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Abstract—Shake Them All is a popular “Wallpaper” appli-
cation exceeding millions of downloads on Google Play. At
installation, this application is given permission to (1) access
the Internet (for updating wallpapers) and (2) use the device
microphone (to change background following noise changes).
With these permissions, the application could silently record user
conversations and upload them remotely. To give more confidence
about how Shake Them All actually processes what it records, it
is necessary to build a precise analysis tool that tracks the flow
of any sensitive data from its source point to any sink, especially
if those are in different components.

Since Android applications may leak private data carelessly or
maliciously, we propose IccTA, a static taint analyzer to detect
privacy leaks among components in Android applications. IccTA
goes beyond state-of-the-art approaches by supporting inter-
component detection. By propagating context information among
components, IccTA improves the precision of the analysis. IccTA
outperforms existing tools on two benchmarks for ICC-leak
detectors: DroidBench and ICC-Bench. Moreover, our approach
detects 534 ICC leaks in 108 apps from MalGenome and 2,395
ICC leaks in 337 apps in a set of 15,000 Google Play apps.

I. INTRODUCTION

Modern mobile operating systems have enhanced usage

experience to allow users to easily install third party software.

With the growing momentum of the Android operating system,

thousands of applications (also called apps) emerge every

day on the official Android market (Google Play) as well

as on some alternative markets. As of May 2013, 48 billion

apps have been installed from the Google Play store, and as

of September 3, 2013, 1 billion Android devices have been

activated [1].

The success of the Android OS in its user base as well as in

its developer base can partly be attributed to its communication

model, named Inter-Component Communication (ICC), which

promotes the development of loosely-coupled applications. By

dividing applications into components that can exchange data

within a single application or even across several applications,

Android encourages software reuse, and thus reduces devel-

oper burden.

Unfortunately, the ICC model, which provides a message

passing mechanism for data exchange among components,

can be misused by malicious apps to threaten user privacy.

Indeed, researchers have shown that Android apps frequently

send users private data outside the device without their prior

consent [49]. Those applications are said to leak private

data. Recently, researchers have investigated ICC methods as

features for vulnerability detection [34], in lieu of permissions

and API calls. However, there is still a lack of a comprehensive

study on the characteristics of the usage of ICCs by Android

malware. Typically, what is the extent of the presence of

privacy leaks in Android malware?

To answer such a question, an Android analysis tool has

to be developed for tracking privacy leaks. Although, most

of the privacy leaks are simple, i.e., easily identifiable as

they operate within a single component, there have recently

been reports of cross-components privacy leaks [44]. Thus,

analyzing components separately is not enough to detect leaks:

it is necessary to perform an inter-component analysis of

applications. Android app analysts could leverage such a tool

to identify malicious apps that leak private data. For the tool

to be useful, it has to be highly precise and minimize the false

positive rate when reporting applications leaking private data.

In this paper, we use a static taint analysis technique to find

privacy leaks, e.g., paths from sensitive data, called sources, to

statements sending the data outside the application or device,

called sinks. A path may be within a single component or cross

multiple components. State-of-the-art approaches using static

analysis to detect privacy leaks on Android apps mainly focus

on detecting intra-component sensitive data leaks. CHEX [33],

for example, uses static analysis to detect component hijacking

vulnerabilities by tracking taints between sensitive sources

and sinks. FlowDroid [7] performs taint analysis within single

components of Android applications but with a better preci-

sion. Most recently, Amandroid [44] has been proposed to

detect ICC-based privacy leaks in Android apps. However,

it does not currently tackle Content Provider, one of

the four Android components. It is also not sensitive to

some complicated ICC methods such as bindService and

startActivityForResult.

Thus, we propose IccTA, an Inter-component communica-

tion Taint Analysis tool, for a sound and precise detection of

ICC links and leaks. Although our approach is generic and can

be used for any data-flow analysis, we focus in this paper on

using IccTA to detect ICC-based privacy leaks. To verify our

approach, we developed 22 apps containing ICC-based privacy

leaks. We have added these applications to DroidBench [2], an



open test suite for evaluating the effectiveness and accuracy

of taint analysis tools specifically for Android apps. The 22

apps cover the top 8 used ICC methods illustrated in Table I.

Besides, we test IccTA on 15,000 real-world apps ran-

domly selected from Google Play market in which we detect

2,395 ICC leaks in 337 apps. We also launch IccTA on

the MalGenome set containing 1260 malware, where IccTA

reports 108 apps with 534 ICC leaks. By comparing the

detecting rate r = # of detected apps
# of tested apps

of the two data sets,

we found that rMalGenome = 8.6% is much higher than

rGoogleP lay = 2.2%. Thus, we can conclude that ICC are

significantly used by malware to leak private data, making

ICC a potential feature for malware detection.

The contributions of this paper are as follows:

• We present the findings of an empirical study on the use

of ICC in Android malware and benign apps.

• We propose a novel methodology to resolve the ICC

problem by directly connecting the discontinuities of

Android apps at the code level.

• We developed IccTA, an open-source tool for inter-

component taint analysis.

• We provide an improved version of DroidBench with 22

new apps for the assessment of tools which detect ICC-

based privacy leaks.

• Finally, we present an assessment of IccTA using i) the

DroidBench and ICC-Bench test suites, ii) 15,000 real-

world Android applications, iii) 1,260 malware apps from

MalGenome.

We make available online our full implementation as an

open source project, along with the extended DroidBench apps

and the scripts to reproduce our experimental results on

https://sites.google.com/site/icctawebpage/

To better mitigate mobile ICC leaks, we also release the

445 problematic apps (337 from Google Play and 108 from

MalGenome) to the research community at the above website.

II. MOTIVATION

To motivate our work, we present an overview of the

Android ICC system highlighting the implications of its design

and implementation choices in II-A. We further perform an

empirical study of how ICCs are used in Android apps, to

expose the difference of usage between malware and benign

apps (cf. Section II-B). Finally, we give a concrete example

to introduce ICC leaks in Section II-C.

