platforms. We  firmly believe that
the software engineering field can adopt many of these platforms

dx.doi.org/10.1016/j.jss.2011.07.034
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
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o scale MSR  studies. For instance, in prior work (Shang et al., 2009,
010) we showed that we could scale and speed-up software evo-

ution studies using Hadoop, an open-source implementation of
apReduce, which is a distributed framework based on a simple

rogramming model (Dean and Ghemawat, 2004).
However, our prior experience highlighted some of the limita-

ions of Hadoop as a platform for large-scale software engineering
nalysis. In particular, the use of Hadoop requires rather tedious
ow-level programming effort. To counter this limitation, this paper
valuates the use of a higher-level web-scale platform called Pig.
ig uses a high-level data processing language on top of Hadoop
hat sacrifices some scalability for increased flexibility. This paper
valuates Pig’s ability of preparing data for large-scale MSR  study.

Three case studies with Pig show that it can successfully prepare
ata for large-scale MSR  studies, with similar scalability as Hadoop.
he major contributions of this paper are:

. We  evaluate Pig’s ability to prepare data in a modular way
by performing three large-scale MSR  studies in detail. Our
implementation1 can be re-used by other MSR  researchers.

. We  compare the use of Pig and Hadoop for preparing data for
MSR  studies.

. We  report the lessons learnt with Pig in order to assist other
researchers who want to use Pig as a data preparation language
in their MSR  studies.

ur experience shows that, compared to existing MSR  data prepa-
ation approaches, Pig has several advantages, such as scalability,
odular design and flexible data schemas. However, there are also

everal disadvantages of using Pig, including extra programming
ffort and lack of debugging support. Despite such limitations, we
elieve that Pig can be adopted by other MSR  researchers to assist

n large-scale MSR  data preparation.
The rest of the paper is organized as follows. Section 2 illus-

rates the data preparation of MSR  studies, we present Pig by using
t to prepare data for a simple MSR  study in Section 3. We  per-
orm three detailed MSR  studies with Pig to evaluate its ability to
repare data for large-scale MSR  studies (Section 4). We  evaluate
ig’s performance in data preparation for large-scale MSR  studies in
ection 5 and distill the lessons we learned from using Pig as a data
reparation language for MSR  studies in Section 6. Finally, Section

 discusses related work and Section 9 presents the conclusions of
his paper.

. Data preparation in MSR  studies

In this section, we use a motivating example from our real-
ife research experience (Selim et al., 2010) to illustrate the data
reparation (ETL) of MSR  studies.

The data preparation tool that we use in this example is J-REX,
.e., a highly optimized ETL tool for Java systems similar to C-REX
Hassan, 2005), with the following functionalities:

Extracting every Java file revision from a CVS repository.
Transforming Java source code into an XML  representation.
Abstracting line-level change information (“line 10 has changed”)
to the program entity level (“function f1 no longer calls function

f2”).
Calculating software metrics, such as number of lines of code
(�LOC).

1 The source code is available in the first author’s Master’s thesis (Shang, 2010).
nd Software 85 (2012) 2195– 2204

Researcher Lily wants to study software defects and code clones
using the source control repository of a large, long-lived software
project.

Step 0. Initially, Lily tries to use evolutionary data prepared by
the original J-REX (Shang et al., 2009). This data describes the indi-
vidual program entities that changed in each revision. However,
since Lily wants to study code clones, she also needs the complete
source code snapshots to perform code clone detection. Hence, the
authors need to enhance the existing J-REX tool to support Lily’s
study.

Step 1. Lily requests every snapshot of each source code file
and also a report about which methods were added or deleted in
each snapshot. The authors modify the original J-REX to prepare
the required data.

Step 2. In order to study software defects in the data that we
prepare for her, Lily wants to use a heuristic that relates changes
in source code to bugs by checking for keywords like “bug” or “fix”
in the commit logs of the source control system. Since J-REX did
not yet extract commit log data, the authors need to add this func-
tionality to J-REX, as well as the heuristic for relating source code
changes to bugs.

Step 3. While performing data analysis on the prepared data,
Lily finds that the source code content of some methods is missing.
She also requires the deletion of methods to be associated with the
first snapshot after the deletion instead of with the snapshot of the
deletion. For example, if method foo was in snapshot 1.0 but not
in snapshot 1.1, Lily needs the deletion of foo to be recorded for
snapshot 1.1,  not for snapshot 1.0.

Step 4. Because of the large-scale data, the authors spend much
effort to fix bugs, prepare the new data, and deliver the prepared
data to Lily. She makes great progress in her research, but now she
has to perform clone detection on the extracted methods in the
source code. As the authors are not clone detection experts, they
choose to use an existing clone detection tool. Even though the
authors already extracted the source code of methods, they now
have to output the source code in the data format used by the clone
detection tool. After doing the clone detection, the authors then
need to collect the results and indicate if a method in the method
list contains code clones.

As illustrated by the five steps above, MSR  researchers need
to perform multiple iterations of different types of analyses on
prepared data from software repositories. Fig. 1 summarizes the
typical ETL pipeline of MSR  studies, consisting of the following three
phases:

1. Data extraction. Most data gathered during the software engi-
neering process was not anticipated to be used for empirical
studies. In order to extract actionable data, special tools are
needed to process software repositories or software archives.
For example, bug repositories track the histories of bug reports
and feature requests. Tools to process such repositories are typi-
cally implemented in general-purpose programming languages.
In the motivating example, the data extraction uses J-REX to
extract the source code change information and commit logs for
the source control repository.

