Feature Lifecycles as They Spread, Migrate,
Remain, and Die in App Stores

Federica Sarro, Afnan A. Al-Subaihin, Mark Harman, Yue Jia, William Martin, and Yuanyuan Zhang
CREST, Department of Computer Science, University College London, London, UK

Abstract—We introduce a theoretical characterisation of fea-
ture lifecycles in app stores, to help app developers to identify
trends and to find undiscovered requirements. To illustrate and
motivate app feature lifecycle analysis, we use our theory to
empirically analyse the migratory and non-migratory behaviours
of 4,053 non-free features from two App Stores (Samsung and
BlackBerry). The results reveal that, in both stores, intransitive
features (those that neither migrate nor die out) exhibit signifi-
cantly different behaviours with regard to important properties,
such as their price. Further correlation analysis also highlights
differences between trends relating price, rating, and popularity.
Our results indicate that feature lifecycle analysis can yield
insights that may also help developers to understand feature
behaviours and attribute relationships.

I. INTRODUCTION

Requirements elicitation is crucial to the development of
any software. Mobile apps are not an exception; however
in this environment there may be no formal requirements
elicitation process, yet application distribution platforms (or
app stores) offer new avenues to gather software requirements
[LTE20030[40[SN[6]. The App Store marketplace can be thought
of as a highly user-participatory cyclic development model
that partly involves “requirements for the masses; requirements
from the masses”. In this adaptive development space, users
express their needs and desires by voting apps up and down
and contributing product reviews. Users also tacitly express
support for a feature by downloading apps that offer it. De-
velopers may observe this behaviour and respond accordingly
by adding popular features, where appropriate, to their own
products. In this way, the developers triage the perceived
desires of their users and make strategic decisions as to which
features to adopt [7]].

Capturing user reactions helps developers to select and
prioritise feature inclusions in the next releases [4]. Performing
a market-wide analysis to identify trends across the entire app
marketplace can also allow developers to find undiscovered
requirements [8]].

Therefore, in this paper we study the lifecycle and migration
of app features across product categories to gain insights
into this non-traditional world of requirements elicitation.
We introduce a simple set-theoretic formal characterisation
of the migratory behaviours of features through app stores
(some spread, some remain, some relocate, and some die out)
and use it to empirically investigate how different features
behave in the existing app stores. We are interested in the
relationship between the migratory behaviour of these features,
their value to developers (price), and the customers’ reactions

978-1-4673-6905-3/15 © 2015 IEEE

76

to them (rating and popularity). For example, developers may
ask Which migratory behaviours carry monetary value?, and
Which migratory behaviours involve more popular features?.

To this end we analysed features claimed for apps by
their developers, which we extracted using natural language
processing from the app descriptions available in the existing
app stores [9]. Previous studies have shown that it is possible
to extract features from product descriptions available on-line
[LO[L1][12] and that the use of text mining is growing as a
new form of requirements elicitation [2][13].

To carry out the empirical study, we mined a total of 4,053
non-free features from the Samsung Apps and BlackBerry
World app stores, and automatically classified them according
to our migratory behaviour theory. We then measured the price,
rating, and popularity (rank of downloads) of these features in
terms of their averages (both mean and median) calculated
over all apps that share the features [9][14], to investigate the
differences and relationships between these attributes for the
different migratory behaviours.

The paper has two primary contributions:

1. Theory: We introduce and formalise concepts of feature
lifecycle, migration, exodus, extinction, and intransitivity using
a set theoretic formalism that casts all features into a subsump-
tion hierarchy of migratory behaviours and the relationships
between them.

2. Empirical Results and Analysis: To illustrate the value of
our approach, we use it to analyse the BlackBerry World and
Samsung Apps stores. Our findings reveal that it is possible
to classify the mined features into the different migratory
categories defined by our theory, and that the features in such
categories exhibit different characteristics with respect to the
important attributes of price, rating, and popularity. These
differences manifest themselves as statistically significant dif-
ferences in the mean (and median) values between categories.
We also found differences in the relationships between the
three attributes, as expressed in terms of correlation analysis
(both linear and rank based).

In the remainder of the paper, Section [[I] provides back-
ground information on our approach to mining app store
repositories. Section introduces our Set-Theoretic Theory
of Feature Lifecycles and Migration. Section explains
our empirical study design, while Section [V] presents the
results of the BlackBerry World and the Samsung Apps study.
Section |VI| discusses threats to validity. Section considers
related and future work, and Section concludes.

RE 2015, Ottawa, ON, Canada
Research Paper

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

II. BACKGROUND

Our approach is based on the extraction of feature claims
from software product descriptions [9][LO][11]{12]{14], which
we briefly review here (details can be found elsewhere
[9][14]). Our feature extraction approach consists of four
phases. The first phase extracts raw data from the app store
(in this case BlackBerry World and Samsung Apps, though
our approach can be applied to other app stores with suitable
changes to the extraction front end). The second phase parses
the raw data extracted in the first phase to retrieve all the
available attributes of each app relating to price, rating, and
textual descriptions of the app itself. The third phase analyses
app descriptions to identify the features claimed for apps by
their developers. The fourth phase computes the price, rating,
and popularity for the identified features.

Phase 1 uses a customised web crawler to collect raw
data from the app store, from which we parse the HTML
to extract the descriptions and other data (rating, price, and
popularity measured in terms of the rank of downloads) in
Phase 2. Phase 3 uses natural language processing to extract,
from each description, the features claimed for the app by
its developers. Such feature claims can be written in many
ways by developers. We developed a four-step NLP algorithm
to extract feature information and implemented it using the
Python Natural Language Toolkit (NLTK) [15]. The first
step extracts raw feature patterns, thereby identifying the
‘coarse features’ of apps. We locate raw feature patterns by
searching for an HTML list in the description of apps. If
the sentence prior to an HTML list contains at least one
keyword from the set of words “include, new, latest, key,
free, improved, download, option, feature”, the HTML list is
saved as the raw feature pattern for this app. Non-English
and numerical characters are removed along with unimportant
English language STOPWORDS such as {‘the’, ‘and’, ‘to’}. The
words that remain are transformed into ‘lemma form’ using
the WORDNETLEMMATIZER function from NLTK, thereby
homogenising singular/plural, gerund endings, and other non-
germane grammatical details. From this lemmatised, stop-
word-reduced token stream, the algorithm extracts a set of
‘featurelets’; a set of commonly occurring co-located words,
identified using NLTK’s N-gramCollocationFinder package.
We use a greedy hierarchical clustering algorithm to aggregate
all similar featurelets together. The algorithm initially treats
each featurelet as a single cluster, and then repeatedly com-
bines clusters that are more than 50% similar. The result is a
set of feature descriptions consisting of either 2 or 3 keywords
(which we call ‘bitri-grams’) that describe the claimed feature.

