
Coverage Is Not Strongly Correlated
with Test Suite Effectiveness

Laura Inozemtseva and Reid Holmes
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

{lminozem,rtholmes}@uwaterloo.ca

ABSTRACT
The coverage of a test suite is often used as a proxy for
its ability to detect faults. However, previous studies that
investigated the correlation between code coverage and test
suite effectiveness have failed to reach a consensus about the
nature and strength of the relationship between these test
suite characteristics. Moreover, many of the studies were
done with small or synthetic programs, making it unclear
whether their results generalize to larger programs, and some
of the studies did not account for the confounding influence
of test suite size. In addition, most of the studies were done
with adequate suites, which are are rare in practice, so the
results may not generalize to typical test suites.

We have extended these studies by evaluating the relation-
ship between test suite size, coverage, and effectiveness for
large Java programs. Our study is the largest to date in the
literature: we generated 31,000 test suites for five systems
consisting of up to 724,000 lines of source code. We measured
the statement coverage, decision coverage, and modified con-
dition coverage of these suites and used mutation testing to
evaluate their fault detection effectiveness.
We found that there is a low to moderate correlation

between coverage and effectiveness when the number of test
cases in the suite is controlled for. In addition, we found that
stronger forms of coverage do not provide greater insight
into the effectiveness of the suite. Our results suggest that
coverage, while useful for identifying under-tested parts of a
program, should not be used as a quality target because it is
not a good indicator of test suite effectiveness.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics—product metrics

General Terms
Measurement

Keywords
Coverage, test suite effectiveness, test suite quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31–June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Testing is an important part of producing high quality

software, but its effectiveness depends on the quality of the
test suite: some suites are better at detecting faults than
others. Naturally, developers want their test suites to be good
at exposing faults, necessitating a method for measuring the
fault detection effectiveness of a test suite. Testing textbooks
often recommend coverage as one of the metrics that can
be used for this purpose (e.g., [29, 34]). This is intuitively
appealing, since it is clear that a test suite cannot find bugs
in code it never executes; it is also supported by studies that
have found a relationship between code coverage and fault
detection effectiveness [3, 6, 14–17,24,31,39].

Unfortunately, these studies do not agree on the strength
of the relationship between these test suite characteristics.
In addition, three issues with the studies make it difficult to
generalize their results. First, some of the studies did not
control for the size of the suite. Since coverage is increased
by adding code to existing test cases or by adding new test
cases to the suite, the coverage of a test suite is correlated
with its size. It is therefore not clear that coverage is related
to effectiveness independently of the number of test cases in
the suite. Second, all but one of the studies used small or
synthetic programs, making it unclear that their results hold
for the large programs typical of industry. Third, many of the
studies only compared adequate suites; that is, suites that
fully satisfied a particular coverage criterion. Since adequate
test suites are rare in practice, the results of these studies
may not generalize to more realistic test suites.

This paper presents a new study of the relationship between
test suite size, coverage and effectiveness. We answer the
following research questions for large Java programs:

Research Question 1. Is the effectiveness of a test suite
correlated with the number of test cases in the suite?

Research Question 2. Is the effectiveness of a test suite
correlated with its statement coverage, decision coverage
and/or modified condition coverage when the number of test
cases in the suite is ignored?

Research Question 3. Is the effectiveness of a test suite
correlated with its statement coverage, decision coverage
and/or modified condition coverage when the number of test
cases in the suite is held constant?

The paper makes the following contributions:

• A comprehensive survey of previous studies that inves-
tigated the relationship between coverage and effective-
ness (Section 2 and accompanying online material).

Table 1: Summary of the findings from previous studies.

Citation Languages Largest Program Coverage Types Findings

[15, 16] Pascal 78 SLOC All-use, decision All-use related to effectiveness independently of
size; decision is not; relationship is highly non-
linear

[17] Fortran
Pascal

78 SLOC All-use, mutation Effectiveness improves with coverage but not until
coverage reaches 80%; even then increase is small

[14] C 5,905 SLOC All-use, decision Effectiveness is correlated with both all-use and
decision coverage; increase is small until high levels
of coverage are reached

[39] C <2,310 SLOC Block Effectiveness is more highly correlated with block
coverage than with size

[24] C 512 SLOC All-use, decision Effectiveness is correlated with both all-use and de-
cision coverage; effectiveness increases more rapidly
at high levels of coverage

[6] C 4,512 SLOC Block, c-use,
decision, p-use

Effectiveness is moderately correlated with all four
coverage types; magnitude of the correlation de-
pends on the nature of the tests

[3] C 5,000 SLOC Block, c-use,
decision, p-use

Effectiveness is correlated with all four coverage
types; effectiveness rises steadily with coverage

[31] C
C++

5,680 SLOC Block, c-use,
decision, p-use

Effectiveness is correlated with all four coverage
types but the correlations are not always strong

[19,37] C
Java

72,490 SLOC AIMP, DBB,
decision, IMP,
PCC, statement

Effectiveness correlated with coverage; effective-
ness correlated with size for large projects

[5] C 4,000 SLOC Block, c-use,
decision, p-use

None of the four coverage types are related to
effectiveness independently of size

[20] Java O(100, 000)
SLOC

Block, decision,
path, statement

Effectiveness correlated with coverage across many
projects; influence of project size unclear

• Empirical evidence demonstrating that there is a low
to moderate correlation between coverage and effective-
ness when suite size is controlled for and that the type
of coverage used has little effect on the strength of the
relationship (Section 4).

• A discussion of the implications of these results for de-
velopers, researchers and standards bodies (Section 5).

2. RELATED WORK
Most of the previous studies that investigated the link

between test suite coverage and test suite effectiveness used
the following general procedure:

1. Created faulty versions of one or more programs by
manually seeding faults, reintroducing previously fixed
faults, or using a mutation tool.