2. Data transformation. After the raw data is extracted from the
software repositories and software archives, it typically needs to
be abstracted and merged with other extracted data for further
analysis.

We performed a number of different data transformations
in the motivating example in this section. For example, we
transformed the extracted source code to a list of methods, we

transformed the extracted commit log data to Boolean values
that indicate whether changes are related to bugs, and we pro-
cessed the list of methods to a list of Boolean values that indicate
whether methods contain cloned code.
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sively parallel “Map” phase, followed by an aggregating “Reduce”
phase. The input data for MapReduce is a list of key/value pairs.
Mappers (processes assigned to the “Map” phase) accept the incom-

1 public Tuple exec ( T uple inpu t ) throws I OException {
2 if ( i nput == null || inpu t . size () == 0)
3 return null ;
4 tr y {
Fig. 1. ETL pipeline fo

. Data loading. In this phase, the transformed data is converted
into the right format to be loaded into various types of analy-
sis environments, such as relational databases, R and Weka, for
further analysis. Data loading can even be as simple as writing
transformed results to files in a certain format. In our motivat-
ing example, the output data is loaded into XML files that are
prepared for further analysis.

ata preparation (ETL) is a highly iterative process. For example,
f the results of statistical analysis in the data analysis step look
uspicious, researchers need to examine the output of the data
xtraction, transformation and loading phases, refine the phases
nd re-prepare the data, as our example made clear.

This paper focuses on the data preparation (ETL) steps in Fig. 1.
e want to improve the iterative process of MSR  data preparation

y making it modular and scalable. We  use a distributed frame-
ork from the web community, i.e., Pig, to achieve this. In the next

ection, we present the main concepts of Pig by using it to prepare
ata for a simple MSR  study.

. PIG

Pig (Olston et al., 2008) is a Hadoop-based (White, 2009) plat-
orm designed for analyzing massive amounts of data. Pig provides

 high-level data processing language called Pig Latin (Olston et al.,
008). To illustrate how Pig can prepare data for MSR  studies, we
se it in a simple MSR  study to measure the evolution of �LOC
number of LOC) in the different snapshots of the source code in

 software project. The corresponding Pig Latin code is shown in
ig. 2. All variables in our code snippets use upper case, all Pig Latin
ey words use lower case, and the names of user-defined functions
se camel case.

In the source code shown in Fig. 2, line 1 loads all data from a
VS repository as a ( “file name”,  “file content”) pair into Pig stor-
ge, This storage is based on the Hadoop Distributed File System
White, 2009) (HDFS), which conceptually stores data into differ-
nt fields of a table, accessible by name or by field index. The value

f the parameter inputdata is specified from the command line or
pecified by a parameter file.

Line 2 extracts CVS log data of every source code file. Each of the
rogram units in Pig, such as ExtractLog in line 2, is implemented as

1 RAWDATA = load ’$inputdata ’ using ExtPigStorage ()
as (filename:chararray , filecontent:chararray);

2 HISTORYLOG = foreach RAWDATA generate ExtractLog (
filename , filecontent) ;

3 HISTORYVERSIONS = foreach HISTORYLOG generate
ExtractVersions($0) ;

4 CODE = foreach HISTORYVERSIO NS generat e
ExtractSourceCode($0);

5 LOC=foreach CODE generate GenLOC($0) ;
6 dump LOC;

ig. 2. Pig Latin script for measuring the evolution of the total number of lines of
ode (�LOC) in the different snapshots of a source control repository.
e-scale MSR  studies.

a Java Class with a method named exec. The Java source code of the
exec method of the program unit ExtractLog is shown in Fig. 3. In the
Java source code shown in Fig. 3, the parameter of method exec is a
( “CVS file name”,  “CVS file content”) tuple. Because the rlog tool that
generates the historical log of CVS files needs a file as input, lines
7–10 write the file content to a temporary file. Line 11 generates the
historical log by calling the method extractRlog that wraps the tool
rlog. Using program wrappers in Java source code is the only way to
access existing tools from Pig if their source code is not available.
Lines 12–15 create and return a new ( “CVS file name”,  “CVS historical
log”) tuple. The whole method contains less than 20 lines of code
and uses an existing tool to complete the process.

In the remainder of the Pig Latin script in Fig. 2, line 3 parses
every source code file’s log data and generates the historical revi-
sion numbers of every source code file. The “$0” in line 3 represents
the first field in the tuples of “HISTORYLOG”. After generating the
revision numbers, line 4 uses CVS commands and extracts source
code snapshots of every file. Line 5 counts the �LOC of each snap-
shot of every source code file and line 6 outputs the result data.
Intermediate data of each step is accessible as variables, such as
CODE, which can be examined during the process of analysis.

We can see that the whole process of measuring the evolution
of �LOC contains 4 program units: “ExtractLog”, “ExtractVersions”,
“ExtractSourceCode”, and “GenLOC”, and a general data loading
method “ExtPigStorage”.

