
An Entropy Evaluation Approach for Triaging Field Crashes: A Case Study of
Mozilla Firefox

Foutse Khomh1, Brian Chan1, Ying Zou1, Ahmed E. Hassan2

1 Dept. of Elec. and Comp. Engineering, Queen’s University, Kingston, Ontario, Canada
2 School of Computing, Queen’s University, Kingston, Ontario, Canada

E-mail: {foutse.khomh, 2byc, ying.zou}@queensu.ca, ahmed@cs.queensu.ca

Abstract—A crash is an unexpected termination of an
application during normal execution. Crash reports record
stack traces and run-time information once a crash occurs.
A group of similar crash reports represents a crash-type. The
triaging of crash-types is critical to shorten the development
and maintenance process. Crash triaging process decides the
priority of crash-types to be fixed. The decision typically
depends on many factors, such as the impact of the crash-type,
(i.e., its severity), the frequency of occurring, and the effort
required to implement a fix for the crash-type. In this paper,
we propose the use of entropy region graphs to triage crash-
types. An entropy region graph captures the distribution of the
occurrences of crash-types among the users of a system. We
conduct an empirical study on crash reports and bugs, collected
from 10 beta releases of Firefox 4. We show that our proposed
triaging technique enables a better classification of crash-types
than the current triaging used by Firefox teams. Developers
and managers could use such a technique to prioritize crash-
types during triage, to estimate developer workloads, and to
decide which crash-types patches should be included in a next
release.

Keywords-Crash, bug, triaging, entropy region graphs.

I. INTRODUCTION

Software testing is the most widely used approach to
detect bugs in software systems. It plays a central role in
ensuring the quality and the success of a system. Nowadays,
it is common to have built-in automatic crash reporting tools
in software systems to collect crash reports directly from an
end user’s machine. The Windows OS, Internet Explorer, and
Mozilla Firefox are few names that make use of automatic
collection of field crash reports. For example, whenever
Firefox closes unexpectedly, Mozilla Cash Reporter collects
information about the event and sends a detailed crash
report to the Socorro crash report server. The collected crash
reports include a stack trace of the failing thread and other
information about the user’s environment to help developers
replicate and fix the crash. A group of similar crash reports
represents a crash-type. However, the built-in automatic
crash reporting tools often collect a huge number of crash
reports. For example, Firefox receives 2.5 million crash
reports every day [1]. Triaging the collected crash-types is
essential to allow developers and maintainers to focus their
efforts more efficiently. During the triaging of crash-types,

decisions are made about which crash-types should be fixed
and when. These decisions typically depend on many factors,
such as the impact of the crash-type (i.e., its severity), the
crash-type frequency, the effort required to implement a fix
for the crash-type, and the risk of attempting to fix the crash-
type. Currently, Firefox developers triage crash-types based
on the daily frequency of the occurrence of a crash-type. For
the top crash-types (i.e., the crash-type with the maximum
number of crash reports), Firefox developers file bugs in
Bugzilla and link them to the corresponding crash-type in
the Socorro server. Multiple bugs can be filed for a single
crash-type and multiple crash-types can be associated with
the same bug. The severity and priority of bugs are assigned
manually by Mozilla triage teams, and are often modified
later during the fixing process. Because bug classification
depends on the personal judgment of triage team members,
it is a subjective process and often results in resources being
spent on non-essential issues [2]. Moreover, little estimation
is provided to developers about the effort required to fix the
crash-types and the risk of their attempts to fix the crash-
types.

In this paper, we propose the use of crash entropy
values to prioritize crash-types to fix during the triaging.
More specifically, we propose the use of both entropy and
frequency information during the triaging of a crash-type.
The entropy of a crash-type quantifies the distribution of the
occurrence of the crash-type to the users of the system. A
high entropy value for a crash-type means that most users
encountered that crash-type. The priority of such a crash-
type should be raised by developers and quality managers.
Currently, most triage teams sort crash-types based on
frequency values, but do not consider the distribution of
the crash-types among users. For example Firefox triage
teams give an equal importance to the Taskbar tab preview
crash-type (i.e., “mozilla :: widget :: WindowHook ::
Lookup(unsignedint)”) and the hang crash-type (i.e.,
“hang|mozilla :: plugins :: PPluginInstanceParent ::
CallNPPDestroy(short∗)”) which have frequency values
of 17,485 and 17,417 respectively. Yet the impact of the
two crash-types on the users is very different since the
Taskbar tab preview crash-type affected only 7% of users

2011 18th Working Conference on Reverse Engineering

1095-1350/11 $26.00 © 2011 IEEE

DOI 10.1109/WCRE.2011.39

261

while 21% of users experienced the hang crash-type. A good
triaging should assign different levels of importance to the
two crash-types. The use of frequency alone is not enough
to show the full impact of a crash-type on the users of a
system. Moreover, although Firefox triage teams assigned
the same level of priority to the two crash-types, it took
them 10,464 hours to fix the Taskbar tab preview crash-
type compared to only 1,152 hours for the hang crash-type.
This large difference in fixing time could be explained by
the fact that because few users experienced the Taskbar tab
preview crash-type; only limited information was available
for developers to replicate and test the correction. We believe
that the information on the entropy of the two crash-types
would have enabled a better triaging of the crash-types and a
better assessment of the efforts needed to fix the crash-types.

In this paper, we propose a triaging technique based on
the frequency and the entropy of crash-types. We conduct an
empirical study on crash reports and bugs, collected from 10
beta releases of Firefox 4, and show that the new proposed
triaging technique enables a better classification of crash-
types than the current technique used by Firefox teams.

The rest of the paper is organized as follows. Section II
describes the Mozilla crash triaging system, introduces the
concept of crash-type entropy, and presents the proposed
entropy based crash-type triaging approach. Section III de-
scribes the design of our case study and reports its results.
Section IV discusses threats to the validity of our study.
Section V discusses the related literature on triaging and
entropy based analysis. Finally, Section VI concludes the
paper and outlines future work.