Because of the importance of the feature mining process
to any kind of analysis, Finkelstein et al. [14] performed
a sanity check of the feature extraction algorithm to verify
whether the features extracted were meaningful to humans.
As sanity check, software developers working at UCL were
asked to say whether they believed that a given claimed
feature represented a feature or not. To this end a questionnaire
containing claimed (i.e., bitri-grams extracted by the mining

77

technique used herein) and random features (i.e., bitri-grams
created by randomly selecting words from app descriptions)
was used. The results showed that developers often classify
the claimed features as a feature and the random features as
a non-feature (i.e., Precision=0.71, Recall=0.77).

In Phase 4 we use a set of metrics that compute the rating,
price, and popularity of a feature in terms of the median value
of the corresponding ratings, prices, and popularities of all
apps that possess the feature [9][14]. We used the median,
because app popularity is measured as an ordinal rank (called
‘rank of downloads’ by several app stores) and the rating
is a star rating (recorded for each app as a value from 0
to 5 stars in half star increments). These two measurements
are clearly ordinal scale measurements and so the median is
the most suitable average computation [16]. For price, the
use of median (instead of mean) for value aggregation is
more questionable. We did observe ordinal pricing behaviour.
For example, the app store requires developers to charge
in whole dollar increments. Furthermore, prices chosen by
developers tend to cluster around ten, twenty, and thirty dollar
‘price points’, suggesting some kind of implicit ‘ordinal scale’
properties. However, the scale could equally well be argued
to be a ratio scale. In order to check that our choice of
median aggregation did not affect the results we report here,
we re-computed all results using mean to aggregate over
app prices, ratings, and popularities. The findings remained
as reported here, suggesting that the choice of aggregation
technique is relatively unimportant for the features studied. For
completeness, we provide all of our data on the accompanying
website!.

III. A THEORY OF APP STORE FEATURE LIFECYCLES AND
MIGRATORY BEHAVIOURS

We are interested in features that migrate, because move-
ment of features between categories suggests that these fea-
tures have some form of transferable value beyond the category
of apps in which they initially emerge in the app store
ecosystem. In order to define migration, we need to describe,
first, the categories in which a feature resides at a given time in
a given app store database. We define this formally as follows:

Definition 1 (Category Membership). If a feature f in an app
store database D is a member of category C' at time ¢ then
we shall write f € Cpysy. We define the set of categories,
C]J; e of which a feature f is a member at time ¢ in D, by
extension, as {C' | f € Cpyy -

There are various behaviours that could be termed ‘migra-
tory’. We start with the weakest possible notion of migration,
according to which a feature migrates if it resides in at least
one new category at the end of the time period considered.
More formally, we define the weak migration predicate on
features as follows:

Uhttp://wwwO0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html

http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html

Definition 2 (Weak Migration). A feature f in an app store

database D (weakly) migrates between time £y and ¢;, written
f ; e of f

WM, oy if and only if Cpy, o = Chyy o # (.

We use set comprehension notation, {¢o, ¢}, for the time
period from ¢y to t; to allow our theory to be more conve-
niently extended to multiple time periods, though we restrict
ourselves to a single period in the analysis in this paper. Our
definition of migration is termed ‘weak migration’ because
any newly entered category counts as a migration, even if the
feature disappears from (some or all of) the categories from
which it is migrating. If a feature does not weakly migrate,
written NV, M’; {to.tr 1’ then it does not enter any new categories
over the time period considered.

We also define strong migration, where a feature strictly
spreads from at least one category to at least one new category
(and remains in all categories in which it originated). More
formally, we define strong migration as follows:

Definition 3 (Strong Migration). A feature f in an app store
database D strongly migrates between time ¢(and t;, written
SMy,, 1,y if and only if (iff)

(c{,{to} —c{){h} =0) A
(Cé{to} ﬂC]J;{tl} # ®) A
(Chity —Chigy 2 0)

That is, a strongly migratory feature has no categories that
it abandons (Cf;{to} — C};{tl} = ()), at least one category in
which it remains (C{){to} N C{){tl} # (), and at least one new
category that it spreads into (Cé{tl} — Cé{to} £ 0).

A feature that strongly migrates also weakly migrates, but
not necessarily vice versa, hence the choice of terminology
(strong and weak).

A specific category of weak migration, which we term
‘exodus’, is also worthy of definition. There are also weak and
strong forms of exodus. In a weak exodus, a feature disappears
from at least one of the categories in which it previously
resided, while appearing (for the first time) in at least one
new category. In a strong exodus, a feature disappears from all
categories in which it previously resided to take up residence
in at least one new category. More formally:

Definition 4 (Weak Exodus). A feature f in an app store
database D experiences weak exodus between time g and %1,

: ; ! 7 I
written WEp v iff WM 0 A=(SMp)

Definition 5 (Strong Exodus). A feature f in an app store

database D experiences strong exodus between time ¢y and %1,
: f : f f f _

written SSD{toytl}, iff WED{tO,tl} A (CD{tO} ﬂCD{tl} =0).

Our definitions are so-construed that weak migration cap-
tures all possible migratory behaviours. It is the union of those
features that strongly migrate and those that weakly exodus
(which, in turn, includes those that strongly exodus).

There is a special case of strong exodus, permitted by our
definitions, in which a feature appears for the first time at
the end of the time period considered. That is, such a feature

78

resides in no categories at the start of the time period (so
C}; {to} = () and is in at least one new category at the end
of the time period (so C{) {1} # (). This situation is a special
case of strong exodus, a feature’s ‘birth’, in which it undergoes
an ‘exodus into the app store from nowhere’.

In our empirical analysis that follows, we do not include
the ‘Birth’ of features, since we wish to focus on migration
of existing features through the app store. However, for com-
pleteness, we define the Birth category, formally, as follows:

Definition 6 (Birth). The Birth of feature f in an app store
database D between time ¢y and ¢, written B/ occurs

f f D{to,tl}’
iff SED{tmtl} /\CD{tO} = 0.