A. Android ICC Overview

An Android application is made up of basic units, called

components, described in a special file, the Manifest, included

in the application package. There are four types of compo-

nents: Activities that represent user interfaces and constitute

the visible part of Android applications; Broadcast Receivers

that wait to receive event messages, such as incoming calls or

text messages, from other components or the system; Content

Providers which act as the standard interface to share struc-

tured data between applications; and Services which execute

(compute-intensive) tasks in the background. Android Service

components are particular, as their processing is hidden to

the device user, opening numerous opportunities for malicious

actions.

Android provides specific methods, hereinafter referred to as

ICC methods, for triggering inter-component communications

among any combinations of the above components. ICC meth-

ods take as parameter a special kind of object, called Intent,

which specifies the target component(s) for the message.

All ICC methods1 are called with at least one Intent object

as an argument. To facilitate the use, by some apps, of

existing features provided by other apps, Android allows to

target components by specifying in the Intent an action to

handle. Such Intents are known as implicit Intents. When

an implicit Intent is used, e.g., for Activities, the system

searches in the installed applications and presents the user

with a list of applications capable of handling the action

(e.g., choose a browser to open a url). These Intents may

also specify categories, a mimetype and data for the target

components. In order to be selected for receiving the implicit

Intents, applications containing the target components need to

specify an Intent Filter in their manifest file, declaring their

capabilities to process such Intents.

Android, however, offers the possibility for components to

directly interact with each other. One component can thus send

an Intent to another by naming it explicitly. These are known

as explicit Intents.

B. ICC Usage in Android Apps

To the best of our knowledge there have been no empirical

investigation of the usage of ICC in Android apps. Yet, given

the importance of ICC in the Android development model, as

well as its potential correlation with malware functioning as

introduced above, a thorough study on real-world apps can

provide answers to the following important questions:

How often are ICCs used in Android apps? This question will

lead to the investigation of the extent to which each of the

different ICC methods are used in apps, and what types of

components they are targeting.

What kind of Intents are used for ICC in apps? This question

is important to estimate the differences in the instantiations of

implicit Intents and explicit Intents.

Is the usage of ICC different between malware and benign

apps? Investigating this question may open directions for

malware detection research, which seeks reliable app features

to use in machine-learning processes.

Datasets: We attempt to provide answers to the questions

above, using two distinct datasets of over one thousand ap-

plications each.

The first dataset, named MalGenome, includes 1, 023 An-

droid malware samples collected by Zhou et al. [49]. Although

the originally published dataset contains 1, 260 apps, some

of these apps share the same package names, therefore we

consider them as duplicates.
1Except Content Provider related methods such as query or

insert.
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Fig. 1: The comparison between MalGenome and GooglePlay apps. “M” means MalGenome, “G” means GooglePlay, “Ex” means explicit
and “Im” means implicit. (To highlight the difference between median values, we cut off some upper whiskers).

The second dataset, hereafter referred to as GooglePlay, is a

set of 1, 023 Android apps2 randomly selected from the official

Google market.

Results: We now present the findings of our investigation.

1) Prevalence of ICCs in app code: First, we compute the

usage rate of ICC methods. To that end, we parse the app byte

code to count the instances of specific method calls based on

a catalog of ICC method names. This analysis was performed

on all the 1, 023× 2 apps. Table I shows the usage rate of the

ICC method names, separating the top 8 most used, from all

other ICC methods.

TABLE I: The top 8 used ICC methods. When these methods are
overloaded, we consider the one with the most number of calls.

ICC Method # of Calls # of Apps

startActivity 54,334 (56.01%) 1,972 (96.4%)

startActivityForResult 11,118 (11.46%) 1,409 (68.7%)

query 8,191 (8.44%) 1,374 (67.2%)

startService 6,660 (6.86%) 1,597 (78.1%)

sendBroadcast 5,119 (5.28%) 1,035 (50.1%)

insert 2,164 (2.23%) 780 (38.1%)

bindService 1,638 (1.69%) 512 (25.0%)

delete 1,633 (1.69%) 472 (23.1%)

Other ICC Methods 6,155 (6.34%) -

Total 97,012 (100%) -

The # of Calls represents the absolute number of ICC

method calls from the entire two sets. The # of Apps represents

the number of apps using at least once the corresponding

ICC method. 96.4% of the apps in our dataset use the

startActivity ICC method, which accounts for 56.01%

of the total ICC methods calls. startActivity is used

to launch a new Activity component, e.g., to switch from

one user interface window to another. The second most used

ICC method is startActivityForResult which also

launches a new Activity component. In this case however,

the flow goes back to the calling component. Then follows

query, an ICC method used to access content providers.

startService, which appears in 78.1% of the apps, is used

to launch a new Service.

2) Number of Intents: Before computing details in the

number of Intents3 in the code of dataset apps, we compare

the sizes of apps across the MalGenome and GooglePlay sets.

2We choose 1, 023 apps to avoid a class imbalance issue.
3In this paper, we do not distinguish the difference between Intents and

ICC methods since basically an Intent is corresponding to an ICC method.

Fig. 1a represents the boxplot4 of the size of the apps for

both sets. The median value for the MalGenome set is 187

KB whereas the median value is 1195 KB for the GooglePlay

set. We ensure that this difference of median sizes between

the datasets is significantly different by performing a Mann-

Whitney-Wilcoxon (MWW). The resulting p-value confirms

that the difference is significant at a significance level5 at

0.001.

To account for any potential bias that the difference of

app sizes between datasets may introduce, we proceed to

normalize all results according to a unit of dex code size.

A normalized result nR is obtained by applying the formula

nR = iR
⌈bS÷100K⌉ , where iR is the initial result and bS is the

byte code size.

a) Absolute number of Intents: Fig. 1b represents the

boxplot of the normalised numbers of Intents per apps. The

median number of Intents is 5.5 per 100KB per app for the

MalGenome dataset, and 1.9 for the GooglePlay dataset. The

MWW test again shows that this difference is statistically

significant.