II. CRASH-TYPE AND ENTROPY

A. Mozilla Crash Triaging System

Firefox is delivered with a built-in crash reporting tool:
Mozilla Crash Reporter. Whenever Firefox closes unexpect-
edly, Mozilla Crash Reporter collects information about the
event and sends a detailed crash report to the Socorro crash
report server. The crash reports include a stack trace of
the failing thread and other information about the user’s
environment. A stack trace is an ordered set of frames. Each
frame refers to a method signature and provides a link to
the corresponding source code. Source code information is
not always available in the frames; especially when a frame
belongs to a third party binary. Figure 1 illustrates a sample
crash report for Firefox.

Crash reports are sent to the Socorro crash report server
[1]. The Socorro server assigns a unique id to each received
report and groups the similar crash reports together. A group
of similar crash reports is termed as a crash-type. The crash
reports are grouped based on the top method signature of the
stack trace. However, subsequent frames in the stack traces
can vary for different crash reports in a crash-type. Figure
2 illustrates a sample crash-type. For each crash-type, the
Socorro server provides a crash-type summary, a list of crash

Crash Time - OCT 24, 2010 11:20:53
Firefox Install Time – SEP 22, 2010 10:20:15
System Uptime – 1125 seconds
Version- 3.6.13
OS – Windows NT 6.1 2600
CPU – x86
User Comment –
Stack Trace –

Crash Report – e1c1267874640-94324-32423

Frame
0
1
2
3
4
5
6
7

Module

User32.dll
User32.dll
User32.dll
XUI.dll
XUI.dll
Nspr4.dll
XUI.dll

Signature
@0x654789
UserCallWinProcCheckWow
DispatchMethod
DispatchMessage
ProcessNextNativeEvent
nsShell::OnProcess
mozilla::Pump
MessageLoop:Run

Source

Src/win/nsAppShell.cpp:179
Src/win/nsShell.cpp:77
Ipc/glue/MessagePump.cpp:134
Ipc/glue/MessageLoop.c:784

Each Crash Report is
assigned a unique ID

User Environment
Information

All crash Reports with top
signature as
“UserCallWinCheckWow” are
grouped together

Not all frames have Source
Information

Figure 1. A sample crash report for the crash-type “UserCallWinProCheck-
Wow”

reports grouped under the crash-type and a set of bugs filed
for the crash-type. Figure 2 shows the structure of the crash-
type “UserCallWinProCheckWow” on the Socorro server.

CrashType Signature – UserCallWinProcCheckWow

OPEN
610103 UNCONFIRMED
585660 UNCONFIRMED
608351 NEW

DUPLICATE
560498 RESOLVED
522070 VERIFIED
516182 VERIFIED

FIXED
531551 RESOLVED

� OCT24,2010 10 :56
� OCT24,2010 10 :54
� OCT24,2010 10 :52
� OCT24,2010 10 :52
� OCT24,2010 10 :51
� OCT24,2010 10 :51
� OCT24,2010 10 :50
� OCT24,2010 10 :48
� OCT24,2010 10 :47
� OCT24,2010 10 :47
� OCT24,2010 10 :46
� ……..

Bugzilla Bug Id’s Crash Reports

Figure 2. A sample crash-type summary

The Socorro server provides a rich web interface for
developers to analyze crash-types. Developers triage the
crash-types by prioritizing the top crash-types (i.e., crash-
type with the maximum number of crash reports) to analyze
and fix the bugs responsible for the crash.

Mozilla uses Bugzilla for tracking bugs and maintains a
bug report for each filed bug. For the most frequent crash-
types (i.e., crash-type with the maximum numbers of crash
reports), Firefox developers file new bugs in Bugzilla and
link them to the corresponding crash-type in the Socorro
server. Multiple bugs are sometimes linked to a single crash-
type. Multiple crash-types can also link to the same bug.
The Socorro server and Bugzilla are integrated, developers
can directly navigate to the linked bugs from a crash-type
summary in the Socorro server. Figure 3 presents a bird view
of the Firefox crash triaging system.

Mozilla quality assurance teams triage bug reports and
assign severity levels to the bugs [3]. When a developer
fixes a bug, he or she often submits a patch to Bugzilla.
A patch includes source code changes, test code and other
configuration file changes. Once approved, the patch code is

262

Crash Type -MMM

Crash Type -2

Mozilla FireFox
+

Mozilla Crash Reporter

--

Signature – UserCallWin…
Bug IDs – 610103 …

Crash Type - 1

NNN
222Crash Report

1

Socorro - Crash Report Server

Bug Report -R-RR
Crash Type -2Crash Type -2

Bug ID – 610103
Submitter –
Status –
Open Date –
Last Modify Date –
Fix Information –

Bug Report -1

Bugzilla – Bug Tracking Server

Crash
Report

Crash Types
are linked with
Bugs

Firefox Submits a
Crash Report when a
Crash Occurs

Figure 3. Mozilla crash triaging system

integrated into the source code of Firefox.

B. Entropy of a Crash-type

In this study we apply the normalized Shannon’s entropy
measure [4] to crash-types. We aim at capturing the dis-
tribution of a crash-type among the users of a system. We
compute the entropy of a crash-type following Equation (1):

Hn(CT) = −
i=n∑

i=1

pi ∗ logn(pi) (1)

Where CT is a crash-type; pi is the probability of a
specific user i reporting CT (Pi ≥ 0, and

∑i=n
i=1 pi = 1);

and n is the total number of unique users of the system.
For a crash-type CT where all the users have the same

probability of reporting CT (i.e., pi = 1
n , ∀i ∈ 1, 2, . . . , n),

the entropy is maximal (i.e., 1). On the other hand, if a
crash-type CT is reported by only one user i, the entropy
of CT is minimal (i.e., 0). Crash-types with high entropy
values are reported by more users. Therefore, such crash-
types are likely to be easier to replicate than crash-types
with low entropy values. When the entropy of a crash-type is
low, it indicates that there is a gross propensity for a certain
subset of users to report the crash-type, while other users
rarely do so. Crash-types that have low entropy values may
indicate that the anomaly is on the specific users side and
not from the software system. Entropy values of crash-types
could help developers and quality assurance teams identify
problems with higher negative impact on users. The entropy
of crash-types can also help developers identify crash-types
that need better coverage, i.e., crash-types for which the
recruitment of more users with a specific profile is needed
to help developers replicate and fix their associated bug.