All of the migratory behaviours we describe and formalise
involve some form of change in the categories in which the
feature resides, except one, which we term the ‘intransitive’
features. An intransitive feature neither appears in any new
categories nor does it disappear from any between the start
and the end of the time period considered. More formally, we
define intransitivity as follows:

Definition 7 (Intransitive). A feature f in an app store
database D is intransitive between time ¢y and t;, written

f .
ID{tO,tl} iff

(Czj_;{to} - CLf'){tl} =0)
(Cé;{to} n Cé){tl} # (Z))
oty ~ Chuey = 0)

A
A\

That is, an intransitive feature has no categories that it
f f _

abandons (CD{tO} — CD{tl} =0 ;lnd at least one category
in which it remains (CD{tO} N SD{tl} ;éf@) and it has no
categories to wh.1ch it spreads (CD{tl} - CQ{to} = Q). .

If a feature neither migrates, nor remains intransitive then it
must be dying out (either from some or all categories) which
we term ‘extinction’ in this paper. Once again, there is a strong
and a weak form of extinction. In a weak extinction, the feature
disappears from at least one category in which it resided and
does not migrate to any new ones. In a strong extinction, a
feature completely disappears; it disappears from all categories
in which it resided and does not migrate to any new ones. More
formally, we define weak and strong extinction as follows:

Definition 8 (Weak Extinction). A feature f in an app store
database D experiences weak extinction between time ¢y and

. f . f f
t1, written WXD{to,tl}’ iff NMD{to.,tl} A —\(ID{tO_’tl}).

Definition 9 (Strong Extinction). A feature f in an app store

database D experiences strong extinction between time ¢y and

. f : f f —
ty, written SX'p, L AT WX A Cy =0

There is special case of strong extinction, in which no cate-
gory contains the feature of interest, so Cé (to} = Cé () = 0.
In this situation the feature is not in the app store at the
start, nor at the end, of the time period considered: ‘it is
unborn’, or equivalently we might say that ‘it is undead’ .

That is, though the feature may exist outside the app store

All Features

NM
Non Migration

TN

WM
Weak Migration

T

WE SM I wx
Weak Exodus Strong Migration Intransitive ~ Weak Extinction
| \

S¢E SX
Strong Exodus Strong Extinction
\ \

B No feature
Birth Death

Fig. 1. The Feature Migration Subsumption Hierarchy.

Sets of Sets of
categories categories
in which in which

the feature
resides at tq

the feature
resides at tg

Fig. 2. Venn diagram showing the sets of categories a feature resides in
at both snapshots. A = Categories that have the feature at tg but not ¢t1. C =
Categories that have the feature at ¢1 but not tg. B = Categories that have the
feature at both tg and t;. Each of A, B, and C could be empty or not, so we
have 8 possibilities (shown in Table [} with their corresponding definitions).

time period considered, it does not exist (is ‘dead’) in the
app store within the period considered. Without meaning to
become unreasonably supernatural, we might say that a dead
feature that does, however, exist in a previous time period is
‘undead’, while one that does not is ‘unborn’. We make this
distinction in the interests of theoretical completeness; it has
no further bearing on the study on which we report.

As can be seen, our definitions are loosely analogous to
animal migration terminology, where features are analogous
to animals and categories to geographic regions. These defi-
nitions of the different kinds of migratory behaviour form the
set-theoretic subsumption relationship depicted in Figure
The theory is also complete; it captures all possible features
in a single subsumption hierarchy of behaviours with respect
to the birth, migration, and extinction of features.

To see that this theory captures all possible features and to
help visualise each, consider the Venn diagram in Figure [2]
and the associated mapping of all possible set configurations
and their corresponding migratory definitions in Table [} This
subsumption relationship allows us to speak formally and
precisely about feature movement through the app store in
terms of their birth, migration and death. It also precisely cap-
tures the relationships between the different kinds of feature
movement that we observe in practice. We call this feature
movement ‘migratory behaviour’.

TABLE I
COMPLETENESS OF MIGRATORY DEFINITIONS.
Set names (A, B, and C) refer to the sets in the Venn diagram (Figure E])
Empty sets are denoted by 0, non-empty sets by 1.

Set

Migratory behaviours (WWM)
C Behaviour

1 SM
1 we
1
1

Meaning

SE, WE
B, S&, WE

igratory behaviours (A" M)
C Behaviour
A
WX
SxWx
No Feature, SX, WX

on-

o~ —OoOpZ|lo~—Op
co—~rmZg|loo—~—wW

0
0
0
0

IV. EMPIRICAL STUDY DESIGN

This section explains our empirical study design and moti-
vates our research questions and the statistical tests we use.

A. Dataset

We extracted data about non-free apps at two time points
from the BlackBerry (weeks 3 and 36 in 2011) and Samsung
stores (weeks 5 and 36 in 2011). Table |lI] presents summary
data for these two ‘snapshots’ in each store. We were able to
mine all the data available in both stores at that time, thus this
study does not suffer from the App Sampling Problem [17]].

The choice of time points for this first investigation of
feature lifecycles is partly arbitrary, since any two time points
could be used to illustrate it. However, we wanted to select
two time points that were sufficiently separated that we might
reasonably expect some changes, yet not so far apart that any
migratory behaviour observed could not reasonably be acted
upon by developers. Thus, we selected two points within the
same year, but separated by at least 30 weeks. Future work will
explore other time granularities to identify the smallest and
largest time periods over which migration can be meaningfully
observed.

In 2011, BlackBerry had 19 categories containing 18,276
and 42,625 apps in the first and second snapshots, respectively,
while Samsung was a smaller store with 14 categories, and
5,206 and 12,358 apps in the first and second snapshots,
respectively. We excluded from the Samsung Apps study
the Brand category since it contained only 8 free apps and
the Handmark category that contained different kind of apps
(e.g., games, advertisement) developed by the same software
company (i.e., Handmark), so it does not represent a category
of apps offering similar functionalities. No categories were
excluded from the BlackBerry study. Using the algorithm pre-
sented in Section [[I| we extracted 623 and 689 unique features
from the first and second Samsung snapshots, respectively,
while we have mined 1,324 and 1,417 unique features from
the first and second BlackBerry snapshots, respectively.

