
Reverse Engineering
of Mobile Application Lifecycles

Dominik Franke∗, Corinna Elsemann† and Stefan Kowalewski‡
Embedded Software Laboratory

Ahornstraße 55
52074 Aachen, Germany

∗franke@embedded.rwth-aachen.de
†corinna.elsemann@rwth-aachen.de

‡kowalewski@embedded.rwth-aachen.de

Carsten Weise

IVU Traffic Technologies AG
Borchersstraße 20

52072 Aachen, Germany
http://www.ivu.com

carsten.weise@ivu.com

Abstract—In mobile applications, the application lifecycle
consists of the process-related states (e.g. suspended, ready, run-
ning) and the transitions between them. A faulty or insufficient
implementation of the mobile application lifecycle can be the
source of many problematic faults, e.g. loss of data. Thus for
a software developer, understanding and mastering the mobile
application lifecycle is essential for high quality software. In
our work with various mobile platforms, we found that the
given lifecycle models and corresponding documentation are
often inconsistent, incomplete and incorrect. In this paper
we present a way to reverse-engineer application lifecycles of
mobile platforms by testing. Within a case study we apply the
presented concept to three mobile platforms: Android, iOS
and Java ME. We further show how developers of mobile
applications can use our results to get correct lifecycle models
for these platforms.

Keywords-lifecycle; mobile; Android; iOS; Java ME;

I. INTRODUCTION

When talking about application lifecycles this paper does

not refer to application lifecycle management in the sense of

a software development process (requirements specification,

design, implementation, etc.). Instead, application lifecycle
in this paper refers to the different process-related states of

an application during runtime and the transitions between

them, as especially found in mobile operating systems.

Lifecycles of contemporary mobile applications differ from

lifecycles of other systems like desktop applications. Fig-

ure 1 sketches the basic application lifecycle of the mobile

platform Java ME [1]. The transitions between the different

states are not labeled with abstract actions, like start or

startApp()
active

destroyed

paused
pauseApp()

Figure 1. Sketch of Java ME Application Lifecycle

stop, but with concrete method names. These methods are

callback methods executed by the operating system when the

application is about to change its state. With this concept the

mobile operating system provides the developer a possibility

to react on state changes of an application, e.g. turn music off

when an incoming call occurs. For this purpose the developer

just needs to override the corresponding lifecycle methods.

In the following we say a developer implements the lifecycle
(lifecycle implementation) if he overrides lifecycle callback
methods in his application.

A correct implementation of lifecycles in mobile applica-

tions is crucial for high quality software. Imagine the user

has typed in a long e-mail text, when an incoming call

occurs. The arrival of the incoming call triggers the system

to pause the currently focused e-mail application and open

the phone application. While closing the e-mail application,

the pauseApp() method of the e-mail application is called
by the system (see Fig. 1). If the user does not store the e-

mail text persistently in the pauseApp() method, it will
be lost. Due to this data loss the user has to retype the

whole text when resuming to the e-mail application after

the phone call. Another fact that confirms the importance

of correctly implemented lifecycles in mobile applications

is that lifecycles of mobile interactive devices, like mobile

phones or tablets, are heavily stressed. On most mobile

devices with a restricted user interface only one application

is visible at a time. Since on such devices other resources

like CPU and memory are limited too, mobile platforms

schedule processes in such a way, that the visible application

is the only application in the state active (except for not
visible active services like music playback). By such a

scheduling strategy the currently visible application gets

the required resources and stays reactive. For the lifecycles

of mobile applications this means, that each time the user

switches between two applications (e.g. e-mail and phone

application) or returns to the home screen, lifecycle methods

are called, since it is not possible to have multiple different

mobile applications open and visible at a time, like on a

2011 18th Working Conference on Reverse Engineering

1095-1350/11 $26.00 © 2011 IEEE

DOI 10.1109/WCRE.2011.42

283

desktop computer.

Application lifecycles of current mobile platforms are

often presented to the developer as a lifecycle model and

corresponding documentation. In our work with various

mobile platforms, we found that the given information are

often incorrect and incomplete. Further, we even found

obvious inconsistencies between a given lifecycle model

and its documentation. For instance, in the documentation

transition sequences are described, that are not traceable

in the model. Section II-D describes the found issues with

lifecycle documentation in detail.