Malicious applications manipulate significantly more

Intents than benign apps

b) Number of Intents vs Component types: We further

investigate the difference of number of Intents per app in

the two datasets by comparing the usage of Intents for ICC

exchange with specific types of components. Fig. 1c shows

the boxplot of number of Intents used to launch an Activity

(left two) and a Service (right two). The median values are

respectively 3.50 and 0.50 for the MalGenome dataset, and

1.48 and 0.00 for the GooglePlay dataset.

c) Explicit Intents vs Implicit Intents: Table II provides

comparison data on the proportion of implicit and explicit In-

tents among the overall numbers of Intents. In the MalGenome

set, 27,278 Intents in total are found, where 14,034 (51.4%) are

explicit Intents. In the Google Play set, however, only 40.1%

(22,955 out of 56,213) of the Intents are explicit Intents.

Fig. 1d presents boxplots detailing the normalised number

of implicit and explicit Intents for both Activity and Service.

The median values between the MalGenome dataset and the
4We use the R tool to draw the boxplot. Each boxplot contains five main

horizontal lines. From top to bottom: MAXIMUM (i.e., the greatest value,
excluding outliers), UPPER QUARTILE (25% of data points are above this
line), MEDIAN, LOWER QUARTILE and MINIMUM.

5Given a significance level α = 0.001, if p-value < α, there is one chance
in a thousand that the difference between the datasets is due to a coincidence.



TABLE II: Comparison of the use of Intents in the data sets.
Dataset Activity Service Receiver Total

(expl./impl.) (expl./impl.) (expl./impl.) (expl./impl.)

MalGenome 8803/9569 5204/422 27/3253 14034/13244

Google Play 20018/30461 2715/828 222/1969 22955/ 33258

GooglePlay dataset are close in the case of implicit Intents.

On the other hand, there is a larger difference for explicit

Intents. We further confirm that this difference is statistically

significant via the MWW test, using a significance level of

α = 0.0001.

Malicious applications tend to use more explicit Intents

than benign apps.

This empirical investigation of ICC in malware and benign

apps highlights the importance of ICC in the context of

Android app security management. In particular, the focus of

this study has demonstrated that some Android properties, e.g.,

possibility to explicitly target a component, thus bypassing

user’s choice, are exploited by malicious apps. Such apps can

indeed leak private data across components. After presenting

our approach for detecting leaks that are related to ICC,

we will perform a final experiment to investigate whether

there is a correlation between the number of Intents and the

number of ICC leaks. A positive correlation will thus provide

confirmation that ICC can be explored as a feature for malware

detection.

C. ICC leaks

We define a privacy leak as a path from sensitive data,

called source, to statements sending this data outside the

application or device, called sink. A path may be within a

single component or across multiple components. In this paper,

the sources and sinks we use are provided by SUSI [38].
1 //TelephonyManager telMnger; (default)

2 //SmsManager sms; (default)

3 class Activity1 extends Activity {

4 void onCreate(Bundle state) {

5 Button to2 = (Button) findViewById(to2a);

6 to2.setOnClickListener(new OnClickListener(){

7 void onClick(View v) {

8 String id = telMnger.getDeviceId();

9 Intent i = new

Intent(Activity1.this,Activity2.class);

10 i.putExtra("sensitive", id);

11 Activity1.this.startActivity(i);

12 }});}}

13 class Activity2 extends Activity {

14 void onStart() {

15 Intent i = getIntent();

16 String s = i.getStringExtra("sensitive");

17 sms.sendTextMessage(number,null,s,null,null);

18 }}

Listing 1: A Running Example.
Listing 1 illustrates the concept of ICC leak through a

concrete example. The code snippets present two Activi-

ties: Activity1 and Activity2. Activity1 registers an

anonymous button listener for the to2 button (lines 5-11). An

ICC method startActivity is used by this anonymous

listener. When button to2 is clicked, the onClick method is

executed and the user interface will change to Activity2.

An Intent containing the device ID (lines 15), considered as

sensitive data, is then exchanged between the two components

by first attaching the data to the Intent with the putExtra

method (lines 10) and then by invoking the ICC method

startActivity (lines 11). Note that the Intent is created

by explicitly specifying the target class (Activity2).

In this example, sendTextMessage is systematically

executed when Activity2 is loaded since onStart is in

the execution lifecycle of an Activity. The data retrieved

from the Intent is thus sent as a SMS message to the spec-

ified phone number: there is an ICC leak triggered by button

to2. When to2 is clicked, the device ID is transferred from

Activity1 to Activity2 and then outside the application.

In this paper, we aim to perform static taint analysis for

Android apps to detect such inter-component communication

(ICC) based privacy leaks. In static taint analysis, a leak k

corresponds to a sequence of statements, which starts from

a source s and ends with a sink d. Sources are identified as

they return private data from the user’s point of view into the

application code, while Sinks are identified as they send data

out of the application. An ICC leak is a special leak which

contains, in its statement sequence, at least one ICC method.

Normally, C(s) 6= C(d), where C(s) means the component of

method s. But in some cases, C(s) can equal to C(d). Take

ICC method startActivityForResult as an example,

component C1 can use this method to start a component C2

(in method m1). Once C2 finishes running, C1 runs again (in

method m2) with some result data returned from C2. An ICC

leak may occur as m1 → C2 → m2 but in this situation

C(m1) == C(m2).

III. OUR APPROACH

In this section, we introduce in Section III-A the specificity

of Android apps that makes statically analyzing them difficult.

Then, we present an overview of our tool called IccTA, which

is designed to detect ICC leaks in Section III-B. IccTA uses

a two-step approach: 1) ICC links extraction; 2) Taint flow

analysis for ICC. Sections III-C and III-D detail these two

steps respectively.

A. Static Analysis for Android is Difficult

Despite the fact that Android apps are mainly programmed

in Java, off-the-shelf static taint analysis tools for Java do not

work on Android applications. Static Analyzers for Android

need to be adapted mainly for three reasons.

The first reason is that, as already mentioned, Android ap-

plications are made of components. Communications between

components involve Intent Filter and Intent. The dynamic

resolution done by the Android system to match Intent Filter

and Intent induces a discontinuity in the control-flow of An-

droid applications. This specificity makes static taint analysis

challenging by requiring pre-processing of the code to resolve

links between components. Take Listing 1 as an example,

analysis tools need to be able to find the link from ICC

method startActivity to Activity2 and to be able

to propagate the Intent i in line 11 to method getIntent

in line 15.