79

TAB

LE II

SUMMARY DATA FOR THE BLACKBERRY AND SAMSUNG APPS STUDIED BETWEEN TWO TIME INTERVALS.
(a) BlackBerry

2011-week03

2011-week36

Category Apps Fea- Mean Median Mean Median Mean Median Min Max Apps Fea- Mean Median Mean Median Mean Median Min Max
tures Price Price Rat- Rat- Rank Rank Rank Rank tures Price Price Rat- Rat- Rank Rank Rank Rank
ing ing of of of of ing ing of of of of

Down- Down- Down- Down- Down- Down- Down- Down-

loads loads loads loads loads loads loads loads

Business 205 82 1481 499 186 2.00 8337 8108 803 18201 348 77 1261 499 179 0.00 19250 18183 807 42585
Education 163 47 10.88 499 129 0.00 9526 9674 715 18320 592 80 566 299 1.38 000 22535 22682 1608 42673
Entertainment 456 106 499 299 1.82 200 7363 6622 97 18253 920 85 628 299 1.87 1.00 18593 16697 135 42628
Finance 107 77 542 399 210 200 7552 6196 168 17963 194 73 450 249 193 125 19842 16863 257 41787
Games 1633 49 354 299 191 2.00 7343 6432 165 18312 2618 35 264 199 214 250 16087 13730 156 42635
Health & Wellness 379 100 1726 399 132 0.00 9045 9106 220 18077 632 87 1576 399 157 0.00 20058 18562 258 42260
IM & Social Networking 78 67 513 299 178 2.00 6670 5046 19 18217 152 69 412 1.99 243 3.00 14992 11843 23 41924
Maps & Navigation 140 67 1120 399 189 2.00 7167 5812 639 18126 284 69 1240 999 198 2.00 18382 16066 664 42653
Music & Audio 94 69 451 299 175 150 8132 6653 142 18236 512 81 2.02 099 1.01 0.00 248382 27532 208 42620
News 43 38 336 299 133 050 9271 9018 1165 16151 75 42 231 099 1.75 1.00 17864 15640 1402 41957
Photo & Video 80 101 434 299 236 250 5180 3324 8 18273 423 91 248 199 134 000 22118 24710 16 42644
Productivity 334 87 849 499 237 3.00 6688 5692 124 18315 506 82 621 299 259 3.00 15023 11824 259 42643
Reference & eBooks 4356 89 573 299 014 0.00 13869 14491 1151 18319 11597 77 426 099 012 000 30759 31570 1181 42663
Shopping 22 61 431 299 220 250 6064 4066 676 15878 45 53 268 199 211 250 15896 11866 2585 37814
Sports & Recreation 172 35 631 299 173 1.00 8991 8614 216 18272 254 37 490 299 193 100 19577 16791 954 42651
Themes 4481 34 363 299 1.87 0.00 9326 9601 88 18314 11131 28 311 299 1.69 000 21347 21543 19 42674
Travel 450 70 695 599 055 000 11827 11986 1124 18309 769 79 477 299 066 0.00 25798 26477 558 42671
Utilities 715 69 504 299 215 250 6938 6021 32 18239 1377 66 464 299 231 250 16549 14267 63 42642
Weather 41 76 843 999 228 250 5364 5074 198 13629 60 66 739 599 240 250 13051 10786 311 42045
Mean 734 70 7.07 399 172 147 8140 7449 408 17758 1710 67 572 312 174 117 19611 18296 603 42219
Median 172 69 542 299 1.86 2.00 7552 6622 198 18239 506 73 464 299 1.87 100 19250 16791 259 42635

(b) Samsung
2011-week05 2011-week36
Category Apps Fea- Mean Median Mean Median Mean Median Min Max Apps Fea- Mean Median Mean Median Mean Median Min Max
tures Price Price Rat- Rat- Rank Rank Rank Rank tures Price Price Rat- Rat- Rank Rank Rank Rank
ing ing of of of of ing ing of of of of

Down- Down- Down- Down- Down- Down- Down- Down-

loads loads loads loads loads loads loads loads

E-Book/Education 34 3 1251 3.00 124 000 3924 4497 320 5204 72 67 649 1.00 103 0.00 8502 9116 543 12353
Entertainment 186 54 2.23 125 271 325 3200 3435 0 5185 407 95 1.83 1.00 148 0.00 7677 7951 89 12313
Games 715 98 2.08 1.50 278 350 2719 2677 5 5197 1082 75 170 1.25 201 2.00 8090 9696 3 12355
Handmark 25 0 5.62 3.00 212 0.00 4083 4717 1659 5162 26 11 563 400 038 000 11970 12000 9238 12319
Health/Life 189 58 1.32 1.00 3.02 400 3210 3093 68 5198 254 52 128 1.00 1.88 1.00 9529 11139 23 12368
Music/Video 35 19 1.48 125 164 100 2165 1988 528 4300 74 35 139 125 192 200 7121 8109 138 11785
Navigation 57 59 5.01 125 288 350 2614 2339 45 5012 130 80 1069 3.00 1.68 1.00 8121 9045 139 12044
News/Magazine 9 13 1.67 1.00 250 3.00 3149 3314 1633 4250 12 7 1.50 1.00 225 3.00 9121 9564 1000 12093
Productivity 76 114 4.50 1.50 2.83 350 3046 2924 544 5189 147 87 291 125 216 250 7891 8847 48 12357

Reference 259 59 12,65 1200 145 0.00 4313 4686 141 5207 352 53 1072 6.00 0.73 0.00 9812 10679 558 12371
Social 15 14 4.03 125 283 3.00 2302 2322 481 4784 34 19 246 125 190 2.00 6965 9476 97 12255
Theme 533 0 1.16 125 185 000 3256 3469 47 5110 4041 15 1.07 1.00 125 0.00 6995 7031 0 11326
Utilities 215 96 2.67 1.00 282 350 2924 3058 33 5187 468 93 188 1.00 1.76 0.00 8138 8519 4 12328
Mean 168 42 4.07 216 236 217 3147 3271 423 4999 507 53 381 185 157 1.04 8456 9321 914 12174
Median 67 37 2.45 125 271 3.00 3149 3093 141 5185 139 53 188 125 176 1.00 8121 9116 97 12319