2. Created a large number of test suites by selecting from
a pool of available test cases, either randomly or accord-
ing to some algorithm, until the suite reached either a
pre-specified size or a pre-specified coverage level.

3. Measured the coverage of each suite in one or more
ways, if suite size was fixed; measured the suite’s size
if its coverage was fixed.

4. Determined the effectiveness of each suite as the frac-
tion of faulty versions of the program that were detected
by the suite.

Table 1 summarizes twelve studies that considered the

relationship between the coverage and the effectiveness of
a test suite, ten of which used the general procedure just
described. Eight of them found that at least one type of cov-
erage has some correlation with effectiveness independently
of size; however, not all studies found a strong correlation,
and most found that the relationship was highly non-linear.
In addition, some found that the relationship only appeared
at very high levels of coverage. For brevity, the older stud-
ies from Table 1 are described more fully in accompanying
materials1. In the remainder of this section, we discuss the
three most recent studies.
At the time of writing, no other study considered any

subject program larger than 5,905 SLOC2. However, a recent
study by Gligoric et al. [19] and a subsequent master’s the-
sis [37] partially addressed this issue by studying two large
Java programs (JFreeChart and Joda Time) and two large C
programs (SQLITE and YAFFS2) in addition to a number
of small programs. The authors created test suites by sam-
pling from the pool of test cases for each program. For the
large programs, these test cases were manually written by
developers; for the small programs, these test cases were auto-
matically generated using various tools. Suites were created

1http://linozemtseva.com/research/2014/icse/
coverage/
2In this paper, source lines of code (SLOC) refers to exe-
cutable lines of code, while lines of code (LOC) includes
whitespace and comments.

in two ways. First, the authors specified a coverage level and
selected tests until it was met; next, the authors specified a
suite size and selected tests until it was met. They measured
a number of coverage types: statement coverage, decision
coverage, and more exotic measurements based on equivalent
classes of covered statements (dynamic basic block coverage),
program paths (intra-method and acyclic intra-method path
coverage), and predicate states (predicate complete cover-
age). They evaluated the effectiveness of each suite using
mutation testing. They found that the Kendall τ correla-
tion (see Section 4.2) between coverage and mutation score
ranged from 0.452 to 0.757 for the various coverage types
and suite types when the size of the suite was not considered.
When they tried to predict the mutation score using suite
size alone, they found high correlations (between 0.585 and
0.958) for the four large programs with manually written
test suites but fairly low correlations for the small programs
with artificially generated test suites. This suggests that the
correlation between coverage and effectiveness in real systems
is largely due to the correlation between coverage and size; it
also suggests that results from automatically generated and
manually generated suites do not generalize to each other.

A study by Gopinath et al. [20] accepted to the same con-
ference as the current paper did not use the aforementioned
general procedure. The authors instead measured coverage
and test suite effectiveness for a large number of open-source
Java programs and computed a correlation across all pro-
grams. Specifically, they measured statement, block, decision
and path coverage and used mutation testing to measure
effectiveness. The authors measured these values for approx-
imately 200 developer-generated test suites – the number
varies by measurement – then generated a suite for each
project with the Randoop tool [36] and repeated the mea-
surements. The authors found that coverage is correlated
with effectiveness across projects for all coverage types and
for both developer-generated and automatically-generated
suites, though the correlation was stronger for developer-
written suites. The authors found that including test suite
size in their regression model did not improve the results;
however, since coverage was already included in the model,
it is not clear whether this is an accurate finding or a result
of multicollinearity3.
As the above discussion shows, it is still not clear how

test suite size, coverage and effectiveness are related. Most
studies conclude that effectiveness is related to coverage, but
there is little agreement about the strength and nature of
the relationship.

3. METHODOLOGY
To answer our research questions, we followed the general

procedure outlined in Section 2. This required us to select:

1. A set of subject programs (Section 3.2);

2. A method of generating faulty versions of the programs
(Section 3.3);

3. A method of creating test suites (Section 3.4);

4. Coverage metrics (Section 3.5); and

5. An effectiveness metric (Section 3.6).

We then measured the coverage and effectiveness of the suites
to evaluate the relationship between these characteristics.

3The amount of variation ‘explained’ by a variable will be
less if it is correlated with a variable already included in the
model than it would be otherwise.

3.1 Terminology
Before describing the methodology in detail, we precisely

define three terms that will be used throughout the paper.

• Test case: one test in a suite of tests. A test case
executes as a unit; it is either executed or not executed.
In the JUnit testing framework, each method that starts
with the word test (JUnit 3) or that is annotated with
@Test (JUnit 4) is a test case. For this reason, we will
use the terms test method and test case interchangeably.

• Test suite: a collection of test cases.

• Master suite: the whole test suite that was written
by the developers of a subject program. For example,
the master suite for Apache POI contains 1,415 test
cases (test methods). The test suites that we create
and evaluate are strict subsets of the master suite.

3.2 Subject Programs
We selected five subjects from a variety of application

domains. The first, Apache POI [4], is an open source API
for manipulating Microsoft documents. The second, Closure
Compiler [7], is an open source JavaScript optimizing com-
piler. The third, HSQLDB [23], is an open source relational
database management system. The fourth, JFreeChart [25],
is an open source library for producing charts. The fifth,
Joda Time [26], is an open source replacement for the Java
Date and Time classes.
We used a number of criteria to select these projects.

First, to help ensure the novelty and generalizability of our
study, we required that the projects be reasonably large (on
the order of 100,000 SLOC), written in Java, and actively
developed. We also required that the projects have a fairly
large number of test methods (on the order of 1,000) so that
we would be able to generate reasonably sized random test
suites. Finally, we required that the projects use Ant as
a build system and JUnit as a test harness, allowing us to
automate data collection.