To scale to large input data, Pig exploits another distributed
framework from the web community called Hadoop. Hadoop is an
implementation of the MapReduce programming paradigm (Dean
and Ghemawat, 2004). MapReduce consists of two  phases: a mas-
5 String name = ( Str ing ) i nput .g et (0 ) ;
6 String content =( Str ing ) i nput .g et (1 ) ;
7 File file =new File ( name) ;
8 Fi leWriter fw=new Fi leWriter ( file ) ;
9 fw .w rite ( content ) ;

10 fw . c lose () ;
11 String rlog =extractRlog ( name) ;
12 Tupl e t name = DefaultTupleFactory .

get Instanc e ( ) . newTuple () ;
13 tname . append( name) ;
14 tname . append( rlog ) ;
15 return tname ;
16 } c atch ( E xception e) {
17 thro w WrappedIOExcept io n . wrap (" Caught

exceptio processing , e) ;
18 }
19 }

Fig. 3. Java source code of the exec method of the programming unit “ExtractLog”
(generating source code history log).
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Latin script expresses high-level information about the process of
the MSR  study, in contrast to the low-level of Hadoop programs.
Pig helps researchers focus on the MSR  study itself instead of on
the implementation details.

1 CVSMETADATA=load ’E clipseCvsData ’ using
ExtPigStorage () as (filename:chararray ,
filecontent:chararray);

2 HISTORYLOG =foreach CVSMETADATA generate ExtractLog (
filename , filecontent) ;

3 HISTORYVERSIONS=foreach HISTORYLOG generate
ExtractVersions($0);

4 BUGCHANGES=filter HISTORYVERSIONS by IsBug{$0};
5 NOBUGCHANGES =filter HISTORYVERSIONS by not IsBug{$0

};
6 CODE =foreach HISTORYVERSIONS generat e

ExtractSourceCode($0);
7 XMLS =foreach CODE generat e ConvertSourceToX ML($0);
8 COMMENTEVO =foreach XMLS generate EvoAnalysisComment

($0);
9 BUGRESULT=join BUGCHANGES by $0.$0, COMMENTEV O by

$0.$0;
10 NOBUGRESULT=join NOBUGCHANGES by $0.$0, COMMENTEVO

by $0.$0;
198 W. Shang et al. / The Journal of Sys

ng pairs, process them in parallel and generate intermediate
ey/value pairs. Each group of intermediate data having the same
ey is then passed to a specific Reducer (processes assigned to the
Reduce phase”). Each Reducer performs computations on a group
f data and reduces it to one single key/value pair. The output of all
educers is the final result of the MapReduce process.

The Pig Latin script in Fig. 2 will be transformed to Hadoop Java
ode that follows the MapReduce paradigm. For example, a possible
ransformation of the script in Fig. 2 might consist of two steps of

apReduce:

. A list of file data is extracted from the source control repository,
containing the raw data of the history of each file. Each Mapper
accepts a file as input, uses rlog to analyze it, collects the output of
rlog and generates key/value pairs of the form ( “file name”,  “rlog
output of the file”). Reducers accept these pairs and generate the
revisions of each file depending on the rlog output. The output
of the Reducers is represented as a key/value pair of the form (
“file name”,  “revision number”). If file “a.java” has two  revisions
1.0 and 2.0, the output contains two key/value pairs ( “a.java”,
“1.0”) and ( “a.java”, “2.0”).

. Mappers take the output pairs of the previous step to extract
the specific code revision given by the pair’s value, count the
�LOC of the corresponding source file and generate intermedi-
ate key/value pairs of the form ( “revision number”, “�LOC”). For
example, for a file named “a.java” with 100 LOC in revision 1.0,  a
Mapper would generate a key/value pair of ( “1.0”, “100”). After-
wards, each list of key/value pairs with the same key, i.e., revision
number, is sent to the same Reducer, which sums all �LOCs in
the list, and generates output as a key/value pair of the form (
“revision number”, “SUM �LOC”). If a Reducer receives a list with
key “1.0”, and the list consists of two values “100” and “200”, the
Reducer will sum the values “100” and “200” and output ( “1.0”,
“300”).

ithout Pig, a researcher would need to manually implement the
bove MapReduce steps. Each step requires tedious, low-level pro-
ramming effort, which is a burden for MSR  researchers, especially
ecause none of this low-level code is easily reusable. For example,

n our previous work, we migrated J-REX to Hadoop (Shang et al.,
009). In the Hadoop version of J-REX, more than 80 percent of the
ource code consisted of such boiler-plate Java code.

Pig’s high-level preparation language is promising, since it
equires significantly less programming effort than Hadoop. The
ig Java functions that need to be implemented to run existing MSR
ools still represent some overhead; yet can easily be reused for
ther MSR  analyses. In our experience, the portion of boiler-plate
ode in Pig is only around 40–50%, which is much lower than that of
adoop. In the next section, we discuss three case studies in which
e evaluate Pig as a data preparation language for large-scale MSR

tudies.

. Experience report

In this section, we present our experience of preparing data
or three large-scale MSR  studies using Pig. We  first explain the
equirements and implementation of each case study in detail and
hen we evaluate the modular design of our Pig implementations.