The second reason is related to the user-centric nature

of Android applications, in which a user can interact a lot

through the touch screen. The management of user inputs is
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mainly done by handling specific callback methods such as

the onClick (line 7 in Listing 1) method which is called when

the user clicks on a button. Static analysis requires a precise

model that simulates users’ behaviors.

The third and last reason is related to the lifecycle man-

agement of the components. There is no main method as

in a traditional Java program. Instead, the Android system

switches between states of a component’s lifecycle by calling

callback methods such as onStart or onResume. However,

these lifecycle methods are not directly connected in the

code. Modeling the Android system allows to connect callback

methods to the rest of the code.

B. IccTA Overview

Fig. 2 shows the overview of IccTA, our open source tool

to detect ICC leaks. Even if Android apps are implemented

in Java, an app is compiled into Dalvik bytecode instead

of the traditional Java bytecode. In a first step, IccTA uses

Dexpler [11] to transform this Dalvik bytecode into Jimple,

a Soot’s internal representation [28]. Soot is a popular frame-

work to analyze Java based apps. In the second step (arrows

2.∗), IccTA extracts the ICC links, and in step 3, stores them

as well as all the collected data (e.g., ICC call parameters

or Intent Filter values) into a database. Based on the ICC

links, in step 4.1, IccTA modifies the Jimple representation to

directly connect the components to enable data-flow analysis

between components. In step 4.2, by using a modified version

of FlowDroid [7], a high precise intra-component taint analysis

tool for Android apps, IccTA builds a complete control-

flow graph of the whole Android application. This allows

propagating the context (e.g., the value of Intents) between

Android components and yielding a highly precise data-flow

analysis. To the best of our knowledge, this is the first approach

that precisely connects components for data-flow analysis. At

last (step 5), IccTA stores the reported tainted paths (leaks)

into database.

In both steps (3) and (5), we store all the results including

the ICC methods with their attribute values such as URI and

Intent, the target components with their Intent Filter values,

the built ICC links and the reported ICC leaks into a database.

This allows to only analyze an app once, and then reuse the

results from the database.

In the next two sections, we detail the main technical

contributions of IccTA, which lie in steps 2 and 4.

// modifications of Activity1

- Activity1.this.startActivity(i);

+ IpcSC.redirect0(i);

(A)

// creation of a helper class

+class IpcSC {

+ static void redirect0(Intent i) {

+ Activity2 a2 = new Activity2(i);

+ a2.dummyMain();

+ }

+}

(B)

// modifications in Activity2

+public Activity2(Intent i) {

+ this.intent_for_ipc = i;

+}

public Intent getIntent() {

+ return this.intent_for_ipc;

}

+public void dummyMain() {

+ // lifecycle and callbacks

+ // are called here

+}

(C)

Fig. 3: Handling startActivity ICC method.

C. ICC links extraction

In this section, we detail our approach to extract the ICC

links of the analyzed apps. An ICC link l : m → C is used to

link two components in which the source component contains

an ICC method m that holds information (e.g., the class

name for an explicit Intent or the action, category, mimetype,

. . . information for an implicit Intent) to access the target

component C.

As shown in Fig. 2, IccTA uses three steps to extract

the ICC links from an app. In step (2.1), IccTA leverages

Epicc [37] to obtain the ICC methods and their parameters

(e.g., action of Intents). Epicc is a tool, based on Soot and

Heros [13], to identify ICC methods as well as their parameter

values (e.g., action, category). In IccTA, we use IC3 [36],

an advanced tool that implements the idea of Epicc, to also

parse the URIs (e.g., scheme, host) to support Content

Provider related ICC methods (e.g., query) and to fully

support the data field of Intents. In step (2.2), IccTA identifies

all the possible target components by parsing the configuration

file named AndroidManifest of an app to retrieve the

values of the Intent Filters. In some situations, analyzing the

bytecode is also necessary since Broadcast Receiver

can be registered at runtime. In step (2.3), we match ICC

methods with their target components, i.e., the Intents with

Intent Filters, through the rules introduced by the Android

documentation [4].

D. Taint Flow Analysis for ICC

In this section, we detail our instrumentation approach to

perform taint flow analysis for ICC. As detailed in Sec-

tion III-A, there are three types of discontinuities in Android:

(1) ICC methods, (2) lifecycle methods and (3) callback

methods. We first describe how IccTA tackles ICC methods in

Section III-D1. Then, we detail how IccTA resolves lifecycle

and callback methods in Section III-D2.

1) ICC Methods: In step (4.1) of Fig. 2, the Jimple code

is instrumented by IccTA to connect components. This code

modification is required for all ICC methods (listed in Table

I). The main idea of the transformation is to replace an ICC

method call with an instantiation of the target component

with the appropriate Intent. We detail these modifications

for the two most used ICC methods: startActivity and

startActivityForResult. We handle ICC methods for

Services and Broadcast Receivers in a similar way.

StartActivity. Fig. 3 shows the code transfor-

mation done by IccTA for the ICC link between

Activity1 and Activity2 of our running example.

IccTA first creates a helper class named IpcSC (B in Fig. 3)



which acts as a bridge connecting the source and destination

components. Then, the startActivity ICC method is

removed and replaced by a statement calling the generated

helper method (redirect0) (A).

In (C), IccTA generates a constructor method taking an

Intent as parameter, a dummyMain method to call all

related methods of the component (i.e., lifecycle and callback

methods) and overrides the getIntent method. An Intent is

transferred by the Android system from the caller component

to the callee component. We model the behavior of the

Android system by explicitly transferring the Intent to the

destination component using a customized constructor method,

Activity2(Intent i), which takes an Intent as its

parameter and stores the Intent to a newly generated field

intent_for_ipc. The original getIntent method asks

the Android system for the incoming Intent object. The new

getIntent method models the Android system behavior

by returning the Intent object given as parameter to the new

constructor method.