The salient characteristics of our programs are summarized
in Table 2. Program size was measured with SLOCCount [38].
Rows seven through ten provide information related to mu-
tation testing and will be explained in Section 3.3.

3.3 Generating Faulty Programs
We used the open source tool PIT [35] to generate faulty

versions of our programs. To describe PIT’s operation, we
must first give a brief description of mutation testing.
A mutant is a new version of a program that is created

by making a small syntactic change to the original program.
For example, a mutant could be created by modifying a
constant, negating a branch condition, or removing a method
call. The resulting mutant may produce the same output as
the original program, in which case it is called an equivalent
mutant. For example, if the equality test in the code snippet
in Figure 1 were changed to if (index >= 10), the new
program would be an equivalent mutant.

Mutation testing tools such as PIT generate a large number
of mutants and run the program’s test suite on each one.
If the test suite fails when it is run on a given mutant, we
say that the suite kills that mutant. A test suite’s mutant
coverage is then the fraction of non-equivalent mutants
that it kills. Equivalent mutants are excluded because they
cannot, by definition, be detected by a unit test.
If a mutant is not killed by a test suite, manual inspec-

Table 2: Salient characteristics of our subject programs.

Property Apache POI Closure HSQLDB JFreeChart Joda Time

Total Java SLOC 283,845 724,089 178,018 125,659 80,462
Test SLOC 68,932 93,528 18,425 44,297 51,444
Number of test methods 1,415 7,947 628 1,764 3,857
Statement coverage (%) 67 76 27 54 91
Decision coverage (%) 60 77 17 45 82
MC coverage (%) 49 67 9 27 70

Number of mutants 27,565 30,779 50,302 29,699 9,552
Number of detected mutants 17,935 27,325 50,125 23,585 8,483
Number of equivalent mutants 9,630 3,454 177 6,114 1,069
Equivalent mutants (%) 35 11 0.4 21 11

int index = 0;

while (true) {

index++;

if (index == 10) {

break;

}

}

Figure 1: An example of how an equivalent mutant
can be generated. Changing the operator == to >=
will result in a mutant that cannot be detected by
an automated test case.

tion is required to determine if it is equivalent or if it was
simply missed by the suite4. This is a time-consuming and
error-prone process, so studies that compare subsets of a
test suite to the master suite often use a different approach:
they assume that any mutant that cannot be detected by
the master suite is equivalent. While this technique tends
to overestimate the number of equivalent mutants, it is com-
monly applied because it allows the study of much larger
programs.
Although the mutants generated by PIT simulate real

faults, it is not self-evident that a suite’s ability to kill mu-
tants is a valid measurement of its ability to detect real faults.
However, several previous and current studies support the
use of this measurement [2, 3, 10, 27]. Previous work has also
shown that if a test suite detects a large number of simple
faults, caused by a single incorrect line of source code, it
will detect a large number of harder, multi-line faults [28,32].
This implies that if a test suite can kill a large proportion of
mutants, it can also detect a large proportion of the more
difficult faults in the software. The literature thus suggests
that the mutant detection rate of a suite is a fairly good
measurement of its fault detection ability. We will return to
this issue in Sections 6 and 7.

We can now describe the remaining rows of Table 2. The
seventh row shows how many mutants PIT generated for each
project. The eighth row shows how many of those mutants
could be detected by the suite. The ninth row shows how
many of those mutants could not be detected by the entire
test suite and were therefore assumed to be equivalent (i.e.,
row 7 is the sum of rows 8 and 9). The last row gives the
equivalent mutants as a percentage of the total.

4Manual inspection is required because automatically deter-
mining whether a mutant is equivalent is undecidable [33].

3.4 Generating Test Suites
For each subject program, we used Java’s reflection API to

identify all of the test methods in the program’s master suite.
We then generated new test suites of fixed size by randomly
selecting a subset of these methods without replacement.
More concretely, we created a JUnit suite by repeatedly
using the TestSuite.addTest(Test t) method. Each suite
was created as a JUnit suite so that the necessary set-up and
tear-down code was run for each test method. Given this
procedure for creating suites, in this paper the size of our
random suites should always be understood as the number of
test methods they contain, i.e., the number of times addTest
was called.

We made 1,000 suites of each of the following sizes: 3
methods, 10 methods, 30 methods, 100 methods, and so on,
up to the largest number following this pattern that was less
than the total number of test methods. This resulted in a
total of 31,000 test suites across the five subject systems.
Comparing a large number of suites from the same project
allows us to control for size; it also allows us to apply our
results to the common research practice of comparing test
suites generated for the same subject program using different
test generation methodologies.

3.5 Measuring Coverage
We used the open source tool CodeCover [8] to measure

three types of coverage: statement, decision, and modified
condition coverage. Statement coverage refers to the fraction
of the executable statements in the program that are run
by the test suite. It is relatively easy to satisfy, easy to
understand and can be measured quickly, making it popular
with developers. However, it is one of the weaker forms of
coverage, since executing a line does not necessarily reveal
an error in that line.
Decision coverage refers to the fraction of decisions (i.e.,

branches) in the program that are executed by its test suite.
Decision coverage is somewhat harder to satisfy and measure
than statement coverage.
Modified condition coverage (MCC) is the most difficult

of these three to satisfy. For a test suite to be modified
condition adequate, i.e., to have 100% modified condition
coverage, the suite must include 2n test cases for every deci-
sion with n conditions5 in it [22]. This form of coverage is not
commonly used in practice; however, it is very similar to mod-

5A condition is a boolean expression that cannot be de-
composed into a simpler boolean expression. Decisions are
composed of conditions and one or more boolean operators.