B. Research Questions

As a starting point we ask whether each of the migratory
behaviours we defined theoretically, also exists in practice. If it
does, what is the distribution of features over the subsumption
hierarchy of migratory behaviours. This motivates RQ1:
RQ1. Feature Migration: How do the features distribute
over the different migratory behaviours in the subsump-
tion hierarchy? If we find that our theoretical migratory
behaviours exist in practice, then automatic migratory be-
haviour classification could be used to support developers with
strategic requirements elicitation decisions. Our classification
would then assume a greater practical significance if we
observe important differences in the price, rating or popularity
of different kinds of migratory behaviour. This motivates RQ2:
RQ2. Are there any significant differences in the price, rat-
ing, popularity of features that exhibit different migratory
behaviours? We use a 2-tailed, unpaired Wilcoxon test [18]] to
compare the median values of the price, rating, and popularity
of each of the migratory behaviours. We use the Wilcoxon test
because we are investigating ordinal data and therefore need
a non-parametric statistical test, with fewer assumptions about

the underlying data distribution. The test is 2-tailed because
there is no assumption about which median will be higher, and
it is unpaired, because there are different numbers of features
exhibiting each behaviour. The Null Hypothesis is that there
is no difference in price (respectively rating or popularity)
between categories. In common with most scientific inferential
statistical testing, we set the significance level 95%, so that
we have only a 0.05 probability of committing a Type 1
error (incorrectly rejecting the Null Hypothesis). This choice is
justified by the fact that rejection of the Null Hypothesis would
be a finding that would lead to actionable conclusions. That is,
developers should start to measure and take note of migratory
behaviours in app stores. Therefore, we require relatively
strong evidence to support such findings. We also use the
Benjamini-Hochberg correction [19] to ensure that we retain
only a 0.05 probability of Type 1 error when we perform mul-
tiple statistical tests. If there is a significant difference between
the price, rating or popularity of features that exhibit different
migratory behaviours then we also investigate the statistical
effect size of the difference using the Vargha-Delaney Aqg
metric for effect size [20]. Like the Wilcoxon test, the Vargha-

80

Delaney Ay5 metric makes few assumptions and is suited to
ordinal data such as ours. It is also highly intuitive: for a
given feature attribute (price, rating or popularity), Alg(A, B)
is simply an estimate of the probability that the attribute
value of a randomly chosen feature from migratory behaviour
group A will be higher than that of migratory behaviour
group B. Whereas RQ2 is concerned with differences between
distributions of price, rating, and popularity, RQ3 asks about
difference in the correlation between these attributes:

RQ3. Are there differences in the correlations between
price, rating, and popularity within each form of migratory
behaviour? To answer this question we use both Pearson
[21] and Spearman statistical correlation tests [22]. Karl
Pearson and Charles Spearman were, respectively 18th and
19th century professors (at University College London) who
were interested in measuring correlation. While Pearson first
introduced the measurement of linear correlation [21]], Spear-
man subsequently extended Pearson’s work to include rank-
based correlation [22]. Each statistical measurement reports a
p value. A p value of 1 indicates perfect correlation, while
-1 indicates perfect inverse correlation, and O indicates no
correlation. Values between 0 and 1 (-1) indicate the degree of
correlation (inverse correlation, respectively) present. Different
interpretations can be placed on the p values reported for linear
and rank correlation. However, we may conservatively state
that there is some evidence of a correlation when the absolute
p value is greater than 0.5 and strong evidence when p is
greater than 0.7. We also report the p value which denotes the
probability that a p value is different to zero (no correlation).
Strictly speaking, since our data is measured on an ordinal
scale, findings reported using the Pearson correlation should
be treated with a degree of caution. However, as observed
in Section there are grounds for considering price to be
a ratio scale measurement, so Pearson correlations may be
more intuitively applied in this case (as well as Spearman
rank correlations).

V. RESULTS

RQ1. Feature Migration: According to the definitions given
in Section we augment the Subsumption Hierarchy with
the number of features found in each category (see Figure [3).
As the figure shows, we found that in the BlackBerry store
1,292 features do not migrate and 32 features do and of the 623
Samsung features only 3 migrate. This is an encouraging find-
ing for app store developers: it means that they are sufficiently
few in number that they could be tracked and considered in
some detail. We carefully checked whether these migrations
happened because of app re-categorisation (i.e., apps migrating
from one category to a different one over time). We found
that some apps (i.e., 9 for Blackberry, 11 for Samsung) re-
categorised over the two snapshots we considered, however
none of the feature migrations observed in the present study
is due to app migrations. In general, we found that features
migrate to a category that has similar characteristics (e.g., the
feature [find, location] migrated from Maps & Navigation to
the apparently related Travel category). However, there are

81

All Features
(BB=1324,SS=623)

WM NM
(BB=32,55=3) (BB=1292,5S=620)
(BB=2("’55=2) (BB=12,S8=1) (BB=394,55=236) (BB=898,5S=384)
SE sw

(BB=15,55=2)

(BB=884,SS=380)

Fig. 3. RQ1. Observed Number of Features for each Migratory Behaviour
for BlackBerry (BB) and Samsung (SS) App Stores.

also features that have clearly ‘transferable value’ allowing
them to migrate across category boundaries (e.g., the feature
[latest, news] moved from News to Sport & Recreation). In
both app stores there are many features that die out (68%
in BlackBerry and 62% in Samsung), while about one third
(30% in BlackBerry and 38% in Samsung) are intransitive.
We conjecture that intransitive features are features that are
crucial to a given category. A manual analysis tends to support
this view. For example, the feature [view, gps, status] is
an intransitive feature of the Navigation category, while the
feature [sort, track] is intransitive in the Music/Video category.

The automatic classification of app features to each of the
considered migratory behaviours can support developers to
make strategic decision during requirements elicitation. As
an example, the early identification of the migratory features
may allow them to find undiscovered requirements, while
being aware of the intransitive features in a given category
may support developers in identifying crucial (‘must-have’)
requirements for their apps.

RQ2. Differences in Migratory Behaviours: Figure [4| shows
the boxplots of the price, rating, and rank of downloads values
of the features that have the same migratory behaviours. These
results reveal some interesting differences, particularly with
regard to the price of intransitive features relative to that of
others. In the BlackBerry store these features appear to carry
higher monetary value (a finding of great potential interest to
app developers), whereas, in the Samsung store, intransitive
features appear to have a lower monetary value than those
which die out. In order to investigate these observations
from the box plots more rigorously, we turn to an inferential
statistical analysis of the differences in these sets of features,
and the size of any effects observed. For the BlackBerry store,
the Wilcoxon test revealed a significant difference between the
price of Z and its counterpart in the non-migratory category
WX (p = 0.001, A5 = 0.56 and p = 0.007, A;5 = 0.55,
for mean-based and median-based feature price computation,
respectively). There is also a significant difference between
the price of Z and SX (p < 0.001,A;, = 0.56 and
p = 0.007 ,Alg = (.55, for mean-based and median-based
feature price computation, respectively). For the Samsung
store, we found a statistically significant difference in the

median price values between 7 and WAX': the features that
die out are higher priced than features that remain intransitive
= 0.048,A12 = 0.55). We make all data and analysis
available on the paper’s companion website! to support future
statistical analysis and investigations by others. This data can
also be used to support replication and subsequent compar-
isons from studies of other app stores.