.1. Case study requirements and implementation
We use Pig to perform data preparation (ETL) on three MSR stud-
es. For each study, we show what data is required for the analysis
nd how we implemented the data’s preparation with Pig. The sub-
nd Software 85 (2012) 2195– 2204

ject system for the three case studies is the source control system
of Eclipse,  which contains around 10 GB of data.

Study one: correlation between comment updates and bugs
The first software study is an empirical study on the correlation

between updating comments in the source code and the appear-
ance of bugs.

Required data: This analysis requires the following data for every
change in the source control system:

1. is the change related to a bug?
2. does the change update source code comments?

Implementation: The first step of implementing a Pig program is
to break down the process into a number of program units. The
following program units are used:

1. Loading data from a CVS repository into Pig storage as a ( “file-
name”, “file content”) pair.

2. Generating log data for every source code file.
3. Generating a list of revision numbers and commit logs for every

source code file.
4. Using heuristics on commit logs to check if a change contains a

bug fix.
5. Extracting every revision of source code for every source code

file.
6. Transforming every snapshot of every source code file into XML

format.
7. Comparing every two  consecutive revisions of source code to

check whether there is any comment change.

The Pig Latin source code for study one is shown in Fig. 4. In the
script, line 1 loads the content of every file from the input data. Line
2 generates the CVS log data for every file and line 3 generates the
historical revisions from the CVS log data. Line 4 and line 5 check
if a change is related to bugs. Line 6 extracts every historical revi-
sion of all the source code files. These snapshots of source code files
are transformed to XML  files by line 7. Line 8 analyzes the evolu-
tion of comments of every source code file. Line 9 and line 10 join
the evolution of comments, i.e., the output of line 8, with the bug-
related changes and non-bug-related changes respectively. The Pig
11 dump BUGRESULT;
12 dump NOBUGRESULT ;

Fig. 4. Pig Latin script for study one.
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1 METHODEVO=foreach XMLS generate EvoAnalysisMethod (
$0);

2 METHODCONTENTS =foreach CODE generate GetMethod($0) ;
3 METHODPAIRS=cross METHODCONTENT S , METHODCONTENTS ;
4 CLONES=foreach METHODPAIRS generate CloneDetection (

$0);
5 CLONES =filter CLONES by TimeOverlap($0) ;
6 BUGRESULT=join BUGCHANGES by $0.$0, CLONES by $0.$ 0

, METHODEVO by $0.$0;
7 NOBUGRESULT=join NOBUGCHANGE S by $0.$0, CLONES by

$0.$0 , METHODEVO by $0.$0;
8 dump BUGRESULT;
9 dump NOBUGRESULT ;
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1 FIVERSIONS= filter HISTORYVERSIONS by IsFI($0) ;
2 TIMESPANS = foreach FIVERSIONS generate TimeSpan($0

, ( "2008/01/01" , "2008/04/01" , "2008/07/01" ,
"2008/10/01" , "2009/01/01" )) ;

3 TIMESPAN_GROUP = group TIMESPANS by $8;
4 CHANGEDLOC_TIMESPAN= foreac h TIMESPAN_GROUP

generate ChangeLOC($0);
5 dump CHANGEDLOC_TIMESPAN;

To conclude, we  made the following findings during the imple-
Fig. 5. Pig Latin script for study two.

Study two: correlation between code clones and bugs
The second software study is an empirical study on software

efects in both cloned and non-cloned methods in a software sys-
em (Selim et al., 2010), which is actually the motivating example
resented in Section 2.

Required data: This analysis requires the following data for every
le at every revision:

. is the revision a bug fix?

. (for every method in the file) is the method new or has it been
deleted?

. source code for every method.

. (for every method) is the method cloned?

mplementation:
Because of the modular programming style of Pig, we re-used

he program units in lines 1–7 from study one (Fig. 4) without any
odification. In addition, we also need program units for:

. Checking which methods have been added or deleted in every
revision of every source code file.

. Generating every method’s content.

. Performing clone detection on the source code of all the methods.

. Ruling out falsely reported cloned methods.

he Pig Latin script for study two, which re-uses the existing vari-
bles from study one, is shown in Fig. 5.

In this Pig Latin script, line 1 analyzes the evolution of methods
n every source code file. Line 2 generates the source code content
f every method in each source code file. To perform clone detec-
ion, line 3 generates the cross product of all method contents. The
ross products consist of pairs of method content, such that line 4
an perform clone detection between each pair of method content.
unning clone detection on all source code files that ever existed
ay  falsely report code clones between parts of the source code that

ever existed at the same point in time. Line 5 filters out those false
ode clones. Lines 6 and 7 join the evolutionary data of methods,
he result of code clone detection, and historical revisions respec-
ively related and not related to bugs. Lines 8 and 9 dump the results
o a terminal. Alternatively, the results can be stored into files by
sing keyword “store” instead of “dump”. The Pig Latin language
irectly supports commonly used functionalities like joins, which
ubstantially simplifies the implementation of MSR studies using
adoop.

Study three: evolution of the complexity of source code
hanges
In the third experiment, we prepare data to calculate the evo-
ution of the complexity of source code changes. Hassan uses this
ata to predict software defects (Hassan, 2009).
Fig. 6. Pig Latin script for study three.

Required data: This analysis requires the number of changed LOC
in Feature Introduction Modification (FI) changes, i.e., changes that
introduce new features, for every time period.