ified condition/decision coverage (MC/DC), which is widely
used in the avionics industry. Specifically, Federal Aviation
Administration standard DO-178B states that the most criti-
cal software in the aircraft must be tested with a suite that is
modified condition/decision coverage adequate [22]. MC/DC
is therefore one of the most stringent forms of coverage that
is widely and regularly used in practice. Measuring modified
condition coverage provides insight into whether stronger
coverage types such as MCC and MC/DC provide practical
benefits that outweigh the extra cost associated with writing
enough tests to satisfy them.
We did not measure any type of dataflow coverage, since

very few tools for Java can measure these types of coverage.
One exception is Coverlipse [9], which can measure all-use
coverage but can only be used as an Eclipse plugin. To the
best of our knowledge, there are no open source coverage tools
for Java that can measure other data flow coverage criteria
or that can be used from the command line. Since developers
use the tools they have, they are unlikely to use dataflow
coverage metrics. Using the measurements that developers
use, whether due to tool availability or legal requirements,
means that our results will more accurately reflect current
development practice. However, we plan to explore dataflow
coverage in future work to determine if developers would
benefit from using these coverage types instead.

3.6 Measuring Effectiveness
We used two effectiveness measurements in this study:

the raw effectiveness measurement and the normalized effec-
tiveness measurement. The raw kill score is the number of
mutants a test suite detected divided by the total number of
non-equivalent mutants that were generated for the subject
program under test. The normalized effectiveness measure-
ment is the number of mutants a test suite detected divided
by the number of non-equivalent mutants it covers. A test
suite covers a mutant if the mutant was made by altering a
line of code that is executed by the test suite, implying that
the test suite can potentially detect the mutant.

We included the normalized effectiveness measurement in
order to compare test suites on a more even footing. Suppose
we are comparing suite A, with 50% coverage, to suite B, with
60% coverage. Suite B will almost certainly have a higher
raw effectiveness measurement, since it covers more code and
will therefore almost certainly kill more mutants. However,
if suite A kills 80% of the mutants that it covers, while suite
B kills only 70% of the mutants that it covers, suite A is
in some sense a better suite. The normalized effectiveness
measurement captures this difference. Note that it is possible
for the normalized effectiveness measurement to drop when
a new test case is added to the suite if the test case covers a
lot of code but kills few mutants.

It may be helpful to think of the normalized effectiveness
measurement as a measure of depth: how thoroughly does the
test suite exercise the code that it runs? The raw effectiveness
measurement is a measure of breadth: how much code does
the suite exercise?
Note that the number of non-equivalent mutants covered

by a suite is the maximum number of mutants the suite could
possibly detect, so the normalized effectiveness measurement
ranges from 0 to 1. The raw effectiveness measurement,
in general, does not reach 1, since most suites kill a small
percentage of the non-equivalent mutants. However, note
that the full test suite has both a normalized effectiveness

measurement of 1 and a raw effectiveness measurement of
1, since we decided that any mutants it did not kill are
equivalent.

4. RESULTS
In this section, we quantitatively answer the three research

questions posed in Section 1. As Section 3 explained, we
collected the data to answer these questions by generating
test suites of fixed size via random sampling; measuring their
statement, decision and MCC coverage with CodeCover; and
measuring their effectiveness with the mutation testing tool
PIT.

4.1 Is Size Correlated With Effectiveness?
Research Question 1 asked if the effectiveness of a test suite

is influenced by the number of test methods it contains. This
research question provides a “sanity check” that supports the
use of the effectiveness metric. Figure 2 shows some of the
data we collected to answer this question. In each subfigure,
the x axis indicates suite size on a logarithmic scale while the
y axis shows the range of normalized effectiveness values we
computed. The red line on each plot was fit to the data with
R’s lm function6. The adjusted r2 value for each regression
line is shown in the bottom right corner of each plot. These
values range from 0.26 to 0.97, implying that the correlation
coefficient r ranges from 0.51 to 0.98. This indicates that
there is a moderate to very high correlation between normal-
ized effectiveness and size for these projects7. The results for
the non-normalized effectiveness measurement are similar,
with the r2 values ranging from 0.69 to 0.99, implying a high
to very high correlation between non-normalized effective-
ness and size. The figure for this measurement can be found
online8.

Answer 1. Our results suggest that, for large Java
programs, there is a moderate to very high correlation
between the effectiveness of a test suite and the number
of test methods it contains.

4.2 Is Coverage Correlated With Effectiveness
When Size Is Ignored?

Research Question 2 asked if the effectiveness of a test suite
is correlated with the coverage of the suite when we ignore
the influence of suite size. Tables 3 and 4 show the Kendall τ
correlation coefficients we computed to answer this question;
all coefficients are significant at the 99.9% level9. Table 3

6Size and the logarithm of size were used as the inputs.
7Here we use the Guildford scale [21] for verbal description,
in which correlations with absolute value less than 0.4 are
described as “low”, 0.4 to 0.7 as “moderate”, 0.7 to 0.9 as
“high”, and over 0.9 as “very high”.
8http://linozemtseva.com/research/2014/icse/
coverage/
9Kendall’s τ is similar to the more common Pearson coef-
ficient but does not assume that the variables are linearly
related or that they are normally distributed. Rather, it
measures how well an arbitrary monotonic function could fit
the data. A high correlation therefore means that we can
predict the rank order of the suites’ effectiveness values given
the rank order of their coverage values, which in practice
is nearly as useful as predicting an absolute effectiveness
score. We used it instead of the Pearson coefficient to avoid
introducing unnecessary assumptions about the distribution
of the data.