The helper method redirect0 constructs an object of

type Activity2 (the target component) and initializes the

new object with the Intent given as parameter to the

helper method. Then, it calls the dummyMain method of

Activity2.

To resolve the target component, i.e., to automatically infer

what is the type that has to be used in the method redirect0

(in our example, to infer Activity2), IccTA uses the ICC

links stored in step (3) in which not only the explicit Intents

but also the implicit Intents are resolved. Therefore, there is

no difference for IccTA to handle explicit or implicit Intents

based ICCs.

StartActivityForResult. A component C1 can use this

method to start a component C2. Once C2 finishes run-

ning, C1 runs again with some result data returned

from C2. Fig. 4 shows the control-flow mechanism of

startActivityForResult ICC method. There are two

discontinuities: one from (1) to (2), similar to the discontinuity

of the startActivity method, and the other from (3) to

(4).

The startActivityForResult ICC method has a

more complex semantic compared to common ICC methods

that only trigger one-way communication between components

(e.g., startActivity). Fig. 5 shows how the code is

instrumented to handle the startActivityForResult

method for Fig. 4. To stay consistent with common ICC

methods, we do not instrument the finish method of C2

to call onActivityResult method. Instead, we generate a

field intent_for_ar to store the Intent which will be trans-

ferred back to C1. The Intent that will be transferred back is

set by the setResult method. We override the setResult

method to store the value of Intent to intent_for_ar. The

helper method IpcSC.redirect0 does two modifications

to link these two components directly. First, it calls the

dummyMain method of the destination component. Then,

it calls the onActivityResult method of the source

component.

- act.startActivityForResult(i);

+ IpcSC.redirect0(act, i);
(A)

void setResult(Intent i) {

+ this.intent_for_ar = i;

}

+public Intent getIntentFAR() {

+ return this.intent_for_ar;

+}

(C)

+class IpcSC {

+ static void redirect0(C1 c1,

+ Intent i){

+ C2 c2 = new C2(i);

+ c2.dummyMain();

+ Intent retI = c2.getIntentFAR();

+ c1.onActivityResult(retI);

+ }

+}

(B)

Fig. 5: Handing the startActivityForResult ICC method.
(A) and (C) represents the modified code of C1 and C2 respectively.
(B) is the glue code connecting C1 and C2. Some method parameters
are not represented to simplify the code.

Android
System

C1 Entry Point

startActivityForResult

onActivityResult

C2 Entry Point

setResult

finish

C1 C2

(4) (3)

(2)

(1)

Fig. 4: The control-flow of startActivityForResult.

2) Lifecycle and Callback Methods: One challenge when

analyzing Android applications is to tackle the callback meth-

ods and the lifecycle methods of components. An introduction

about lifycycle and callback methods can be found in [30].

There is no direct call among those methods in the code of

applications since the Android system handles lifecycles and

callbacks. For callback methods, we need to take care of not

only the methods triggered by the User Interface (UI) events

(e.g., onClick) but also callbacks triggered by Java or the

Android system (e.g., the onCreate method). In Android,

every component has its own lifecycle methods. To solve this

problem, IccTA generates a dummyMain method for each

component in which we model all the methods mentioned

above so that our CFG based approach is aware of them. Note

that FlowDroid also generates a dummyMain method, but it

is generated for the whole app instead of for each component

like we do.

IV. EVALUATION

Our evaluation addresses the following research questions:

RQ1 How does IccTA compare with existing tools?

RQ2 Can IccTA find ICC leaks in real-world apps?

RQ3 What is the runtime performance of IccTA?

All the experiments discussed in this section are performed

on a Core i7 CPU running a Java VM with 8GB of heap size.

A. RQ1: Comparison With Existing Tools

In this research question, we compare IccTA with four

existing tools: FlowDroid [7], IBM AppScan Source 9.0 [3],

DidFail [27] and Amandroid [44]. FlowDroid is a state-of-the-

art open-source tool for intra-component static taint analysis,

AppScan Source is a commercial tool released by IBM, while

DidFail and Amandroid are two recent state-of-the-art tools

for detecting Android ICC leaks. All the tools are able to

directly analyze Android bytecode except AppScan Source,

which is only able to analyze the source code of the apps.

Unfortunately, we were unable to compare IccTA with other



static taint analysis tools as either they fail to report any leaks

(e.g., SCanDroid [21]) or their authors did not make them

available (e.g., SEFA [45]).

1) Experimental Setup: We assess the efficacy of all afore-

mentioned tools by running them against about 30 test cases,

for ICC leaks, from two benchmarks: DroidBench and ICC-

Bench.

DroidBench. DroidBench is a set of hand crafted Android

applications for which all leaks are known in advance. These

leaks are used as ground truth to evaluate how well static

and dynamic security tools find data leaks. DroidBench ver-

sion 1.2 contains 64 different test cases with different pri-

vacy leaks. However, all the leaks in DroidBench are intra-

component privacy leaks. Thus, we developed 22 test cases

to extend DroidBench with ICC leaks. The new set of test

cases covers each of the top 8 ICC methods in Table I.

Among the 22 new test case applications, we included four

(startActivity{4,5,6,7}) that do not contain any pri-

vacy leaks and thus will help detect false alarm rates of

analysis tools. Finally, for each test case application we add

an unreachable component containing a sink. These unreach-

able components are used to flag tools that do not properly

construct links between components.

ICC-Bench. ICC-Bench is another set of apps introduced by

Amandroid [44]. It contains 9 test case applications, where one

of them uses explicit Intents, 6 of them use implicit Intents and

the remaining two use dynamic techniques to register the target

component. However, each of the test case applications indeed

contain one ICC leak and do not contain any unreachable

component as DroidBench does. Because the source code

of apps in the ICC-Bench were not available, we could not

evaluate AppScan on this benchmark.

2) ICC Data Leak Test: Table III presents the results for

comparing how related tools perform in the detection of ICC

leaks. All 31 (22 added to DroidBench + 9 from ICC-Bench)

test cases, and the corresponding detection outcome for the

tools are listed in this table.