C. Entropy Analysis

We propose an entropy graph that can be used to triage
crash-types. The entropy of a crash-type shows the distribu-
tion of the occurrences of crash-type among a set of users.
However, the entropy of a crash-type solely doesn’t capture
the magnitude of the occurrence of a crash-type. We propose

to combine the entropy and the frequency values to better
capture the overall effect of a crash-type on the users of
a system. For example, crash-type CT1 was reported by
3 users: A (40 crash reports), B (100 crash reports), and
C (60 crash reports) out of a group of 100 users. Crash-
type CT1 has 200 reports in total. A crash-type CT2 was
reported by all the 100 users, with 2 reports each. Similarly,
crash-type CT2 has 200 reports as well. We define the
probability distribution of a crash-type reported by users as
the probability that a user i reports the crash-type. For each
user, we count the total number of crash reports of a crash-
type reported by the user and divide it by the total number of
crash reports of the crash-type that are reported by all the
users. Hence, for our example, the probability of UserA
is p(UserA) = 40

200 = 0.2. Similarly, the probabilities
of UserB and UserC are p(UserB) = 100

200 = 0.5, and
p(UserC) = 60

200 = 0.3, respectively. The normalized Shan-
non Entropy of CT1 is 0.22. Since all the 100 users reported
an equal number of reports for CT2, the Shannon Entropy
of CT2 is 1. Although the frequencies of CT1 and CT2 are
equal, their entropy values are very different. We propose
to categorize crash-types of systems by the level of their
entropy values (i.e., above a certain threshold), as well as
the total frequency of their occurrence. Because the number
of reported crash-types can be numerous, we propose to
visualize all crash-types as points according to their entropy
distribution value and frequency value on a region graph as
shown in Figure 4. This makes it easier to see the general
disposition of crash-types among all the users of a system.
More specifically, each point on the graph represents a crash-
type characterized by its entropy and frequency values. The
x-axis represents the normalized frequency of crash-types.
We compute the normalized frequency of a crash-type by
dividing its frequency by the frequency of the most reported
crash-type. The y-axis represents the entropy distribution of
the crash-types. The maximum value on both axes is 1. As
the frequency and entropy values increase across both axes,
the probability that the crash-type covers a larger population
of users increases.

263

Table I
SUMMARY OF ENTROPY REGIONS

Region Entropy Frequency Priority Description
Highly Distributed High High High The crash-type is reported with high frequency and is well distributed among users,

indicating that more users can report it consistently. More information on failing
stack traces are available and developers will be able to easily replicate by selecting
users from the testing base.

Skewed Low High Medium The crash-type is reported frequently, however the distribution is skewed towards
certain users. The diversity of the reported stack traces is low. Developers may have
to rely on certain beta users to replicate the crash.

Moderately Distributed High Low Low The crash-type is only reported by a selected number of users but they report it
evenly. This indicates a specific user cluster that developer has to recruit from in
order to replicate the crash.

Isolated Low Low Very Low This configuration is the least desirable from developers point of view. The crash-type
is obscure and hard to replicate on any system. Very few information are provided
on failing stack traces. Developers will have the hardest time resolving this crash.

Figure 4. Entropy distribution graph regions

D. Crash-type Triaging

Having all the points on the graph can tell if a system is
prone to isolated users reporting infrequent crash-types or
whether it contains crash-types reported by the majority of
users. We propose to divide the entropy graph into regions
with different priorities as illustrated by Figure 4. Table I
summarizes the possible regions that a crash-type can land
and their different characteristics. The boundaries of the
illustrated regions varies based on the context and maturity
of systems. Developers and quality managers can make use
of historical data from the field testing of previous versions
of their systems to compute optimal boundaries. In this
work, we use the median of frequencies and entropy values
to identify the boundaries illustrated in Figure 4.

The triaging of crash-types is a process that typically
depends on factors, such as the severity of crash-types, the
frequency of crash-types and the effort required to fix the
crash-type. Crash-types are sometimes purposely left unfixed
for some of the following reasons: the crash-type occurs
rarely and affects only few users and the effort required to
fix the crash-type is large and expensive. Often, some crash-
types are left unfixed because of the risk in attempting to fix
them. Sliwerski et al. [5] observed that code changes that fix
bugs in systems are up to two times more likely to introduce

new bugs than other kinds of changes. An effective triaging
of crash-types should allow developers to focus their time
and effort on crashes that they are actually able to fix.

Taking into account the aforementioned triaging criteria,
we make the following recommendations for the triage of
crash-types using an entropy graph:

• Highly Distributed Region: crash-types with high
frequency and entropy values (i.e., values above the
median threshold) should be given a “high” priority.

• Skewed Region: a crash-type with a high frequency
value but a low entropy, should be given a “medium”
priority since it means that the crash-type only seriously
affects a small proportion of users and is more likely
to be specific to the user’s systems.

• Moderately Distributed Region: conversely, a crash-
type with a high entropy value but low frequency means
that it is well distributed among the users that report it,
but does not occur very often to the majority of users
and therefore should be given a “low” priority.

• Isolated Region: crash-types with low frequency and
low entropy values should be given a “very low”
priority since they are very rare and affect only a small
number of users.