●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●●

●●

●
●

●●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●●
●●
●●

●

●

●

●
●●●
●

●
●●●●●

●

●●●

●●

●●

●

●●●

●

●●

●●●

R^2 = 0.78

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●●●
●
●

●

●

●●

●●

●

●

●●●
●

●

●

●●●●●●●●●
●

●

●

●

●

●

●

●●

●

●

●
●●
●
●
●

●

●
●●●●●●

●

●●
●
●
●
●

●

●●●●●●●●

●

●●
●●●

●

●●●

●●

●●●

●

●

●●●●●●●●●●●●●●●●●

●

R^2 = 0.97

●
●

●

●

●

●

●●●
●
●

●

●

●●
●●

●

●

●

●●

●

●●

●
●●

●

●●●

●

●
●
●
●

●
●

●

●●●
●

●

●
●
●

●

●
●
●
●
●
●
●

●●●
●
●●●
●
●
●●●●

●

●●●
●●●
●

●

●●●
●●●●●
●
●●●●
●●●
●

●

●●●
●

●●●
●
●●●
●●●
●
●
●
●●●●●●
●●●●●●
●
●●

●

●
●●
●●
●●●●
●●
●●●●●●●●
●
●●●
●
●●●●●
●●
●●
●
●
●
●●●●●
●●●●
●
●
●●●

●●●
●
●●
●●
●
●

●●

●
●●●●●●●
●●●
●●
●●●●●●
●●●●●●●●●
●
●
●●●
●
●
●●
●

●●
●
●●●●●●●●●●
●●
●●
●●
●●
●●●●
●●●●●●
●
●●

●

R^2 = 0.26

●
●
●●●
●

●
●
●

●

●

●

●

●

●● ●●●●

●●●

●

●●

●

●

●

●●

●●

●

●●●

R^2 = 0.55

●

●

●●●●●

●

●

●

●

●
●

●

●●●
●
●

●

●

●

●

●

●

●
●●●

●

●
●●

●

●

●

●●●●●●●
●
●

●

●

●

●

●●
●●●●●
●

●
●●●●●●●●

R^2 = 0.89

Apache POI Closure HSQLDB

JFreeChart Joda Time

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

3 10 30 10
0

30
0

10
00

30
00

3 10 30 10
0

30
0

10
00

30
00

Size

E
ffe

ct
iv

en
es

s

Figure 2: Normalized effectiveness scores plotted against size for all subjects. Each box represents the 1000
suites of a given size that were created from a given master suite.

gives the correlation between the different coverage types
and the normalized effectiveness measurement. Table 4 gives
the correlation between the different coverage types and the
non-normalized effectiveness measurement. For all projects
but HSQLDB, we see a moderate to very high correlation
between coverage and effectiveness when size is not taken
into account. HSQLDB is an interesting exception: when the
effectiveness measurement is normalized by the number of
covered mutants, there is a low negative correlation between
coverage and effectiveness. This means that the suites with
higher coverage kill fewer mutants per unit of coverage; in
other words, the suites with higher coverage contain test
cases that run a lot of code but do not kill many mutants
in that code. Of course, since the suites kill more mutants
in total as they grow, there is a positive correlation between
coverage and non-normalized effectiveness for HSQLDB.

Answer 2. Our results suggest that, for many large
Java programs, there is a moderate to high correlation
between the effectiveness and the coverage of a test suite
when the influence of suite size is ignored. Research
Question 3 explores whether this correlation is caused
by the larger size of the suites with higher coverage.

4.3 Is Coverage Correlated With Effectiveness
When Size Is Fixed?

Research Question 3 asked if the effectiveness of a test
suite is correlated with its coverage when the number of
test cases in the suite is controlled for. Figure 3 shows the
data we collected to answer this question. Each panel shows

Table 3: The Kendall τ correlation between nor-
malized effectiveness and different types of coverage
when suite size is ignored. All entries are significant
at the 99.9% level.

Project Statement Decision Mod. Cond.

Apache POI 0.75 0.76 0.77
Closure 0.83 0.83 0.84
HSQLDB −0.35 −0.35 −0.35
JFreeChart 0.50 0.53 0.53
Joda Time 0.80 0.80 0.80

Table 4: The Kendall τ correlation between non-
normalized effectiveness and different types of cov-
erage when suite size is ignored. All entries are sig-
nificant at the 99.9% level.

Project Statement Decision Mod. Cond.

Apache POI 0.94 0.94 0.94
Closure 0.95 0.95 0.95
HSQLDB 0.81 0.80 0.79
JFreeChart 0.91 0.95 0.92
Joda Time 0.85 0.85 0.85

the results we obtained for one project and one suite size.
The project name is given at the top of each column, while
the suite size is given at the right of each row. Different
coverage types are differentiated by colour. The bottom row
is a margin plot that shows the results for all sizes, while the
rightmost column is a margin plot that shows the results for

Apache POI Closure HSQLDB JFreeChart Joda Time (all)

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

3
10

30
100

300
1000

3000
(all)

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

Coverage

E
ffe

ct
iv

en
es

s

Coverage Type ● ● ●Decision coverage Modified condition coverage Statement coverage

N/A

N/AN/AN/A

Figure 3: Normalized effectiveness scores (left axis) plotted against coverage (bottom axis) for all subjects.
Rows show the results for one suite size; columns show the results for one project. N/A indicates that the
project did not have enough test cases to fill in that frame.

all projects. The figure shows the results for the normalized
effectiveness measurement; the non-normalized effectiveness
measurements tend to be small and difficult to see at this size.
The figure for the non-normalized effectiveness measurement
can be found online with the other supplementary material.