FlowDroid. Because FlowDroid has already been evaluated

on the first version of DroidBench [7], we present in table III

its test results for the newly added 22 test cases which

are dedicated to ICC leaks. Although, as mentioned earlier,

FlowDroid was initially proposed to detect leaks in single

Android components, we can use FlowDroid in a way that

it computes paths for all individual components and then

combines all these paths together (whether there is a real

link or not). Thus, we expect FlowDroid to detect most of

the leaks, although with false positives. Results of Table III

confirm this, since FlowDroid shows a high recall (70.0%)

and a low precision (27.4%). Furthermore, FlowDroid misses

three more leaks than IccTA in bindService{2,3,4}.

After investigation, we discovered that this is due to the fact

that FlowDroid does not consider some callback methods for

service components.

AppScan Source 9.0. AppScan requires a lot of manual initial-

ization work since it has no default sources/sinks configuration

file and is unable to analyze Android applications without

specifying the entry points of every component. We define

the getDeviceId and log methods, which we always use

in DroidBench for ICC leaks, as source and sink, respectively.

We also add all components’ entry point methods (such as

onCreate for Activities) as callback methods so AppScan

knows where to start the analysis. AppScan is natively un-

able to detect inter-component data-flows and only detects

intra-component flows. AppScan has the same drawbacks as

FlowDroid and should have a high recall and low precision

on DroidBench. We use an additional script to combine the

flows between components. As expected, AppScan’s recall is

high (56.5%) and its precision is low (21.0%). Compared

to FlowDroid, AppScan does worse. Indeed, AppScan does

not correctly handle startActivityForResult and thus

misses leaks going through methods receiving results from the

called Activities in startActivityForResult{2,3,4}
test cases.

DidFail. Since DidFail does not handle explicit ICC, it fails

to report leaks for test cases that use explicit Intents between

components. For implicit ICC, it is able to report all the leaks

for test cases Implicit{1,2,3,4,5,6} even when those

implicit ICCs use advanced features like mimetype or data.

However, DidFail fails on case startActivity{4,5} test

cases indicate that DidFail is not sensitive on mimetype

and data. Our assumption is that DidFail uses an over-

approximation approach to build implicit ICC links. As long

as action and category are matched, an ICC link is con-

structed. Indeed, startActivity{4,5} use mimetype

or data, but do not contain any real ICC link. Because

DidFail currently only focuses on Activity, it fails to

report any leak for the Service, Broadcast Receiver

(dynamically registered or not) and Content Provider

test cases.

Amandroid. Amandroid is the most recent state-of-the-art

tool that is able to detect ICC leaks. Overall, for the 31

test cases, Amandroid reaches a precision of 78.9% (15 true

positives, 4 false positives) and a recall of 51.7% (14 missed

leaks). Three of the missed leaks and two of the false alarmed

leaks are caused by startActivityForResult, where

Amandroid is not able to combine setResult method to

onActivityResult method. The startService2 test

case uses IntentService instead of Service which is

used by test case startService1 to implement the service.

Amandroid is able to report a leak on startService1 but

fails to report a leak on startService2. This indicates that

it does not completely model Service’s lifecycles. When

the callback method changes from onStartCommand to

onHandleIntent, Amandroid is not able to deal with it

anymore. Eight other missed leaks indicate that Amandroid

currently does not handle the bindService method and

Content Provider components. Amandroid reports two

false positives for startActivity{6,7}, which indicates

that it is not able to distinguish the extra keys of an In-

tent. Indeed, startActivity{6,7} do not contain any



leaks because they use different extra keys for the trans-

ferred Intent. Finally, Amandroid misses a leak on test case

DynRegister2 because DynRegister2 uses string op-

erations (e.g., StringBuilder Objects to contact multiple

strings) which Amandroid cannot parse.

IccTA. Our tool, IccTA, also misses a leak on case

DynRegister2 like Amandroid, because, currently, it can-

not parse complicated string operations as well. The same

reason causes IccTA to yield a false positive on case

startActivity7, where one extra key is built through

complicated string operations. The current version of IccTA

performs a simple string analysis to distinguish the extra keys

of an Intent between one another.

IccTA outperforms both the commercial and academic

tools by achieving a precision of 96.6% and a recall of

96.6% on DroidBench and ICC-Bench.

B. RQ2: Experimental Results on Real-World Apps

To evaluate our approach, we launch IccTA on two Android

app sets: 1) MalGenome which contains 1260 Malware apps

and 2) from GooglePlay, with 15,000 randomly selected apps.

For MalGenome, IccTA reports 108 apps (rMalGenome =
8.7%) containing at least one ICC leak, with a total

of 534 leaks. And for GooglePlay, IccTA detects 337

apps (rGoogleP lay = 2.2%) with 2,395 ICC leaks. Since

rMalGenome is significantly higher than rGoogleP lay , we can

conclude that malware indeed use ICC to leak private data. We

further studied the correlations between the number of Intents

and the number of detected ICC leaks for the two data sets.

In this study, only apps that contain ICC leaks are considered.

Interestingly, our results show that there is no correlation for

GooglePlay apps. However, there exists a positive correlation

for MalGenome. The Spearman’s rho for MalGenome yielded

the value 0.42 (p-value < 0.001), suggesting that the malware

do use ICC to leak private data.

In total, IccTA detects 445 (108 + 337) apps from the

MalGenome and GooglePlay sets. We summarize the most

frequently used source methods and sink categories (Java

classes) from those apps in Table IV. The most used source

method is getLongitude: it is used 427 times. The most

used sink category is SharedPreferences: it is used 1188

times. The reason why we study sink category instead of sink

methods is that there are a lot of sink methods belonging to

a same sink category (e.g., Log sink category includes eight

sink methods which save private data to disk).

We further studied the < sourceMethod, sinkCategory >

pairs of the detected leaks. We found that the most frequently

used pair is < getLongitude, SharedPreferences >,

which happened 208 times. For example, in MalGenome,

app com.evilsunflower.farmer obtains its longitude in

class SetPreferences and transfers it into component

PushService, in which the longitude is leaked. It

also frequently happened in GooglePlay such as in app

infire.beautyleg.sexy.girls and ro.an.moneymanagerfree.