Implementation:
Study three re-uses lines 1–3 in study one (Fig. 4). Three more

program units are required:

1. Checking for every change whether the change is an FI change.
2. Grouping changes per time period. In particular, we focus on the

four quarters in 2008.
3. Counting the changed �LOC.

The corresponding Pig Latin script, which uses the variables from
experiment one and two, is shown in Fig. 6. Line 2 uses five specific
days to indicate the four quarters in 2008 as time spans and line 3
uses the key value generated by line 2 as “$8” to group the commits
into time spans. Line 4 counts the changed �LOC of every group of
changes generated by line 3.

The Pig scripts of the three MSR  studies show that the high-
level language of Pig Latin helps focus on the process of the
MSR  studies rather than on the details of implementation or
parallelization. However, one still needs to implement Java
modules that will be called by Pig scripts.

4.2. Modular design overview

Pig stimulates a modular design in which each Pig program is
decomposed into a number of small program units. With such a
modular programming style, adding a new program unit or chang-
ing one program unit does not affect other program units as long
as the order of the fields of the data did not change. This flex-
ibility reduces coupling between modules but necessitates good
documentation about the format of the data. Program units also
comprise dedicated Java modules. These Java modules are automat-
ically reused when the program unit that they belong to is used for
data preparation of different MSR  studies, which can be as simple
as wrapping an existing tool in a separate process.

The program units that we identified for the three software stud-
ies are summarized in Fig. 7. Three out of fourteen program units
are reused in all three case studies and six out of fourteen pro-
gram units are reused in at least two case studies (bold in Fig. 7).
Fig. 7 also shows how we composed different program units into
the data preparation process of the three MSR  studies. The most
widely re-used program units provide basic functionalities of MSR
studies. The case studies are representative of most tasks done in
MSR  (Kagdi et al., 2007).
mentation of three MSR  studies using Pig: (1) the modular design
of Pig supports the reuse of program units; (2) existing MSR tools
can be migrated to Pig in a straightforward way.



2200 W. Shang et al. / The Journal of Systems and Software 85 (2012) 2195– 2204

1.  ExtPig Storage

Fig. 7. Composition of the data preparation process for the three MSR  studies performed w
modules with name in italic are used by J-REX.

Table 1
Comparison of the Hadoop and Pig based J-REX source code.

� Java LOC � Pig script LOC � Modules � Boiler-plate LOC
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Hadoop 277 N/A 1 235 (85%)
Pig  761 13 10 342 (45%)

. Comparing Pig and Hadoop

In our previous research, we verified the feasibility of using
adoop to prepare data for software studies (Shang et al., 2009,
010) by evaluating the J-REX data preparation tool on the Hadoop
latform. In this section, we use 10 out of the 14 program units of
he three MSR  studies (italic in Fig. 7) to migrate J-REX to the Pig
latform and compare the Hadoop-based J-REX and the Pig-based

-REX. We  use J-REX to perform the comparison for two  reasons:
1) we have both Hadoop-based and Pig-based implementations of
-REX and (2) J-REX is well understood by the authors from previ-
us studies and covers most (10 out of 14) of the program units in
his paper.

.1. Source code

We first compare the source code of the Hadoop and Pig imple-
entations. An overview of this data is shown in Table 1. In our

revious research (Shang et al., 2009), only 277 lines of additional
ava code were required to migrate J-REX to Hadoop. In our case
tudies, we used less than 10 lines of Pig script for combining
rogram units and 761 lines of java code for the various J-REX
odules.
From our experience, preparing MSR  data using Pig requires

ore Java code than using Hadoop, for a number of reasons. The
ig implementation has more modules than Hadoop (10 in Pig
ersus 1 in Hadoop for our implementation). Each module repeats
oiler-plate code, taking up 45% of all Pig Java code. Moreover, the
odular design of Pig requires researchers to break down the data

reparation process into reusable modules that can be combined
ogether. Therefore, the researchers cannot treat the overall pro-
ess as a black box, but rather need to understand the process
nd design the interaction between modules. Hence, each module
eeds additional boiler-plate code for loading intermediate results
nd storing the output for later modules. These requirements

ncrease the burden of developing the data preparation program, as

ell as the amount of source code. We  consider the design of Java
ode in Pig as one of its major disadvantages. That said, once the
nitial effort for implementing a module has been invested, subse-
ith PIG. Modules with name in bold are used by more than one case study, whereas

quent tools likely can reuse modules, reducing future development
effort.

5.2. Program design

Designing a Hadoop-based data preparation program requires
designing five classes for each MapReduce step: a Mapper class, a
Reducer class, an Inputformat class, an Outputformat class and a
RecordReader class. In addition, a driver class is required to com-
bine all the MapReduce steps together. Hence, not only the Map and
Reduce classes require effort. Moreover, one often needs to design
customized data types, which increases effort even more.

In principle, a Hadoop program with multiple MapReduce steps
can have a similar modular design as a Pig program, supporting
multiple modules with intermediate data for each MapReduce step.
However, such a design is not optimal in practice. Each step of
MapReduce requires additional design effort for the five classes
mentioned above. Moreover, additional I/O for reading and sav-
ing data to the disk and un-negligible start-up phase overhead
are introduced by each MapReduce step. Therefore, Hadoop users
typically design a minimal number of MapReduce steps.