If additional information on the user perception of a crash-
type is available, the priority of crash-types with low entropy
values that are considered “critical”, “major”, or “blocker”
should be raised to “high”. Developers should start fixing
them as early as possible since they are likely to be hard to
fix. This is due to the limited information provided by their
failing threads and the difficulty of their replication.

Entropy graphs could also be used to assess the reliability
of a population of testers. For example if a system has most
of its crash-types in the skew region, the population of testers
in general can be considered fairly reliable, since not every
tester reports the same issues. If the majority of crash-types
is in the Isolated region, the testing population as a whole
would be fairly useless. There is a very limited number
of bugs reported by testers and it may not be critical to
investigate it.

264

III. CASE STUDY

The goal of this case study is to assess the usefulness of
entropy region graph in triaging crash-types. The motivation
is the improvement and the automation of existing ap-
proaches for prioritizing crash-types. Developers and quality
assurance teams could make use of entropy region graphs to
automate the prioritization of their systems crash-types and
reduce triaging time and effort. Quality managers could also
use entropy region graphs to better plan testing activities
of their systems and allocate support resources to reduce
servicing costs.

Table II
DESCRIPTIVE STATISTICS OF OUR DATA SET

version release date number
of crash
reports

median
uptime
(sec)

average
crash/day

4.0b1 6-Jul-10 608,912 388 28,996
4.0b2 27-Jul-10 350,387 321 23,359
4.0b3 11-Aug-10 348,531 373 26,810
4.0b4 24-Aug-10 530,624 427 37,902
4.0b5 7-Sep-10 455,091 52 65,013
4.0b6 14-Sep-10 1,698,763 535 29,803
4.0b7 10-Nov-10 1,848,378 686 44,009
4.0b8 22-Dec-10 871,047 644 37,872
4.0b9 14-Jan-11 608,949 572 55,359

4.0b10 25-Jan-11 329,195 776 47,028

The context of this study consists of data derived from
the field testing of ten beta releases of Firefox, ranging
from Firefox-4.0b1 to Firefox-4.0b10. Firefox is a free and
open source web browser from the Mozilla Application
Suite, managed by Mozilla Corporation. Since March 2011,
Firefox has become the second most widely used browser
in the world, with approximately 30% of usage share of
web browsers [6]. Firefox runs on various operating systems
including Microsoft Windows, GNU/Linux, Mac OS X,
FreeBSD, and many other platforms. For each beta release,
we downloaded all the reported crash-types and their associ-
ated bug-reports from the Socorro server and Bugzilla. Table
II reports the descriptive statistics of our data set. The uptime
in Table II is the duration in seconds for which Firefox was
running before it crashed.

In the following subsections, we describe the data collec-
tion for our study. We present our research questions, and
describe our analysis method. Then we present and discuss
the results of our study.

A. Data Collection

When Firefox crashes on a user’s machine, the Mozilla
Crash Reporter collects information about the event and
sends a detailed crash report to the Socorro server [1].

A crash report includes the stack trace of the failing
thread and other information about a user environment, such
as operating system, Firefox version, install time, and a
list of plug-ins installed. The Socorro server groups crash
reports based on the top method signature of a stack trace to

create a crash-type. Developers file bugs in Bugzilla and link
them to the corresponding crash-types in Socorro server. A
bug report contains detailed information about a bug, such
as the bug open date, the last modification date, the bug
severity, and the bug status. We mine the Socorro server to
identify users reporting crash-types. We also mine Bugzilla
repository to identify bug fix information. For each crash-
type and its associated bugs, we compute several metrics
to assess the effort needed to fix the crash-type. In the
following, we discuss the details of each of these steps.
Identification of Users. Crash reports in the Socorro
server do not contain personal information to identify unique
users reporting the crashes due to privacy concerns. To
identify users reporting crashes, we have to use heuristics.
We parse the downloaded crash reports and extract the
following available information on the crash events:

• the install age (in seconds) since the installation or the
last update of the user’s system;

• the date at which the crash was processed on the server;
• the client crash date, i.e., the time on the user’s system

when the crash occurred (this value can shift around
with clock resets);

• the uptime (in seconds) since the user’s system was
launched;

• the last crash of the user.

Other user’s environment information provided in crash
reports includes: product, version, build, development
branch, operating system name, operating system version,
architecture (e.g., x86) + CPU family model and stepping,
user comments, addons checked, flash version, and app notes
(i.e., graphics card vendor id and device id).

For each crash report, we subtract the “install age” from
the crash time to identify the point in time when the user
reporting the crash have installed Firefox. We combine the
user installation time with the information available on the
user’s environment and the last crash times from the crash
reports, to build a vector of unique profiles; each profile
representing a user.

Identifying unique users reporting crash-types is important
to compute the entropy of a crash-type. We associate each
unique profile with the list of crash-types for which crash
reports contain information corresponding to the profile.
Metrics Extraction. For all the bugs filed for all the crash-
types from our 10 beta releases of Firefox 4 on the Socorro
server, we retrieve bug reports from Bugzilla. Overall, 1, 329
crash-types in our data set are linked to at least one bug. The
total number of bugs is 1, 733; where 519 bugs are fixed, 253
bugs are fixed duplicated bugs, and 961 bugs are left unfixed.
We parse each of the bug reports to extract information about
the bug open and modified dates. We compute the duration
of the fixing period for each bug fixed (i.e., the difference
between the bug open time and the last modification time).
We compute the number of comments for each bug. The

265

number of comments in a bug report reflects the level of
discussions between developers about the bug. It has been
used in previous studies [2] to measure developers effort
to fix a bug. We extract additional information on severity,
priority, and status of bugs that are provided by Mozilla
quality teams and are available in bug reports. We use
the extracted priorities to compare our proposed triaging
technique to the existing prioritization approach of Mozilla
quality teams. For each crash-type with associated bugs with
status “FIXED” and “CLOSED”, we compute the duration
of the fixing period of the crash-type by differentiating
the earliest bug open time of its associated bugs and the
latest modification time of the associated bugs. We sum
the number of comments of associated bugs to compute the
effort needed to fix the crash-type. We also count the number
of bugs linked to the crash-type to assess the complexity of
the crash-type.