Now, we give one case study to describe the detail of a

leak. com.wanpu.shuijinddp (version 11) is an app in which

TABLE IV: The top 5 used source methods and sink categories
Method/Type Counts(#) Detail

Source Methods
getLongitude 427 get longitude
getLatitude 302 get latitude
getDeviceId 289 get IMEI or ESN
getLastKnownLocation 141 get location
getLine1Number 71 get phone no. of line 1

Sink Categories
SharedPreferences 1188 putInt, putString
HTTP 665 execute
Log 301 error or warn
File 38 write(string)
Message 15 sendTextMessage

an ICC leak has been reported by IccTA. It takes the device id

(we consider the device id as sensitive data) as an unique user

id to communicate with a remote server6 via HTTP. It first

reads the device id and stores the id to a private field in class

com.waps.AppConnect. Then, method showOffers of

class AppConnect transfers the device id to component

OffersWebView in which the device id has been sent to

a remote server through a HTTP parameter. In this case, the

device id has been leaked to a specified remote server through

an ICC. Besides, the device id may be captured by hackers

since it only uses HTTP instead of HTTPS to communicate

with the remote server.

Finally, we investigated the total reported leaks and we

found that 1812 out of 2929 (61.9%) leaks are leaked through

Service components. These findings are interesting since

using ICC makes leak detection difficult for analysis tools,

while using Services hides those leaks to the user. Indeed

Service components are running in the background with no

interaction with the user (contrary to Activity components).

We were able to find ICC leaks in a large set of real-

world apps. Correlation studies have further revealed

that malware are indeed using ICC to leak private data.

C. RQ3: Runtime Performance

We present the runtime performance analysis of FlowDroid,

Amandroid and IccTA in Fig. 6. We randomly selected 50 apps

from our Googleplay set for our study. Among those, only

18 apps have been successfully analyzed by all three tools

altogether.

First, we compare the performance between FlowDroid and

IccTA1 to check whether our bytecode instrumentation step

influences the final performance or not. As shown in Fig. 6,

the performance of IccTA1 is almost as good as FlowDroid.

Indeed, an ICC link introduces 50 lines of Jimple code on

average, which is negligible comparing to the total code lines

(e.g., 412,090 lines for 1 megabyte bytecode on average).

Second and finally, we compare the performance between

IccTA2 and Amandroid. In this case, we take into account

the ICC links extraction time for a fair comparison since

Amandroid also builds the ICC links. Fig. 6 shows that the

median values of IccTA and Amandroid are similar. However,

the runtime performance of IccTA2 presents significantly less

variation than Amandroid’s, suggesting that Amandroid is

highly sensitive to different properties (e.g., size) of the app.
6http://app.dwap.com:8000/action/



TABLE III: Test results on DroidBench and ICC-Bench, where multiple circles in one row means multiple leaks expected and an all empty
row means no leaks expected as well as no leaks reported. † indicates the tool crashed on that test case. Because FlowDroid and AppScan
are not able to directly report ICC leaks, we try our best to manually match their results to report ICC leaks. For the rest tools, we only
consider their reported ICC leaks.

⋆ = true positive (correct warning), ⋆ = false positive (false warning), = false negative (missed leak)
Test Case # of C. Unreachable C. Explicit ICC FlowDroid AppScan DidFail Amandroid IccTA

DroidBench
startActivity1 3 T T ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

startActivity2 4 T T ⋆ (4 ⋆ ) ⋆ (4 ⋆ ) ⋆ ⋆

startActivity3 6 T T ⋆ (32 ⋆ ) ⋆ (32 ⋆ ) ⋆ ⋆

startActivity4 3 T F ⋆ ⋆ ⋆ ⋆ ⋆

startActivity5 3 T F ⋆ ⋆ ⋆ ⋆ ⋆

startActivity6 3 T T ⋆ ⋆ ⋆ ⋆ ⋆

startActivity7 3 T T ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

startActivityForResult1 3 T T ⋆ ⋆ ⋆ ⋆

startActivityForResult2 3 T T ⋆ ⋆

startActivityForResult3 3 T T ⋆ ⋆ ⋆ ⋆

startActivityForResult4 3 T T ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

startService1 3 T T ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

startService2 3 T T ⋆ ⋆ ⋆ ⋆ ⋆

bindService1 3 T T ⋆ ⋆ ⋆ ⋆ ⋆

bindService2 3 T T † ⋆

bindService3 3 T T † ⋆

bindService4 3 T T ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

sendBroadcast1 3 T F ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

insert1 3 T F ⋆

delete1 3 T F ⋆

update1 3 T F ⋆

query1 3 T F ⋆

ICC-Bench
Explicit1 2 F T ⋆ - ⋆ ⋆

Implicit1 2 F F ⋆ - ⋆ ⋆ ⋆

Implicit2 2 F F ⋆ - ⋆ ⋆ ⋆

Implicit3 2 F F ⋆ - ⋆ ⋆ ⋆

Implicit4 2 F F ⋆ - ⋆ ⋆ ⋆

Implicit5 3 F F ⋆ ⋆ - ⋆ ⋆ ⋆

Implicit6 2 F F ⋆ - ⋆ ⋆ ⋆

DynRegister1 2 F F - † ⋆ ⋆

DynRegister2 2 F F - †

Sum, Precision, Recall and F1

⋆ , higher is better - - - 20 10 6 15 28
⋆ , lower is better - - - 53 46 2 4 1

, lower is better - - - 9 10 23 14 1
Precision p = ⋆ /( ⋆ + ⋆) - - - 27.4% 17.9% 75% 78.9% 96.6%
Recall r = ⋆ /( ⋆ + ) - - - 70.0% 50.0% 20.7% 51.7% 96.6%
F1-measure 2pr/(p + r) - - - 0.39 0.26 0.32 0.63 0.97
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Fig. 6: The runtime performance comparison among Amandroid,
FlowDroid and IccTA. IccTA1 does not count the ICC links extraction
time while IccTA2 does. All the experiments are performed with the
default options.