In conclusion, in answer to RQ2, we find that the intransitive
features behave statistically significantly differently (in both
app stores) to the other features. Combined with our more
qualitative finding that these features appear to be germane to
the categories in which they reside, this quantitative statistical
analysis suggests that intransitive features of app stores are an
interesting class of feature in their own right.

RQ3. Correlations among Price, Popularity, and Rating:
Table |I1I) presents the Pearson and Spearman correlations for
the raw data for the BlackBerry and Samsung storeﬂ In both
cases, the correlations analysis is based on scatter plots of each
pair of {Price, Popularity, Rating} values for each feature.

The results reveal a strong inverse correlation between
rating and rank of downloads of the migratory and non-
migratory features in the BlackBerry store (see Table [[TI(a)).
This correlation has also been observed for features as a whole
in previous work [9]]. Moreover, we find a strong correlation
between price and each of rating and popularity (reverse rank
of downloads) for the strongly migratory (SM) BlackBerry
features (Pearson p = —0.74 and p = 0.76, respectively).
It indicates that the more expensive a strongly migratory
feature, the lower its rating and the higher its popularity. Other
correlation coefficients are significant (so there is evidence that
they have at least a 0.95 probability of being non-zero), but
are not nearly as strong.

We also compute the median rating (respectively, rank of
downloads) for all features that share a given price point.
When we do this over all features, we observe a correlation
between the price point and both the median rating and
the median rank of downloads [14]]. We also investigate
whether this correlation is observed for each of the migratory
behaviours. Table reports the results. The significant
correlation observations provide further evidence that there
is price sensitivity for BlackBerry’s migratory features (the
observation that higher prices correlate to lower popularity
is even stronger for them). It also provides further evidence
for the potential attractiveness to developers of the intransitive
features: there appears to be notably less price sensitivity to
these features. That is, the inverse correlation between price
and both rating and popularity is notably weaker for the
intransitive features compared to all features and to the other
features, which either tend to die out or migrate.

! We only report the correlation coefficient (p value) where the p value
indicates that the correlation coefficient is reliable (i.e., we have evidence
that it is significantly different to zero). Where the p > 0.05 we leave the
entry blank, since there are insufficiently data points to allow us to draw
reliable conclusions about correlations. A missing row indicates that there are
not enough data points to conduct the test.

82

TABLE IV

RQ3. PRICE POINT CORRELATIONS.
Pearson and Spearman correlation values for median (R)ating and Rank of

(D)ownloads for each price point. Only significant correlation values are

T
reporte (a) BlackBerry
Migratory Pearson Spearman
Behaviour PR PD PR PD
NM -0.57 -0.66 -0.67 -0.62
WX -0.51 -0.62 -0.60 -0.64
Sx -0.51 -0.62 -0.60 -0.64
T -049 -0.52 -0.51 -0.40
WM -0.75 0.68 -0.73
SM -0.88
WE
SE -0.75
(b) Samsung
Migratory Pearson Spearman
Behaviour PR PD PR PD
NM -0.53 0.70 0.78
WX -0.59 0.75 -040 0.77
Sx -0.59 0.75 -0.40 0.77
T -0.44 0.64 0.74

Turning to the correlation results for Samsung (Table [[II(b)),
we observe a strong positive correlation (Pearson p = 0.70 and
p = 0.71) between price and rank of download (mean and
median values) in features that face weak (JWAX') and strong
(SX) extinction. This reveals that the higher price the higher
rank of download (i.e., the less popular) for features that go
extinct. We also observe a mild negative correlation between
median price and rating for WA’ (Pearson p = —0.60) and SX
(Pearson p = —0.61) features, respectively, i.e., the higher the
prices the lower the rating (and vice versa). The correlation
tests are also performed at price points for each migratory class
(see Table[[V(D)). The results confirm the positive correlations
between price and rank of download for WA and SX features
(Pearson p = 0.75, Spearman p = 0.77).

Overall, in both app stores, we therefore found interesting
differences between the behaviours of features that follow
different lifecycles. This provides further empirical evidence to
suggest that the formal definition of these behaviours and their
empirical study may yield insights. Since the correlations we
studied involve relationships between price, customer rating,
and popularity, it is also reasonable to assume that any
such insights may prove useful to developers. Indeed, app
developers are fortunate because, unlike the developers of
more traditional applications, they have this information (and
the analysis opportunities it offers) available for both their own
apps and those of their competitors.

VI. THREATS TO VALIDITY

Threats to External Validity: Though our feature migration
theory is general, our empirical results are specific to the stores
considered. More work would be needed to investigate whether
the findings generalise to other time periods and app stores.
Internal Validity Threat Risk Reduction: The inferential
statistical values and correlations, and all the derived metrics
reported in this paper were independently computed by two
different authors, and cross-checked.

BlackBerry World Samsung Apps

8 4 5 5 5 — 0 0 0 0
T L4 o o o o
84 o o o 4 ° 0
g1 8 ° 0 e -§m_TTT§
f- D_ Al ' ' ' .
“ g4 8 8 8 @ 4 0 Lo T
iid -10d02
o _
cleessbesd °© B — ¢|| T T T
| T T T T T | |
NM WX SX | WM WE SE SM NM WX SX | WM WE SE SM
(a) Price
Q =
« - T T 7
. 0 _|)) '
e . T . . '
S o o T g o4 1 1 i
£ 7] b g ; - e
-1d0B0Hesssg ° L
T T T T T T T T — T T T T T T T
NM WX SX | WM WE SE SM NM WX SX | WM WE SE SM
(b) Price - zoomed in and with outliers removed
o1 T T T T T T I
<4 E D T e T s T e Y e -
2 o M A e T 2 o- 5
ﬁ ﬂ H ﬁ H a _ Q
T N c o
Ct 7T T T 77T B e L e B By
NM WX SX | WM WE SE SM NM WX SX | WM WE SE SM
(c) Rating
o O e e - T] 1 7 N N T
T 9 : , , | v o ! ! ! i
§ 81 ¢ 0 © S Sdmmr
c - ! ! ! L L c <
% 4 : : i , | T E N ~ H H
' ' - L o
S H & e 5 £ =
8 El ! < « N —_
[«) ' T ' C — ' ' ' '
g I g A A
S N T i
T T T T T T T | | T T T T T T T
NM WX SX | WM WE SE SM NM WX SX | WM WE SE SM

(d) Popularity (Rank of Downloads)