Pig requires less design effort than Hadoop. Researchers only
need to design one Java class for each step of a Pig-based data prepa-
ration program when the internal operators of Pig, such as GROUP
and JOIN, cannot complete the functionality. Two  additional classes
are needed for the whole Pig program when customized data load-
ing and storing is used. Since Pig uses an internal data format (which
is similar to JSON (Crockford, 2006)), no additional design for input
and output data format of each step or data serialization is required,
such that Pig users can focus on the real data processing. The Pig
platform automatically transforms, schedules and combines Pig
program units into a minimal number of MapReduce steps to avoid
the overhead from initializing MapReduce and dealing with inter-
mediate data. Therefore, Pig users typically design the Pig program
with a relatively larger number of modules than the number of
MapReduce steps in Hadoop.

Comparing the design of Hadoop and Pig programs, we  first find
that although Pig’s modular design brings additional boiler-plate
Java code, it assists in isolating bugs when testing the program. Sec-
ond, the Pig program units are easier to reuse than Hadoop program.
Third, we find that Pig has as advantage a less constrained design.

For example, users of Pig do not have to design their program fol-
lowing the MapReduce paradigm. On the other hand, Hadoop users
can customize their programs more. For example, the internal data
format may  not be the most suitable one, and users may  want to
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Table  2
Configuration of the server machine and the distributed computing environment.

Server machine Distributed computing
environment

� Machines 1 5
CPU 16 × Intel(R)

Xeon X5560
(2.80 GHz)

8 × Intel(R) Xeon
E5540 (2.53 GHz)

Memory 64 GB 12 GB per server
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OS Ubuntu 9.10 Ubuntu 9.10
Disk type SSD SATA

efine their own data type as well as the identity and equality of
he customized data type.

.3. Performance

In addition to the source code and design characteristics, we also
ompare the performance of Pig for MSR  studies to the performance
f Hadoop and non-distributed programming. Our previous exper-
ment shows that using Hadoop on a 4 machine-cluster reduces the
omputation time by 60–70% when analyzing the CVS source con-
rol repository of the Eclipse project (Shang et al., 2009). Pig uses

 high-level language that is automatically compiled into Hadoop
ode, which means that it sacrifices some performance for the flex-
bility and ease of implementation. Here, we want to examine the
elative scalability of Pig compared to Hadoop. The performance
valuation of Pig should include both the running time of MSR
tudies and the time spent on iterative analysis.

In the experiment, we analyze three pieces of input data with
ifferent sizes on the non-distributed J-REX, the Hadoop-based

-REX and the Pig-based J-REX. We  first used the optimized, non-
istributed J-REX to prepare data from three major sub-folders
f the Eclipse CVS repository on a powerful server machine (see
able 2). We  then ran J-REX on both the Hadoop platform and the
ig platform. The Hadoop and Pig platforms are deployed in our
rivate distributed computing environment. The configuration of
he distributed computing environment is shown in Table 2. The
erformance results are shown in Table 3.

The average running time across three runs is shown in Table 3.
he average running time of the Pig-based J-REX turned out to be
lightly higher than the average running time of the Hadoop-based
-REX. Even though the original J-REX ran on a very powerful server,
he Pig-based J-REX is much faster than the original J-REX. These
ndings seem to confirm recent research findings that showed that
he running time of a Pig program is around 1.3 times as long as
he running time of native Hadoop (Gates et al., 2009). However,
n our experiments, we  found that Pig sometimes could be more
fficient than Hadoop-based J-REX. This can be explained by the fact
hat additional I/O is introduced and the Hadoop-based J-REX stores
ntermediate data after each step, while the intermediate data in
he Pig-based J-REX is only calculated and stored on demand.
As shown in the introductory example in Section 2, MSR  stud-
es require iterative analysis. Without Pig, MSR  researchers may
eed to run the whole experiment for MSR  studies again and again

or every iteration. In our previous research, running J-REX on the

able 3
verage running time across three runs of J-REX on a single machine, the Hadoop
latform and the Pig platform.

Sub-folder Size On single
machine

On Hadoop
platform

On Pig
platform

Runtime 11 MB 12 min  2 min  1.5 min
e4 219 MB  164 min  20 min  23 min
pde 269 MB  240 min  16 min  24 min
nd Software 85 (2012) 2195– 2204 2201

whole Eclipse CVS repository took 80 min  in a 10-node cluster
(Shang et al., 2010), which shows that the running time of one itera-
tion is not trivial. With Pig, MSR  researchers can store and load data
into variables as desired, without having to design and implement
data formats and additional methods, which reduces the overall
time to prepare MSR  data. Yet, it is very hard to measure the actual
time spent in our case studies on iterative analysis, for a number of
reasons. First, the total time encompasses the time needed to think
about changing the MSR  tool and to test the tool, which is very
hard to measure. Second, the learning effect from our earlier expe-
rience with the stand-alone and Hadoop versions of J-REX makes
time information unreliable.

Still, we can get an idea of the order of magnitude of differ-
ence between Pig and MapReduce. J-REX on a single machine and
the Pig platform both required development in a similar high-level
programming language, such that given their time difference in
Table 3, iterative execution will be much faster for Pig.