V. LIMITATIONS

At the moment, IccTA resolves reflective calls only if

their arguments are string constants. It is also oblivious to

multi-threading. For native calls, IccTA carries the limita-

tion of FlowDroid. Currently, IccTA does not handle some

rarely used ICC methods such as startActivities

and sendOrderedBroadcastAsUser. IccTA cannot

resolve complicated string operations (e.g., by using

StringBuilder) and the string analysis is within a single

method which may cause false alarms. In Android, inter-app

communication (IAC) shares the same mechanism as ICC.

Thus, our approach is also able to detect IAC leaks (cf. [31]),

but in this paper we do not perform experiments on that. We

experienced that IccTA cannot properly analyze some apps

(too much memory consumption or hangs). Running IccTA

on a big server could significantly decrease the failing rate.

VI. RELATED WORK

As far as we know, IccTA is the first approach to seamlessly

connect Android components through code instrumentation in

order to perform ICC based static taint analysis. By using a

code instrumentation technique [6], the state of the context

and data (e.g., an Intent) is transferred between components.

Amandroid [44] performs an ICC analysis to detect ICC

leaks, and has been developed concurrently with IccTA. Aman-

droid needs to build an Inter-component Data Flow Graph

(ICDFG) and an Data Dependence Graph (DDG) to perform

ICC analysis. Since IccTA uses an instrumentation approach,



it does not need to additionally build such assistant graphs.

Amandroid provides a general framework to enable analysts to

build a customized analysis on Android apps. IccTA provides

a source/sink configuration to achieve the same function.

Amandroid is not able to analyze Content Provider

as well as some ICC methods such as bindService and

startActivityForResult. Finally, our instrumentation

approach is more flexible, and enables generating an app with

all components linked at the code level. This app can then be

analyzed by any static analysis tool (e.g., Soot or Wala [5]).

DidFail [27] also leverages FlowDroid and Epicc to de-

tect ICC leaks. Currently, it focuses on ICC leaks between

Activities through implicit Intents. Thus, it will miss

leaks involving explicit Intents and components other than

Activities. Also, it does not handle some parameters for

implicit Intents (such as mimetype and data) and thus

generates false links between components. The consequence

of that is a higher false positive rate.

SCanDroid [21] and SEFA [45] are another two tools

that perform ICC analysis. However, neither of them keeps

the context between components and thus are less precise

than IccTA by design. ComDroid [14] and Epicc [37] are

two tools that tackle the ICC problem, but mainly focus on

ICC vulnerabilities and do not taint data. CHEX [33] is a

tool to detect component hijacking vulnerabilities in Android

applications by tracking taints between sensitive sources and

externally accessible interfaces. However, it is limited to

at most 1-object-sensitivity which leads to imprecision in

practice. PCLeaks [29] performs data-flow analysis to detect

potential component leaks, which not only includes compo-

nent hijacking vulnerabilities, but also component launch (or

injection) vulnerabilities. ContentScope [50] is another tool

that tackles potential component leaks, but it only analyzes

Content Provider components.

Multiple prior works use static analysis to detect intra-

component privacy leaks in Android apps [7], [22], [26], [35],

[47]. AndroidLeaks [22] and LeakMiner [47] state the ability

to handle the Android lifecycle including callback methods,

but the two tools are not context-sensitive which precludes

the precise analysis of many practical scenarios. However,

those tools are not able to detect ICC leaks. AsDroid [25]

and AppIntent [48] are two other tools using static analysis

to detect privacy leaks in Android apps. Both of them try to

analyze if a data leak is a feature of the application or not.

This kind of analysis is out of the scope of this paper.

Multiple prior works investigated privacy leaks on systems

other than Android. PiOS [16] uses program slicing and reach-

ability analysis to detect the possible privacy leaks in iOS apps.

TAJ [43] and Andromeda [42] uses the same taint analysis

technique to identify privacy leaks in web applications.

Except privacy leaks detection, there has been a rich body

of work on other Android security issues [9], [12], [18],

[20], [23], [51] such as energy bugs [15], [32] and SSL

vulnerabilities [19], [41]. Our work can complement their

research by providing a highly precise control-flow graph to

enable them to perform inter-component data-flow analysis

and consequently to get better results.

Other approaches dynamically track the sensitive data to

report security issues. TaintDroid [17] is one of the most

sophisticated dynamic taint tracking system. TaintDroid uses

a modified Dalvik virtual machine to track flows of private

data. CopperDroid [39] is another dynamic testing tool which

observes interactions between Android components and the

Linux system to reconstruct high-level behavior and uses

some special stimulation techniques to exercise the app to

find malicious activities. Several other systems, including

AppFence [24], Aurasium [46], AppGuard [8] and Better-

Permission [10] try to mitigate the privacy leak problem by

dynamically monitoring the tested apps.

However, those dynamic approaches can be fooled by

specifically designed methods to circumvent security track-

ing [40]. Thus, dynamic tracking approaches may miss

some data leaks and yield an under-approximation. On the

other hand, static analysis approaches may yield an over-

approximation because all the application’s code is analyzed

even code that will never be executed at runtime. These

two approaches are complementary when analyzing Android

applications for data leaks.

VII. CONCLUSION

This paper addresses the major challenge of performing

data-flow analysis across multiple components for Android

apps. We have presented IccTA, an open source tool, to

perform ICC based taint analysis. In particular, we demonstrate

that IccTA can detect ICC based privacy leaks by providing a

highly precise control-flow graph through instrumentation of

the code of applications. Unlike previous approaches, IccTA

enables a data-flow analysis between two components and

adequately models the lifecycle and callback methods to detect

ICC based privacy leaks. When running IccTA on DroidBench

and ICC-Bench, it reaches a precision of 96.6% and a recall

of 96.6%. When running IccTA on a set of 1,260 apps of

the MalGenome project, it reports 534 ICC leaks in 108

apps (8.6%). When running IccTA on a set of 15,000 real-

world apps randomly selected from Google Play market, it

detects 2,395 ICC leaks in 337 apps (2.2%). Other existing

privacy detecting tools (e.g., AndroidLeaks) could benefit by

implementing our approach to perform ICC based privacy

leaks detection.
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