Fig. 4. RQ2: Boxplots of Price, Rating, and Popularity (Rank of Downloads) for all behaviours in the BlackBerry World (left side) and Samsung Apps (right
side) stores. The first four boxplots of each rectangle of eight are non-migratory, while the second four are migratory. A higher Rank of Downloads indicates
lower popularity. It is interesting to note that in the BlackBerry store the migratory features are lower rated, cheaper, and less popular, yet they colonise new
categories. Most striking of all, the strongly migratory features which carry most transferable value, spreading through the app store, are also the cheapest,
least popular, and lowest ranked features. Also, importantly for app developers, the intransitive features carry the highest monetary value; notably higher than
either those features that migrate or those that die out. We observed also in the Samsung store that the migratory features are cheaper and lower rated than
the non-migratory ones, however, differently from BlackBerry, they are more popular. It is also interesting to note that among the non-migratory behaviours,
the intransitive features are cheaper and higher rated than those that die out, despite exhibiting the same popularity.

83

TABLE III

RQ3. RAW VALUE CORRELATIONS.
Pearson and Spearman correlation values for (P)rice, (R)ating, and Rank of (D)ownloads. Only significant correlation values are reportedﬂ

(a) BlackBerry

Pearson Spearman
Migratory Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median
Behaviour PR PR PD PD RD RD PR PR PD PD RD RD
NM -0.30 0.30 0.34 0.34 -0.80 -0.81 -0.19 -0.20 0.21 0.20 -0.79 -0.77
WX -0.31 -0.31 0.36 0.35 -0.78 -0.79 -0.19 -0.20 0.22 0.20 -0.77 -0.75
Sx -0.31 -0.31 0.35 0.35 -0.78 0.79 -0.18 -0.18 0.21 0.21 -0.77 -0.77
A -0.26 -0.27 0.30 0.32 -0.84 -0.85 -0.18 -0.17 0.19 0.20 -0.83 -0.80
WM -0.80 -0.74 -0.83 -0.79
SM -0.74 0.76 0.77 -0.82 -0.65 -0.79 -0.61 0.66 0.51 -0.85 -0.80
WE -0.84 -0.86 -0.84 -0.84
SE -0.64 -0.69 -0.76 -0.72
(b) Samsung
Pearson Spearman
Migratory Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median
Behaviour PR PR PD PD RD RD PR PR PD PD RD RD
NM -0.47 -0.57 0.65 0.65 -0.44 -0.45 -0.50 -0.39 0.66 0.61 -0.46 -0.37
4% -0.51 -0.60 0.70 0.71 -0.44 -0.46 -0.51 -0.46 0.66 0.66 -0.46 -0.37
Sx -0.51 -0.61 0.70 0.71 -0.44 -0.46 -0.50 -0.46 0.66 0.66 -0.46 -0.37
7 -0.37 -0.48 0.56 0.56 -0.45 -0.44 -0.34 -0.27 0.58 0.50 -0.48 -0.37

Threats to Construct Validity: We extract feature claims
reported by app store developers and cannot be sure that these
necessarily correspond to requirements (nor even features
actually implemented in the code itself, since developers do
not always deliver on their claims [23]]). We mitigate this threat
by extracting the features from a large and varied collection of
app descriptions, and clarifying that it is clearly a constraint of
our method (and of most NLP-based approaches [10]). Nev-
ertheless, we believe that developers’ technical claims about
their apps are inherently interesting to requirement engineers.
That is, our results show that, however we view them, the
developer claims we extract have interesting properties in real
world app stores.

VII. RELATED AND FUTURE WORK

The goal of App Store Analysis is to combine technical
data with non-technical data such as user and business data
to understand their inter-relationships [9]. This section briefly
summarises this area, its relationship to our findings, and the
possible avenues for future work it opens up.

Recent studies have highlighted how the use of new plat-
forms, such as app stores, mobile phones, and social network
increases developers’ opportunities to connect with users and
listen to their needs [24][25][26[[27]]. User feedback post-
release is a rich source of information for engineers involved
in requirements elicitation [3][28][29][30] and many authors
have focused their analysis on this aspect of app stores (e.g.,
[0S 1ens i3 Li3201330341[351]). Iacob and Harrison [31] re-
port that 23.3% of the reviews they studied were found to
be feature requests, further underscoring the importance of
features in app store ecosystems. One natural extension of our
work would be to investigate the interplay between feature
migration and user requests. Pagano and Maalej [6] also found
that review feedback was correlated with higher ratings and
that most reviews appear very soon after a new version of
an app is released. This offers the hope that developers could
react to feature requests, perhaps particularly targeting likely
migratory features in a timely fashion.

We extract features from the descriptions of apps uploaded
to the app store by developers. Therefore, when we speak of
a ‘feature’, we are speaking about a claimed feature; a feature
that the developers claim to offer in their app description.
Other authors have studied other features, in various forms,
which exist in the code itself and also the relationship between
feature claims in descriptions and features found in apps
[23]136]. For example, Gorla et al. [36] used API calls to
detect aberrant or otherwise suspicious behaviour. Pandita et
al. [23]] compared the permissions requested by the app and the
app description, thereby identifying suspicious apps. Future
work could examine the way these kinds of features migrate
through app stores, and whether there is a relationship between
migrations of claims and migrations of code.

In order for us to capture feature movement (which we
call migration), we need to consider the status of an app
store at different snapshots, taken at different times during its
evolution. To the best of our knowledge no previous work has
considered any form of analysis over more than one ‘snapshot’
of the app store state. However, we believe that future work
may find many other possible applications and implications
for such ‘longitudinal’ studies of app stores over periods of
time. Future work might also consider extending our feature
migration theory to other kinds of software system, such as
software product lines, for which the relationship between
products and features is known to be important [37].

VIII. CONCLUSION

We have introduced a theory of feature life cycles and
empirically investigated the migratory behaviour of 4,053
non-free features mined from two App Stores (Samsung and
BlackBerry). The results showed that the classification of
app features according to our migratory behaviour theory can
support developers to track trends and to identify user-relevant
requirements that may otherwise be missed. We found that
features generally migrate to a category that has similar char-
acteristics, however there are also a few features that migrate
to apparently non-related categories. The early identification

84

of these features may allow developers to find undiscovered
requirements. We found also evidence that, in both app stores,
approximately one third of all features are intransitive; they
neither migrate nor do they die out over the period studied.
Being aware of which are the intransitive features in a given
category may support developers in identifying crucial (‘must-
have’) requirements for their apps. Our statistical analysis
revealed also that these intransitive features have significantly
different behaviours, suggesting they may denote an interesting
class of features in their own right. These differences have
an intrinsic interest for researchers, since they may help to
better understand the lifecycles of app store features. Since
the differences we observe in practice relate to commercially
sensitive attributes such as price, rating, and popularity, we
also believe they may be valuable to app developers.