6. Other lessons learnt

In this section, we  distill the lessons learnt from our experience
with the three case studies that are not included in the comparison
between Hadoop and Pig in Section 5.

6.1. Data storage

As Pig runs on top of Hadoop, the input data of a Pig program
needs to be loaded into Hadoop data storage, i.e., HDFS (White,
2009). The data prepared by Pig also needs to be copied from HDFS
to the local file system if researchers need to use other data analysis
techniques like R (Ihaka and Gentleman, 1996) and Weka (Hall et al.,
2009) to analyze the prepared data. Because software engineering
data is typically large, the performance and efficiency of data stor-
age is important for Pig to prepare data for MSR studies. We  now
discuss the advantages and disadvantages of the data storage of Pig.

The advantage of HDFS includes optimized data reading and
fault tolerance. HDFS optimizes the performance of data reading
(White, 2009), which takes up most of the I/O in MSR  studies
(Kagdi et al., 2007). Hence, although data in software repositories
is growing ever larger and faster, the scalability of Pig-based data
preparation is not limited by I/O bandwidth. HDFS also provides a
fault tolerance mechanism to ensure the correctness and complete-
ness of software repository data, since machine failure is common
in large distributed computing environments.

However, HDFS also brings disadvantages to the users of Pig. The
most important disadvantage is that HDFS does not support either
updating or appending data. This disadvantage prevents mining
software data incrementally. In addition, as mentioned above, MSR
data needs to be loaded into HDFS before being processed by Pig,
which corresponds to run-time overhead.

6.2. Data structure

Pig Latin’s default data structure is a flexible data format, as men-
tioned in Section 5. However, from our experience and the scripts
in Figs. 4–6,  we find that the data format of the input and output
of program units in Pig Latin is not explicitly specified. Users of Pig
need to know the corresponding data format when they want to
reuse the program units, which might introduce bugs and require
additional comprehension effort.

6.3. Debugging and performance optimization
As an important disadvantage, Pig does not provide mature and
sophisticated debugging or performance optimization techniques.
Debugging Pig is mostly based on print statements. Even though



2 tems a

P
s
a
s
t
f
t

7

o

t
b
t
t
d
S
e
b

g
w
s
t
t
6
M
b
o
t
o

R
g
H
w

8

a

8

r
b
w
d
E
s
a
(
a

a
s
A
p
l
c

202 W. Shang et al. / The Journal of Sys

ig Latin has keywords such as LIMIT and SAMPLE to randomly
elect a representative sample of the data to assist in verification
nd debugging, the debugging of the whole pipeline is still poorly
upported. To the best of our knowledge, performance optimization
echniques for Pig program are not readily available either. The per-
ormance optimization is mostly based on users’ experiences and
rial-and-error.

. Limitations and threats to validity

This section presents the threats to validity and limitations of
ur research.

External validity
We  chose to present three software studies with Pig. Although

he three experiments have a different motivation, they are all
ased on mining version control repositories. Prior research iden-
ifies eight major types of MSR  studies (Kagdi et al., 2007), but our
hree software studies are only related to five of them (i.e., Meta-
ata analysis, Static source code analysis, Source code differencing,
oftware metrics and Clone detection). Our findings may  not gen-
ralize to other software studies. This threat can be countered only
y performing more software studies with Pig in practice.

Construct validity
Our research can include subjective bias. For example, most pro-

ram units developed in our case studies re-use modules of J-REX,
hich was developed by the authors. Using our own tool as a case

tudy may  cause subjectivity bias. However, in practice one will
ypically only alter the source code of familiar systems. In addi-
ion, the experience and performance measurements in Section

 are based on our optimized implementation of the original,
apReduce-based and Pig-based J-REX. Even though we  tried our

est to optimize the implementations to gain better performance,
ur implementations may  not be the optimal ones. We  plan to fur-
her optimize our implementations and report the performance in
ur future work.

Moreover, program units in Pig are developed in Java.
esearchers that develop ETL tools in other programming lan-
uages, such as Python, may  not have the same experience as us.
owever, the existing tools for software studies can be re-used by
rapping them in a Java program.

. Related work

In this section, we discuss the related work of this paper in three
reas of software engineering research.

.1. Domain-specific languages for software engineering research

Various languages are currently used in software engineering
esearch. The Grok language (Holt, 2008), developed by Holt, is
ased on binary relational algebra for the purpose of studying soft-
are architecture. Using the Grok language, software repository
ata can be stored in a fact database for analysis (Holt, 2008). Van
mden and Moonen (2002) used the Grok language to detect code
mells, such as code duplication, as indicators of bad code quality
nd the necessity of code refactoring. A number of other researchers
Holt, 2008) use the Grok language to tackle software architectural
nd software analysis problems.

The Dependence Query Language (DQL) (Wang et al., 2010) is
 Domain-Specific Language developed by Wang et al. to locate
ource code that depends on other source code, such as “component
 depends on components B and C”. DQL performs queries on a
re-extracted System Dependence Graph from the source code to

ocate subgraphs matching the query patterns, then it uses text
onstraints to further refine the query results.
nd Software 85 (2012) 2195– 2204

Van Emden and Moonen (2002) evaluated their approach using
Grok on one Java program (46 KLOC), whereas DQL (Wang et al.,
2010) was evaluated on four versions of two different open source
projects (130 KLOC in total). However, we  deal with substantially
larger data such as the Eclipse source code (7375 KLOC). Nei-
ther Grok, nor DQL has built-in distribution or multi-threading
techniques. Ad hoc programming is required to scale these two lan-
guages to large-scale MSR  studies. Pig, on the other hand, provides
much better scalability out-of-the-box.