We computed the Kendall τ correlation coefficient between
effectiveness and coverage for each project, each suite size,
each coverage type, and both effectiveness measures. Since
this resulted in a great deal of data, we summarize the results
here; the full dataset can be found on the same website as
the figures.
Our results were mixed. Controlling for suite size always

lowered the correlation between coverage and effectiveness.
However, the magnitude of the change depended on the ef-
fectiveness measurement used. In general, the normalized
effectiveness measurements had low correlations with cover-

age once size was controlled for while the non-normalized
effectiveness measurements had moderate correlations with
coverage once size was controlled for.
That said, the results varied by project. Joda Time was

at one extreme: the correlation between coverage and ef-
fectiveness ranged from 0.80 to 0.85 when suite size was
ignored, but dropped to essentially zero when suite size was
controlled for. The same effect was seen for Closure when
the normalized effectiveness measurement was used.
Apache POI fell at the other extreme. For this project,

the correlation between coverage and the non-normalized
effectiveness measurement was 0.94 when suite size was ig-
nored, but dropped to a range of 0.46 to 0.85 when suite size
was controlled for. While this is in some cases a large drop,
a correlation in this range can provide useful information
about the quality of a test suite.

A very interesting result is that, in general, the coverage
type used did not have a strong impact on the results. This
is true even though the effectiveness scores (y values) for each
suite are the same for all three coverage types (x values).
To clarify this, consider Figure 4. The figure shows two
hypothetical graphs of effectiveness against coverage. In
the top graph, coverage type 1 is not strongly correlated
with effectiveness. In the bottom graph, coverage type 2 is
strongly correlated with effectiveness even though the y-value
of each point has not changed (e.g., the triangle is at y = 0.8
in both graphs). We do not see this difference between
statement, decision, and MCC coverage, suggesting that the
different types of coverage are measuring the same thing.
We can confirm this intuition by measuring the correlation
between different coverage types for each suite (Table 5).
Given these high correlations, and given that the shape of
the point clouds are similar for all three coverage measures
(see Figure 3), we can conclude that the coverage type used
has little effect on the relationship between coverage and
effectiveness in this study.

Table 5: The Kendall τ and Pearson correlations be-
tween different types of coverage for all suites from
all projects.

Coverage Types Tau Pearson

Statement/Decision 0.92 0.99
Decision/MCC 0.91 0.98
Statement/MCC 0.92 0.97

Answer 3. Our results suggest that, for large Java
programs, the correlation between coverage and effec-
tiveness drops when suite size is controlled for. After
this drop, the correlation typically ranges from low to
moderate, meaning it is not generally safe to assume
that effectiveness is correlated with coverage. The corre-
lation is stronger when the non-normalized effectiveness
measurement is used. Additionally, the type of cov-
erage used had little influence on the strength of the
relationship.

5. DISCUSSION
The goal of this work was to determine if a test suite’s

coverage is correlated with its fault detection effectiveness
when suite size is controlled for. We found that there is
typically a moderate to high correlation between coverage
and effectiveness when suite size is ignored, and that this
drops to a low to moderate correlation when size is con-
trolled. This result suggests that coverage alone is not a
good predictor of test suite effectiveness; in many cases, the
apparent relationship is largely due to the fact that high
coverage suites contain more test cases. The results for Joda
Time and Closure, in particular, demonstrate that it is not
safe in general to assume that coverage is correlated with
effectiveness. Interestingly, the suites for Joda Time and
Closure are the largest and most comprehensive of the five
suites we studied, which might indicate that the correlation
becomes weaker as the suite improves.

In addition, we found that the type of coverage measured
had little impact on the correlation between coverage and
effectiveness. This is reinforced by the shape of the point
clouds in Figure 3: for any one project and suite size, the

●

0

0.2

0.4

0.6

0.8

1

0 0.
2

0.
4

0.
6

0.
8

1

Coverage type 1

E
ffe

ct
iv

en
es

s

●

0

0.2

0.4

0.6

0.8

1

0 0.
2

0.
4

0.
6

0.
8

1

Coverage type 2

E
ffe

ct
iv

en
es

s

Figure 4: Hypothetical graphs of effectiveness
against two coverage types for four test suites. The
top graph shows a coverage type that is not corre-
lated with effectiveness; the bottom graph shows a
coverage type that is correlated with effectiveness.

clouds corresponding to the three coverage types are similar
in shape and size. This, in combination with the high cor-
relation between different coverage measurements, suggests
that stronger coverage types provide little extra information
about the quality of the suite.

Our findings have implications for developers, researchers,
and standards bodies. Developers may wish to use this
information to guide their use of coverage. While coverage
measures are useful for identifying under-tested parts of a
program, and low coverage may indicate that a test suite is
inadequate, high coverage does not indicate that a test suite
is effective. This means that using a fixed coverage value as
a quality target is unlikely to produce an effective test suite.
While members of the testing community have previously
made this point [13,30], it has been difficult to evaluate their
suggestions due to a lack of studies that considered systems of
the scale that we investigated. Additionally, it may be in the
developer’s best interest to use simpler coverage measures.
These measures provide a similar amount of information
about the suite’s effectiveness but introduce less measurement
overhead.

Researchers may wish to use this information to guide
their tool-building. In particular, test generation techniques
often attempt to maximize the coverage of the resulting suite;
our results suggest that this may not be the best approach.

Finally, our results are pertinent to standards bodies that
set requirements for software testing. The FAA standard
DO-178B, mentioned earlier in this paper, requires the use of
MC/DC adequate suites to ensure the quality of the resulting
software; however, our results suggest that this requirement
may increase expenses without necessarily increasing quality.
Of course, developers still want to measure the quality

of their test suites, meaning they need a metric that does
correlate with fault detection ability. While this is still an
open problem, we currently feel that mutation score may be
a good substitute for coverage in this context [27].

6. THREATS TO VALIDITY
In this section, we discuss the threats to the construct

validity, internal validity, and external validity of our study.