ACKNOWLEDGEMENT

Thanks to Jane Cleland-Huang for her insightful comments
on an earlier draft of this paper. The research is funded by the
EPRSC CREST Platform Grant (EP/G060525) and DAASE
programme grant (EP/JO17515).

REFERENCES

[1] C. Alves, G. Ramalho, and A. Damasceno, “Challenges in requirements
engineering for mobile games development: The meantime case study,”
in IEEE International Requirements Engineering Conference, 2007, pp.
275-280.

A. Sutcliffe and P. Sawyer, “Requirements elicitation: Towards the
unknown unknowns,” in IEEE International Requirements Engineering
Conference, 2013, pp. 92-104.

D. Pagano and B. Briigge, “User involvement in software evolution
practice: A case study,” in International Conference on Software En-
gineering, 2013, pp. 953-962.

L. Galvis Carreno and K. Winbladh, “Analysis of user comments:
An approach for software requirements evolution,” in International
Conference on Software Engineering, 2013, pp. 582-591.

E. Guzman and W. Maalej, “How do users like this feature? A fine
grained sentiment analysis of app reviews,” in International Conference
on Requirements Engineering, 2014, pp. 153-162.

D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in IEEE International Requirements Engineering Conference,
2013, pp. 125-134.

A.J. Ko, M. J. Lee, V. Ferrari, S. Ip, and C. Tran, “A case study of
post-deployment user feedback triage,” in Int. Workshop on Cooperative
and Human Aspects of Software Engineering, 2011, pp. 1-8.

B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in International Conference on Knowledge Discovery and Data Mining,
2013, pp. 1276-1284.

M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis:
MSR for App Stores,” in IEEE Working Conference on Mining Software
Repositories, 2012, pp. 108-111.

H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhorli, “On-demand feature recommen-
dations derived from mining public product descriptions,” in Interna-
tional Conference on Software Engineering, 2011, pp. 181-190.

J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang,
and P. Heymans, “Feature model extraction from large collections of

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

informal product descriptions,” in Joint Meeting on Foundations of

Software Engineering, 2013, pp. 290-300.

N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang, and
B. Mobasher, “Supporting domain analysis through mining and recom-
mending features from online product listings,” IEEE Transactions on
Software Engineering, vol. 39, no. 12, pp. 1736-1752, 2013.

A. Massey, J. Eisenstein, A. Anton, and P. Swire, “Automated text
mining for requirements analysis of policy documents,” in IEEE In-
ternational Requirements Engineering Conference, 2013, pp. 4-13.

[12]

[13]

85

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

(37]

A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang,
“App store analysis: Mining app stores for relationships between cus-
tomer, business and technical characteristics,” Tech. Rep. RN/14/10.

E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” in Proc.
of TeachNLP’02, 2002, pp. 69-72.

M. J. Shepperd, Foundations of software measurement.
199s.

W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app
sampling problem for app store mining,” in Working Conference on
Mining Software Repositories, 2015, pp. 123-133.

F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80-83, 1945.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the
Royal statistical Society (Series B), vol. 57, no. 1, pp. 289-300, 1995.
A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in International
Conference on Software Engineering, 2011, pp. 1-10.

K. Pearson, “Notes on regression and inheritance in the case of two
parents,” Proc. of the Royal Society of London, vol. 58, pp. 240-242,
June 1895.

C. E. Spearman, “The proof and measurement of association between
two things,” The American Journal of Psychology, vol. 15, no. 1, pp.
72-101, 1904.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards
automating risk assessment of mobile applications,” in USENIX Security
Symposium, 2013.

N. Seyff, F. Graf, and N. Maiden, “Using mobile re tools to give
end-users their own voice,” in International Requirements Engineering
Conference, 2010, pp. 37-46.

N. Seyff, G. Ollmann, and M. Bortenschlager, “Appecho: a user-driven,
in situ feedback approach for mobile platforms and applications,” in
International Conference on Mobile Software Engineering and Systems,
2014, pp. 99-108.

S. L. Lim and A. Finkelstein, “Stakerare: Using social networks and
collaborative filtering for large-scale requirements elicitation,” IEEE
Trans. Softw. Eng., vol. 38, no. 3, pp. 707-735, 2012.

N. Seyff, I. Todoran, K. Caluser, L. Singer, and M. Glinz, “Using popular
social network sites to support requirements elicitation, prioritization and
negotiation,” J. Internet Services and Applications, vol. 6, no. 1, p. 7,
2015.

I. Morales-Ramirez, A. Perini, and R. S. S. Guizzardi, “Providing
foundation for user feedback concepts by extending a communication
ontology,” in International Conference on Conceptual Modeling, 2014,
pp. 305-312.

M. Bano and D. Zowghi, “A systematic review on the relationship be-
tween user involvement and system success,” Information and Software
Technology, vol. 58, no. 0, pp. 148 — 169, 2015.

M. Bano, “Aligning services and requirements with user feedback,” in
IEEE International Requirements Engineering Conference, 2014, pp.
473-478.

C. Jacob and R. Harrison, “Retrieving and analyzing mobile app
feature requests from online reviews,” in Working Conference on Mining
Software Repositories, 2013.

H. Khalid, “On identifying user complaints of iOS apps,” in Interna-
tional Conference on Software Engineering, 2013, pp. 1474-1476.

H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do mobile
app users complain about?” Software, IEEE, vol. 32, no. 3, pp. 70-77,
May 2015.

B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in International Conference on Knowledge Discovery and Data Mining,
2013, pp. 1276-1284.

N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-miner: Min-
ing informative reviews for developers from mobile app marketplace,” in
International Conference on Software Engineering, 2014, pp. 767-778.
A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in International Conference on Software
Engineering, 2014, pp. 1025-1035.

J. Rubin and M. Chechik, “A framework for managing cloned product
variants,” in International Conference on Software Engineering, 2013,
pp. 1233-1236.

Prentice Hall,

	Introduction
	Background
	A Theory of App Store Feature Lifecycles and Migratory Behaviours
	Empirical Study Design
	Dataset
	Research Questions

	Results
	Threats to Validity
	Related and Future Work
	Conclusion
	References