B. Research Questions

To assess the benefits of entropy region graphs for crash-
types triaging, we aim at answering the following research
questions:

1) RQ1: Can an analysis of the distribution of crash-
types entropy help classify crash-types by the level of
difficulty?

2) RQ2: Do crash-types belonging to different regions of
an entropy graph possess different characteristics?

3) RQ3: Do entropy graphs help improve the triaging of
crash-types?

C. Analysis Method

RQ1. We study whether an analysis of the distribution of
crash-types entropy values could help classify the crash-
types. This question is preliminary and aimed at providing
quantitative evidence to support the intuition behind our
study that the entropy of crash-types affects the difficulty
to fix the crash-types. To assess the difficulty to fix a crash-
type, we use the number of bugs associated to the crash-type,
the duration of the fixing period of the crash-type as well
as the number of comments exchanged by developers about
the crash-type. These metrics have been used in previous
studies on bug fixing [2].

We answer this research question in three steps: first,
we investigate if crash-types with more bugs mapped to
them have significantly different entropy values compared
to crash-types that are associated with a single bug. We test
the following null hypothesis:
H1

01 : the distribution of entropy values is the same
for crash-types associated with many bugs and crash-types
associated with single bug.

Second, we compare the duration of the fixing period of
crash-types with high entropy values to the duration of the
fixing period of crash-types that have low entropy values.
We test the following null hypothesis:

H2
01 : the distribution of the duration of a crash-type fixing

period is the same for crash-types with high entropy values
and crash-types that have low entropy values.

We use the median to decide on high and low entropy val-
ues. Third we compare the number of comments exchanged
by developers about crash-types with high entropy values
to the number of comments of crash-types that have low
entropy values. We test the following null hypothesis:
H3

01 : the distribution of the number of comments ex-
changed about a crash-type is the same for crash-types with
high entropy values and crash-types that have low entropy
values.

We use the Wilcoxon rank sum test [7] to accept or
reject H1

01, H2
01, and H3

01. The Wilcoxon rank sum test is
a non-parametric statistical test used for assessing whether
two independent distributions have equally large values.
For example, we compute the Wilcoxon rank sum test to
compare the distribution of the duration of the fixing period
for crash-types with high entropy values and crash-types
with lower entropy values.
RQ2. We want to understand to what extent the different
regions of an entropy graph are able to discriminate crash-
types of different characteristics. Similar to RQ1, we use the
duration of the fixing period of a crash-type and the number
of comments exchanged by developers about the crash-
type to characterize the crash-type. We use the Kruskal-
Wallis rank sum test to investigate if the distributions of
durations of crash-types fixing period and the number of
comments exchanged about crash-types are the same across
the regions of the entropy graph. The Kruskal-Wallis rank
sum test is a non-parametric method for testing the equality
of the population medians among different groups. It is an
extension of the Wilcoxon rank sum test to 3 or more groups.
We therefore test the two following null hypothesis:
H1

02 : the distribution of the duration of a crash-type fixing
period is the same for all crash-types across the regions of
the entropy graph.
H2

02 : the distribution of the number of comments ex-
changed about a crash-type is the same for all crash-types
across the regions of the entropy graph.
RQ3. The third research question evaluates the entropy
based crash-type triaging approach presented in Section
II-D. We extract severity and priority information from
bug reports associated to crash-types from our data set. A
preliminary analysis of bug reports revealed that the priority
field is rarely used by the Mozilla quality team. Only 7%
of bug reports contain a priority value. Therefore, in cases
of absence of values in the priority field, we rely solely on
severity values to recover the priority of crash-types. We
use the following rule to estimate the priority of crash-types
based on the severity levels of their associated bugs:

• We consider a crash-type to be of high priority if at least
one of its associated bugs has a severity level either

266

“critical”, “major”, or “blocker”.
• When the highest severity level of the associated bugs

is “normal”, we consider the priority of the crash-type
to be “medium”.

• When the highest severity level of the associated bugs
is “trivial”, we consider the priority of the crash-type
to be “very low”.

• Otherwise the priority of the crash-type is considered
“low”.

We compute the similarity between the priority levels as-
signed by our entropy based crash-type triaging approach
and the priority levels of crash-types obtained from bug
reports following Equation (2).

Similarity(C) =
NT

N
(2)

Where, C is a set of crash-types; NT is the number of
crash-types in C for which the priority level assigned by the
entropy based triaging approach is the same as the priority
extracted from bug reports; and N is the total number of
crash-types in C.

We use the status of bugs associated to crash-types
(examples of status include FIXED, INVALID or WORKS-
FORME) and the durations of crash-types fixing period to
further assess the benefits of our proposed triaging approach.

D. Study Results

This section reports and discusses the results of our study.
RQ1: Can an analysis of the distribution of crash-
types entropy help classify crash-types by the level
of difficulty? In this research question we are interested
in assessing the relevance of entropy analysis of crash-
types to identify the difficulty levels of crash-types. To test
our first null hypothesis, we organize crash-types in two
groups: the group of crash-types associated to single bug
and the group of crash-types associated to multiple bugs.
We compute the entropy value of each crash-type from the
two groups following Equation (1). Results show that on
average, the entropy value of a crash-type associated with
multiple bugs is twice the entropy value of a crash-type with
a single bug. We perform a Wilcoxon rank sum to verify the
statistically significance of this difference and obtain a p-
value < 2.039e− 08. Therefore, we reject H1

01. Crash-types
linked to multiple bugs affect more users than crash-types
linked to a single bug.

To test our second and third null hypothesis, we group
fixed crash-types by the level of their entropy values. We
use the median of entropy values as our threshold to build
two groups: a group of crash-types with high entropy values
and a group of crash-types with low entropy values. The
entropy value of a crash-type is considered high if it is
greater than the median of the entropy values of all the
crash-types. Otherwise, it is considered low.