6.1 Construct Validity
In our study we measured the size, coverage and effective-

ness of random test suites. Size and coverage are straight-
forward to measure, but effectiveness is more nebulous, as
we are attempting to predict the fault-detection ability of a
suite that has never been used in practice. As we described
in Section 3.3, previous and current work suggests that a
suite’s ability to kill mutants is a fairly good measurement
of its ability to detect real faults [2, 3, 10, 27]. This sug-
gests that, in the absence of equivalent mutants, this metric
has high construct validity. Unfortunately, our treatment
of equivalent mutants introduces a threat to the validity of
this measurement. Recall that we assumed that any mutant
that could not be detected by the program’s entire test suite
is equivalent. This means that we classified up to 35% of
the generated mutants as equivalent (see the final row of
Table 2). In theory, these mutants are a random subset of
the entire set of mutants, so ignoring them should not affect
our results. However, this may not be true. For example, if
the developers frequently test for off-by-one errors, mutants
that simulate this error will be detected more often and will
be less likely to be classified as equivalent.

6.2 Internal Validity
Our conclusions about the relationship between size, cov-

erage and effectiveness depend on our calculations of the
Kendall τ correlation coefficient. This introduces a threat to
the internal validity of the study. Kendall’s original formula
for τ assumes that there are no tied ranks in the data; that
is, if the data were sorted, no two rows could be exchanged
without destroying the sorted order. When ties do exist,
two issues arise. First, since the original formula does not
handle ties, a modified one must be used. We used the ver-
sion proposed by Adler [1]. Second, ties make it difficult to
compute the statistical significance of the correlation coef-
ficient. It it possible to show that, in the absence of ties,
τ is normally distributed, meaning we can use Z-scores to
evaluate significance in the usual way. However, when ties
are present, the distribution of τ changes in a way that de-
pends on the number and nature of the ties. This can result
in a non-normal distribution [18]. To determine the impact
of ties on our calculations, we counted both the number of
ties that occurred and the total number of comparisons done

to compute each τ . We found that ties rarely occurred: for
the worst calculation, 4.6% of the comparisons resulted in a
tie, but for most calculations this percentage was smaller by
several orders of magnitude. Since there were so few ties, we
have assumed that they had a negligible effect on the normal
distribution.
Another threat to internal validity stems from the possi-

bility of duplicate test suites: our results might be skewed if
two or more suites contain the same subset of test methods.
Fortunately, we can evaluate this threat using the informa-
tion we collected about ties: since duplicate suites would
naturally have identical coverage and effectiveness scores,
the number of tied comparisons provides an upper bound
on how many identical suites were compared. Since the
number of ties was so low, the number of duplicate suites
must be similarly low, and so we have ignored the small skew
they may have introduced to avoid increasing the memory
requirements of our study unnecessarily.
Since we have studied correlations, we cannot make any

claims about the direction of causality.

6.3 External Validity
There are six main threats to the external validity of our

study. First, previous work suggests that the relationship
between size, coverage and effectiveness depends on the dif-
ficulty of detecting faults in the program [3]. Furthermore,
some of the previous work was done with hand-seeded faults,
which have been shown to be harder to detect than both
mutants and real faults [2]. While this does not affect our
results, it does make it harder to compare them with those
of earlier studies.
Second, some of the previous studies found that a rela-

tionship between coverage and effectiveness did not appear
until very high coverage levels were reached [14,17,24]. Since
the coverage of our generated suites rarely reached very high
values, it is possible that we missed the existence of such
a relationship. That said, it is not clear that such a rela-
tionship would be useful in practice. It is very difficult to
reach extremely high levels of coverage, so a relationship that
does not appear until 90% coverage is reached is functionally
equivalent to no relationship at all for most developers.
Third, in object-oriented systems, most faults are usu-

ally found in just a few of the system’s components [12].
This means that the relationship between size, coverage and
effectiveness may vary by class within the system. It is there-
fore possible that coverage is correlated with effectiveness
in classes with specific characteristics, such as high churn.
However, our conclusions still hold for the common practice
of measuring the coverage of a program’s entire test suite.

Fourth, there may be other features of a program or a suite
that affect the relationship between coverage and effective-
ness. For example, previous work suggests that the size of a
class can affect the validity of object-oriented metrics [11].
While we controlled for the size of each test suite in this
study, we did not control for the size of the class that each
test method came from.
Fifth, as discussed in Section 3.2, our subjects had to

meet certain inclusion criteria. This means that they are
fairly similar, so our results may not generalize to programs
that do not meet these criteria. We attempted to mitigate
this threat by selecting programs from different application
domains, thereby ensuring a certain amount of variety in the
subjects. Unfortunately, it was difficult to find acceptable

subjects; in particular, the requirement that the subjects
have 1,000 test cases proved to be very difficult to satisfy. In
practice, it seems that most open source projects do not have
comprehensive test suites. This is supported by Gopinath et
al.’s study [20], where only 729 of the 1,254 open source Java
projects they initially considered, or 58%, had test suites at
all, much less comprehensive suites.
Finally, while our subjects were considerably larger than

the programs used in previous studies, they are still not large
by industrial standards. Additionally, all of the projects
were open source, so our results may not generalize to closed
source systems.

7. FUTURE WORK
Our next step is to confirm our findings using real faults

to eliminate this threat to validity. We will also explore
dataflow coverage to determine if these coverage types are
correlated with effectiveness.

It may also be helpful to perform a longitudinal study that
considers how the coverage and effectiveness of a program’s
test suite change over time. By cross-referencing coverage
information with bug reports, it might be possible to isolate
those bugs that were covered by the test suite but were
not immediately detected by it. Examining these bugs may
provide insight into which bugs are the most difficult to
detect and how we can improve our chances of detecting
them.