8.2. MSR  platforms

Kenyon (Bevan et al., 2005) is a data extractor for different kinds
of source control systems. Kim et al. combined data extracted by
Kenyon with CC-Finder (Kamiya et al., 2002), a code clone detector,
and a location tracker that tracks code clones across versions (Kim
et al., 2005) to perform Clone Genealogy Analysis (Kim et al., 2005).

Relational databases and SQL are widely used as platform for
MSR  studies. For example, FLOSSMole (Howison et al., 2006) is a
public relational database that contains data extracted from a large
number of software repositories. Many researchers use FLOSSMole
as a platform. For example, Herraiz et al. (2008) used data in FLOSS-
Mole (Howison et al., 2006) to perform analysis to illustrate that
most of the software projects are governed by short term goals
rather than long term goals.

Alitheia Core (Gousios and Spinellis, 2009), developed by
Gousios et al., is a platform for software quality analysis. The plat-
form stores extracted software engineering data in a database and
enables software engineering researchers to develop extensions for
their customized experiments on the extracted data.

Even though software engineering researchers perform experi-
ments on the above platforms, none of the platforms is designed for
experiments with large-scale data. Researchers suffer from either
the fact that experiments need a long time to finish or cannot even
be performed on such platforms. Since Pig is built on Hadoop, it can
scale up easily, even using commodity hardware.

8.3. Scaling software engineering research

There is some existing work on scaling software engineer-
ing research, typically involving ad hoc distributed programs.
D-CCfinder (Livieri et al., 2007), for example, scales CC-Finder
(Kamiya et al., 2002) to run in an ad hoc distributed environment
to support large-scale clone detection. D-CCfinder reduces the run-
ning time for detecting code clones in the FreeBSD source code
from 40 days to 52 hours on an 80-machine cluster. However, such
an ad hoc distributed platform requires additional programming
and maintenance effort that most software engineering researchers
are not interested in. In contrast to ad hoc distributed platforms,
MapReduce-based data preparation platforms are scalable and
general-purpose (Dean and Ghemawat, 2004).

In our previous work, Hadoop, a MapReduce implementation, is
used to enable large-scale MSR  studies (Shang et al., 2009, 2010).
Even though the MapReduce platform requires much less effort
in programming and maintenance than ad hoc distributed plat-
forms, researchers still need to transform software engineering
research tools into Map  and Reduce steps, and such tools are hard
to debug on MapReduce platforms with large-scale software engi-
neering data. Pig provides a scripting language that is automatically
compiled to Hadoop code, to improve ease of programming. Even
though Java programming is still required in Pig, the programming
focuses mainly on the process of the MSR  study and reuse of existing

modules.

Other than Hadoop and Pig, some other techniques have been
proposed to provide high-level languages and techniques and are
also possible candidates to scale software engineering research.
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lumeJava (Chambers et al., 2010) and DryadLINQ (Isard and Yu,
009) are examples of such techniques. FlumeJava provides a Java

ibrary to support processing data in distributed computing envi-
onment. Java programs can leverage such a library to enable
arge-scale data analysis by parallelizing the processing. Similarly,
ryadLINQ introduces parallel data operations into the languages
f the.NET framework, but does not support distributed computing.
lumeJava’s open-source version (Plume) is still in its early devel-
pment stages, while Hadoop and Pig are much more mature and
ave already been widely used in practice.

. Conclusion

Traditional software analysis platforms fail to perform large-
cale MSR  studies with ever larger and more complex data. Even
hough MapReduce is capable of being a general platform for MSR
tudies, migrating traditional non-distributed MSR  tools to MapRe-
uce requires additional design and programming effort, and does
ot support reuse in practice. In this paper, we evaluate Pig, a high-

evel data-processing programming language on top of MapReduce,
o improve the re-usability and scalability of MSR  studies.

We  use Pig as a data preparation (i.e., Extract, Transform, and
oad) language for three MSR  studies and present our implemen-
ation in detail. In addition, a performance comparison between
adoop, Pig and a traditional non-distributed programming lan-
uage shows that Pig provides similar scalability as Hadoop, which
eatures a much lower-level distributed computing paradigm.
inally, we also report the lessons we learnt while using Pig as a
ata preparation language for MSR  studies.

The most important advantages of Pig include the optimized
ata reading performance, the semi-structured data, and modu-

ar design. These Pig features support MSR  researchers to prepare
ata for MSR  studies with more flexible processes and to process

arge-scale data with reusable modules. However, several limita-
ions should not be ignored, such as the large amount of boiler-plate
ava code (although proportionally less than Hadoop), the effort for
earning how to use Pig and the lack of debugging techniques. These
imitations either cause overhead when using Pig, or prevent some

SR  studies, such as real-time log mining. Despite Pig’s limitations,
e believe that Pig can be adopted today by other MSR  researchers.
ur experience and source code (Shang, 2010) can assist them in
sing Pig to perform large-scale MSR  studies.
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