For each crash-type from the two groups, we compute the
duration of the fixing period of the crash-type. We observe
that in average, crash-types with high entropy values take
longer to get fixed compared to crash-types with low entropy
values. We perform a Wilcoxon rank sum and obtain a p-
value of 0.006. Therefore, we reject H2

01. We compute the
number of comments exchanged about each crash-type from
our two groups. In average, 55.5 comments where exchanged
for crash-types with high entropy values compared to 17.65
comments for crash-types with low entropy values. We
perform a Wilcoxon rank sum and obtain a p-value of 0.001.
Hence, we reject H3

01. Crash-types with high entropy values
take longer to get fixed and more comments are exchanged
during their fixing period.

Although one could have expected crash-types with low
entropy values to take a longer time to get fixed and spark
more discussion, because of the potential difficulty of their
replication, our result shows the opposite. We explain this
finding by the fact that many crash-types with low entropy
values are left unfixed. In fact, 20% of crash-types with
low entropy values in our data set never got fixed and in
our analysis we have only considered crash-types whose
underlying bugs are eventually fixed.

We conclude that an entropy analysis can help develop-
ers and quality managers identify crash-types that will be
particularly difficult to fix, because they would likely be
related to many bugs. A situation that will likely result in
longer fixing periods and more contributions efforts from
developers. Therefore, we answer positively our research
question.
RQ2: Do crash-types belonging to different regions of
an entropy graph possess different characteristics? To
answer this research question, we compute for each fixed
crash-type from our data set, the duration of its fixing period
and the number of comments exchanged by developers about
the crash-type. We also compute the entropy and frequency
values of the crash-type and map the crash-type into a region
of the entropy graph. We organize the crash-types in four
groups corresponding to the four regions of the entropy
graph that are illustrated on Figure 4.

We observe that crash-types from the Skewed region take
the longest time to get fixed. Their average fixing time is
21,169 hours. Followed by crash-types from the Moderately
Distributed region with an average of 8,475 hours. The av-
erage fixing time of crash-types from the Highly Distributed
region is 4,299 hours. Crash-types from the Isolated region
take in average 3,562 hours to get fixed. We perform the
Kruskal-Wallis rank sum test on the durations of crash-types
fixing periods from the four regions and obtain a p-value of
0.005. Therefore, we reject H1

02.
The number of comments exchanged by developers about

the crash-types is significantly different across the groups
formed by the regions of the entropy graph. We obtain a
p-value < 2.2e − 16 for the Kruskal-Wallis rank sum test.

267

We observe that the average comments rate for a crash-type
in the Highly Distributed region is 22 comments and the
average comments rate in the Moderately Distributed region
is 20 comments. The average comment rate is the highest
for crash-types from the Skewed region (67 comments)
and the lowest for crash-types from the Isolated region (9
comments). Hence, we reject H2

02.
Crash-types from the Skewed region appear to be harder

to fix. The duration of their fixing period is in average five
time the duration of the fixing period of a crash-type from
the Highly Distributed region. The average comments rate
in the Skewed region is three times the average comments
rate in the Highly Distributed region. This result is expected.
Because of the low entropy of crash-types from the Skew
region, developers are likely to have difficulties finding
enough information to replicate and fix the crash. This result
complements our findings from (RQ1) that crash-types with
low entropy values require less effort to get fixed. In fact, we
observe now that when a crash-type with a low entropy value
has a high frequency, the effort required to fix the crash-
type becomes very high. A finding that also confirms our
intuition from Section II-C that a combination of entropy and
frequency values provides a better assessment of the overall
impact of a crash-type than either frequency or entropy
solely.

When both frequency and entropy values of a crash-type
are low (i.e., the crash-type belongs to the Isolated region),
we observe that it takes less time for developers to fix the
crash-type. We explain this result by the fact that crash-types
from the Isolated region are likely to be more simpler, since
they occur infrequently and are encountered by few users. In
some cases, as discussed in Section II-B these crash-types
may be the results of some anomalies on users’ side and not
from the system. Moreover we observed in our data set that
19.2% of crash-types from the Isolated region are purposely
left unfixed.

We conclude from above results that crash-types from the
four regions of our entropy graph possess very different
characteristics and require different levels of effort from
developers. This answers our second research question in
the positive.
RQ3: Do entropy graphs help improve the triaging of
crash-types? To assess the benefits of using entropy graphs
for crash-types triaging, we compute the similarity between
the priority levels assigned by our entropy based crash-
type triaging approach and the priority levels of crash-types
obtained from bug reports following Equation (2). Table III
summarizes the obtained results. Except for crash-types from
the Isolated region, the priorities assigned by the entropy
based triaging approach are the same as the priority levels
obtained from bug reports.