8. CONCLUSION
In this paper, we studied the relationship between the

number of methods in a program’s test suite, the suite’s
statement, decision, and modified condition coverage, and the
suite’s mutant effectiveness measurement, both normalized
and non-normalized. From the five large Java programs we
studied, we drew the following conclusions:

• In general, there is a low to moderate correlation be-
tween the coverage of a test suite and its effectiveness
when its size is controlled for.

• The strength of the relationship varies between software
systems; it is therefore not generally safe to assume
that effectiveness is strongly correlated with coverage.

• The type of coverage used had little impact on the
strength of the correlation.

These results imply that high levels of coverage do not
indicate that a test suite is effective. Consequently, using a
fixed coverage value as a quality target is unlikely to produce
an effective test suite. In addition, complex coverage mea-
surements may not provide enough additional information
about the suite to justify the higher cost of measuring and
satisfying them.

9. REFERENCES
[1] L. M. Adler. A modification of Kendall’s tau for the

case of arbitrary ties in both rankings. Journal of the
American Statistical Association, 52(277), 1957.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In Proc. of the Int’l Conf. on Soft. Eng., 2005.

[3] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Transactions
on Soft. Eng., 32(8), 2006.

[4] Apache POI. http://poi.apache.org.

[5] L. Briand and D. Pfahl. Using simulation for assessing
the real impact of test coverage on defect coverage. In
Proc. of the Int’l Symposium on Software Reliability
Engineering, 1999.

[6] X. Cai and M. R. Lyu. The effect of code coverage on
fault detection under different testing profiles. In Proc.
of the Int’l Workshop on Advances in Model-Based
Testing, 2005.

[7] Closure Compiler.
https://code.google.com/p/closure-compiler/.

[8] CodeCover. http://codecover.org/.

[9] Coverlipse. http://coverlipse.sourceforge.net/.

[10] M. Daran and P. Thévenod-Fosse. Software error
analysis: a real case study involving real faults and
mutations. In Proc. of the Int’l Symposium on Software
Testing and Analysis, 1996.

[11] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The
confounding effect of class size on the validity of
object-oriented metrics. IEEE Transactions on Soft.
Eng., 27(7), 2001.

[12] N. E. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system. IEEE
Transactions on Soft. Eng., 26(8), 2000.

[13] M. Fowler. Test coverage. http:
//martinfowler.com/bliki/TestCoverage.html,
2012.

[14] P. G. Frankl and O. Iakounenko. Further empirical
studies of test effectiveness. In Proc. of the Int’l
Symposium on Foundations of Soft. Eng., 1998.

[15] P. G. Frankl and S. N. Weiss. An experimental
comparison of the effectiveness of the all-uses and
all-edges adequacy criteria. In Proc. of the Symposium
on Testing, Analysis, and Verification, 1991.

[16] P. G. Frankl and S. N. Weiss. An experimental
comparison of the effectiveness of branch testing and
data flow testing. IEEE Transactions on Soft. Eng.,
19(8), 1993.

[17] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses vs
mutation testing: an experimental comparison of
effectiveness. Journal of Systems and Software, 38(3),
1997.

[18] J. D. Gibbons. Nonparametric Measures of Association.
Sage Publications, 1993.

[19] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A.
Alipour, and D. Marinov. Comparing non-adequate test
suites using coverage criteria. In Proc. of the Int’l
Symp. on Soft. Testing and Analysis, 2013.

[20] R. Gopinath, C. Jenson, and A. Groce. Code coverage
for suite evaluation by developers. In Proc. of the Int’l
Conf. on Soft. Eng., 2014.

[21] J. P. Guilford. Fundamental Statistics in Psychology
and Education. McGraw-Hill, 1942.

[22] K. Hayhurst, D. Veerhusen, J. Chilenski, and
L. Rierson. A practical tutorial on modified
condition/decision coverage. Technical report, NASA
Langley Research Center, 2001.

[23] HSQLDB. http://hsqldb.org.

[24] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of the

Int’l Conf. on Soft. Eng., 1994.

[25] JFreeChart. http://jfree.org/jfreechart.

[26] Joda Time. http://joda-time.sourceforge.net.

[27] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? Technical
Report UW-CSE-14-02-02, University of Washington,
March 2014.

[28] K. Kapoor. Formal analysis of coupling hypothesis for
logical faults. Innovations in Systems and Soft. Eng.,
2(2), 2006.

[29] E. Kit. Software Testing in the Real World: Improving
the Process. ACM Press, 1995.

[30] B. Marick. How to misuse code coverage. http://www.
exampler.com/testing-com/writings/coverage.pdf,
1997.

[31] A. S. Namin and J. H. Andrews. The influence of size
and coverage on test suite effectiveness. In Proc. of the
Int’l Symposium on Software Testing and Analysis,
2009.

[32] A. J. Offutt. Investigations of the software testing
coupling effect. ACM Transactions on Soft. Eng. and
Methodology, 1(1), 1992.

[33] A. J. Offutt and J. Pan. Detecting equivalent mutants
and the feasible path problem. In Proc. of the Conf. on
Computer Assurance, 1996.

[34] W. Perry. Effective Methods for Software Testing.
Wiley Publishing, 2006.

[35] PIT. http://pitest.org/.

[36] Randoop. https://code.google.com/p/randoop/.

[37] R. Sharma. Guidelines for coverage-based comparisons
of non-adequate test suites. Master’s thesis, University
of Illinois at Urbana-Champaign, 2013.

[38] SLOCCount. http://dwheeler.com/sloccount.

[39] W. E. Wong, J. R. Horgan, S. London, and A. P.
Mathur. Effect of test set size and block coverage on
the fault detection effectiveness. In Proc. of the Int’l
Symposium on Software Reliability Engineering, 1994.