We investigated crash-types from the Isolated region and
found that although they occurred infrequently and affected
only a small number of users, the Mozilla quality team

Table III
SIMILARITIES BETWEEN PRIORITY LEVELS ASSIGNED BY THE ENTROPY

BASED CRASH-TYPE TRIAGING APPROACH, AND PRIORITY LEVELS
FROM BUG REPORTS

Region Similarity
Highly Distributed 100%

Skewed 100%
Moderately Distributed 100%

Isolated 19%

assigned a “critical” severity level to 80% of bugs linked
to crash-types from the Isolated region. Overall 89.3% of
bugs in our data set were found with a “critical”, “major”,
or “blocker” severity value. A very high number that hints
at a potential inaccuracy in the manual triaging process of
Mozilla quality teams. Moreover, we observed that 17% of
crash-types from the Isolated region that are assigned a high
priority by the Mozilla quality teams are left unfixed. The
age of bugs linked to unfixed crash-types with high priority
values ranges from 3 months to 7 years and 9 months,
while the median age of a fixed bug in our data set is
only 2.3 months. For the remaining 83% of crash-types with
high priority values in the Isolated region, they required
in average 4,620.74 hours from Mozilla developers, with
a median fixing duration of 1,680.5 hours. A slower fixing
process if compared to the time spent by the same developers
to fix “low” priority crash-types (which is 2,353.73 hours in
average, with a median of 1,104 hours). From these obser-
vations, we conclude that although Mozilla quality teams
sometimes assign high priorities to crash-types from the
Isolated region, they do not fix these crash-types in the same
timely manner associated with other high priority crash-
types in different regions. These results suggest that the
crash-type triaging process currently used by Mozilla quality
teams should be improved to better reflect the concrete levels
of attention paid by developers when fixing crashes.

We answer positively our research question and conclude
that entropy graphs provide a better triaging of crash-
types than current Mozilla triage teams. We suggest that
developers and quality assurance teams can use our proposed
automatic entropy based triaging approach to speed up and
improve their crash-types triaging.

IV. THREATS TO VALIDITY

We now discuss the threats to validity of our study
following the guidelines for case study research [8].

Construct validity threats concern the relation between
theory and observation. In this work, the construct validity
threats are mainly due to measurement errors. We extract
crash and bugs information by parsing their corresponding
html (crash reports) and xml (bug reports) files. We use a
heuristic based on “install age”, “last crash times”, config-
uration and architecture of crashing systems to identify the
unique users of our studied versions of Mozilla Firefox.
Since our study critically relies on the identification of
users reporting the crash-types. Prior to this study, we have

268

exchanged with members of the quality assurance team at
the Mozilla Fondation to confirm our user identification
heuristic. We also randomly sampled 10 of our identified
users profiles and manually verified the consistency of
information in the crash reports of their reported crash-types.
In two cases, we had to merge the profiles because of high
similarities in their respective crash reports. We found the 8
other profiles to be consistent and unique. More validations
of our identified users set are needed to strengthen the
findings of this study. Another construct validity threat
concerns missing priority information in bug reports, we use
a heuristic based on severity levels to estimate priorities. A
severity level indicates the seriousness of a bug. Developers
refer to severity levels when fixing bugs.

Threats to internal validity do not affect this study since
we do not claim causation [8]. We simply report our obser-
vations and try to provide explanations to these observations.

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to vi-
olate assumptions of the performed statistical tests. We used
non-parametric tests that do not require making assumptions
about the distribution of data sets.

Reliability validity threats concern the possibility of repli-
cating this study. We attempt to provide all the necessary de-
tails to replicate our study. Both the Socorro crash server and
Bugzilla are made publicly available. Interested researchers
could obtain the same data for the same releases of Firefox.

Threats to external validity concern the possibility to
generalize our results. Although this study is limited to
10 releases of Firefox, we obtain results consistent with
previous findings [2] that current triaging process fail to
ensure that developers’ time is spent on more critical bugs
that will actually get fixed. Nevertheless, further studies with
different systems and different crash triaging systems are
desirable to make our findings more generic.

V. RELATED WORK

In this section, we introduce related literature on triage
in software testing and discuss entropy analysis in software
engineering studies.

A. Triage in Software Testing

Several researchers have developed techniques and tools
to help developers and quality assurance teams improve their
triaging activities. Jeong et al. [9] have investigated the
reassignment of bug reports and propose the use of tossing
graphs to support bug triaging activities. Anvik et al. [3]
propose a semi-automated approach to assign developers to
bug reports. This approach is based on a machine learning
algorithm that learns the kinds of reports resolves by each
developers in the past and suggests a small number of best
candidate developers for each new bug. Canfora and Cerulo
[10] propose a semi-automatic method that suggests the set
of best candidate developers suitable to resolve new change

requests. The method retrieves the candidate developers
using the textual description of the change requests. Menzies
and Marcus [11] propose SEVERIS, an automated method
to assist triage teams in assigning severity levels to bug
reports. A machine learning algorithm is used to learn the
severity levels from existing sets of bugs reports. Weiss
et al. [12] introduce an approach to help triage teams
automatically predict the durations of bug fixing period. This
enables them to perform early effort estimations and to better
assign the issues. Different from aforementioned approaches,
which have focused on bug triage, our study analyzes crash
triage and proposes a new triaging approach for crash-types.
Since crash-types are linked to bugs, triage teams could
combine the results of our entropy based crash-types triaging
approach with previous bug triaging techniques to assign
developers to crash-types, or to make a decision on when to
fix a crash-type (e.g., a crash-type that would take too long
to get fixed may be purposely left unfixed until a future
release).

B. Entropy Analysis in Software Engineering Studies

Entropy measures are extensively used in software en-
gineering studies. Hassan et al. [13] in their investigation
of the complexity of software development processes use
the Shannon entropy to measure the complexity of systems
and conclude that systems with higher entropy rates are
more complex and decay overtime. Similarly, Zaman et al.
[14] in their comparative study of security and performance
bugs apply the same normalized Shannon entropy on bug
fixing patches to assess the complexity of bug fixes. Bianchi
et al. [15] propose the use of entropy metrics to monitor
the degradation of software systems. They develop a tool
based on software representation models to automatically
compute entropy metrics before and after every maintenance
intervention. Hafiz et al. [16] treat a software system as an
information source and used Shannon, Hartley and Renyi
entropy measures to extract different types of information
from the system. They remarked that files that are more
functional and descriptive provide a larger amount of en-
tropy. Kim et al. [17] propose new software complexity
metrics (i.e., class complexity and inter-object complexity)
for object oriented software systems based on the traditional
Shannon entropy. Chapin et al. [18] analyze entropy metrics
of software systems and conclude that by observing any
abrupt change in the entropy of a software system, one
can gather a good insight on how the maintenance of the
software system should be performed.

Another interesting take on entropy analysis is the work
by Unger et al. [19] which use the Shannon entropy measure
to quantify information content in databases and propose a
measure of the general vulnerability of databases based on
entropy values. Similar to our study, they analyzed large
software repositories and propose a technique based on
entropy analysis.

269

VI. CONCLUSION

Triaging crash-types is a crucial software maintenance
activity. A good triaging of crash-types is essential to allow
developers and maintainers to focus their efforts more effi-
ciently. Our study proposes a new triaging approach based
on an entropy analysis of crash-types. The new approach
introduces a concept of entropy graph regions to assign
priority values to crash-types.

Quantitatively, we have showed that entropy analysis help
classify crash-types by their level of difficulty. We have also
showed the ability of entropy regions to discriminate crash-
types of different characteristics. We evaluate the proposed
entropy based crash-type triaging approach by comparing
the similarity between its assigned priority levels and the
priority levels of crash-types obtained from bug reports. We
obtain that for all the regions except the Isolated region, the
priorities assigned by the entropy based triaging approach
are the same as the priority levels obtained from bug reports.
A further analysis of the priorities in the Isolated region
reveals that although Mozilla quality teams sometimes as-
sign high priorities to crash-types from the Isolated region
they do not fix these crash-types in priority. Our result
suggests the necessity to improve the current crash-type
triaging process of Mozilla quality teams. Therefore, the
priorities assigned based on entropy values better reflect
the priorities that are applied by developers when fixing
the crashes. Developers and quality assurance teams could
make use of our proposed automatic entropy based triaging
approach to improve their crash-types triaging and better
plan their testing and maintenance activities. In future work,
we plan to perform further validation of our approach on
different systems using different crash triaging process.

REFERENCES

[1] “Socorro: Mozilla’s crash reporting system,” Accessed on
March 29, 2011. [Online]. Available: http://blog.mozilla.
com/webdev/2010/05/19/socorro-mozilla-crash-reports/

[2] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“Characterizing and predicting which bugs get fixed: an
empirical study of microsoft windows,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ser. ICSE ’10. New York,
NY, USA: ACM, 2010, pp. 495–504. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806871

[3] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proceedings of the 28th international conference
on Software engineering, ser. ICSE ’06. New York,
NY, USA: ACM, 2006, pp. 361–370. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134336

[4] C. E. Shannon, “A mathematical theory of communication,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, pp.
3–55, January 2001. [Online]. Available: http://doi.acm.org/
10.1145/584091.584093

[5] J. Śliwerski, T. Zimmermann, and A. Zeller, “When
do changes induce fixes?” SIGSOFT Softw. Eng. Notes,
vol. 30, pp. 1–5, May 2005. [Online]. Available: http:
//doi.acm.org/10.1145/1082983.1083147

[6] G. W. Stats, “W3counter (2010-10-31),” Retrieved on 2010-
11-09.

[7] M. Hollander and D. A. Wolfe, Nonparametric Statistical
Methods, 2nd ed. John Wiley and Sons, inc., 1999.

[8] R. K. Yin, Case Study Research: Design and Methods - Third
Edition, 3rd ed. SAGE Publications, 2002.

[9] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug
triage with bug tossing graphs,” in Proceedings of the the
7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC/FSE ’09.
New York, NY, USA: ACM, 2009, pp. 111–120. [Online].
Available: http://doi.acm.org/10.1145/1595696.1595715

[10] G. Canfora and L. Cerulo, “Supporting change request
assignment in open source development,” in Proceedings
of the 2006 ACM symposium on Applied computing,
ser. SAC ’06. New York, NY, USA: ACM, 2006, pp.
1767–1772. [Online]. Available: http://doi.acm.org/10.1145/
1141277.1141693

[11] T. Menzies and A. Marcus, “Automated severity assessment
of software defect reports,” in Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on, 28 2008-oct.
4 2008, pp. 346 –355.

[12] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller,
“How long will it take to fix this bug?” in Proceedings
of the Fourth International Workshop on Mining Software
Repositories, ser. MSR ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 1–. [Online]. Available:
http://dx.doi.org/10.1109/MSR.2007.13

[13] A. E. Hassan and R. C. Holt, “The chaos of software
development,” in Proceedings of the 6th International
Workshop on Principles of Software Evolution. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 84–
. [Online]. Available: http://portal.acm.org/citation.cfm?id=
942803.943729

[14] S. Zaman, B. Adams, and A. E. Hassan, “Security versus
performance bugs: A case study on firefox,” in Proceedings of
the 8th Working Conference on Mining Software Repositories,
ser. MSR ’11. IEEE Computer Society, 2011, pp. 93–102.

[15] A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio,
“Evaluating software degradation through entropy,” in IN
ELEVENTH INTERNATIONAL SOFTWARE METRICS SYM-
POSIUM, 2001, pp. 210–219.

[16] S. K. Abd-El-Hafiz, “Entropies as measures of software
information,” in Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), ser. ICSM
’01. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 110–. [Online]. Available: http://portal.acm.org/citation.
cfm?id=846228.848671

[17] K. Kim, Y. Shin, and C. Wu, “Complexity measures
for object-oriented program based on the entropy,” in
Proceedings of the Second Asia Pacific Software Engineering
Conference, ser. APSEC ’95. Washington, DC, USA: IEEE
Computer Society, 1995, pp. 127–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=785406.785448

[18] N. Chapin, “An entropy metric for software maintainability,”
Twenty-Second Annual Hawaii International Conference on
System Sciences, Software Track, pp. 522–523, January 1995.

[19] E. Unger, L. Harn, and V. Kumar, “Entropy as a measure of
database information,” Proceedings of the Sixth Annual Com-
puter Security ApplicationsConference, pp. 80–87, December
1990.

270