We started to reverse engineer mobile application life-

cycles with a form of dynamic analysis, as, for instance,

Systä [2] has done with Java programs or more general with

object-oriented programs [3]. Our goal was to derive the real

lifecycle model, to be able to implement it correctly and thus

react on certain events, like incoming calls, appropriately. A

similar approach is also used by Shevertalov and Mancoridis

[4] to recover finite state diagrams in order to extract

protocols of networked applications. As Briand et al. [5]

and Al-Gahmi et al. [6] propose for instrumentation of Java

programs and CORBA-based applications, we show how

to instrument mobile applications to reverse engineer their

lifecycles.

Section II introduces the background of this work. In

Section III we describe ways to stimulate these different

events and how to derive, from the system reactions, the

real application lifecycle model of the platform. Section

IV presents the application of this concept to three current

mobile platforms: Android, iOS and Java ME. Section V

concludes this work.

II. BACKGROUND

This chapter first introduces the three regarded mobile

platforms: Android, iOS and Java ME. To give an idea of

mobile application lifecycles, this chapter presents concrete

lifecycles of those mobile platforms. Furthermore, some

weaknesses of the existing lifecycle representations and

documentation of the three platforms are discussed.

A. Android Activity Lifecycles

Android is an operating system and mobile software

platform provided by the Open Handset Alliance under

the leadership of Google. Android is open-source and

deployed under the Apache License. This is a benefit

for developers as well as for researchers, since they are

able to modify the operating system and log lifecycle-

relevant information. Android provides some specific fea-

tures, that we very briefly introduce now, since they are

relevant for the Android application lifecycle1. In this pa-

per we use Android 2.2, the currently most widespread

Android version. The Android 2.2 specification requires

1For more details about the following Android components check the An-
droid Developer’s Guide on http://developer.android.com/guide/index.html.

some buttons on Android devices, like Back-, Volume-,
Home-, Call-, Cancel-, On/Off - and Menu-buttons. The user
can overwrite the functions of some buttons, but not of all,

e.g. the function of the Home-button cannot be overwritten.
The Android status bar is a bar on the top of the user
interface, which is able to show notifications (e.g. SMS).

It can be pulled down by the user with a touch gesture over

the whole screen. Android refers to the resulting view as

Notification Window.
An Android application, usually written in Java, can be

composed of Activities (handling graphical user interfaces)
and Services (acting in background), among others [7].

In this paper we focus on the activity lifecycle, because

of its importance for the user experience of an Android

application. During its lifecycle an activity can be in one

of four states.

• Usually, an activity is running if it interacts with the
user in the foreground of the screen. But this is not

always the case, as we show in Section IV-A.

• An activity is paused if it has lost user focus, but is
often still partially visible (e.g. activity is obscured by

another activity, which is either transparent or does not

cover the full screen). An activity is also paused if the

screen locking has been activated, while the activity

was in the state running.

• An activity is stopped if it is not visible, but still exists
in the background. All objects of the activity remain in

memory.

• In the state shut down no objects of the activity exist
in memory.

If an activity resides in the paused or stopped state, the
Android system is able to kill it along with its process, and

free some resources.

Figure 2 shows the activity lifecycle model from the An-

droid Developer’s Guide. The rectangles represent lifecycle

callback methods, which the developer can override to react

on a certain state transition. The model also contains possible

sequences of callback method calls. For instance, if an

activity is started the first time, onCreate(), onStart()
and onResume() are called sequentially and the activity
is transferred to the state running. Two possible states of an
activity are given by the model: running and shut down.

B. iOS Application Lifecycle

Secondly, we examined the iOS application lifecycle. The

iOS (until June 2010 iPhone OS) is a mobile operating
system by Apple for iPhone, iPod Touch and iPad. In recent

years, next to Android iOS gained also much importance in

the market of smartphone operating systems. In contrast to

Android, iOS is not open-source and iOS applications are

written in Objective-C.

Apple communicates the iOS application lifecycle model

284

Another activity comes
in front of the activity

Activity
starts

Activity is
shut down

Activity is
running

Process is
killed

onCreate()

onRestart()

onPause()

onResume()

onStart()

onStop()

onDestroy()

The activity is no longer visible

Other applications
need memory

User navigates
back to the

activity

The activity
comes to the
foreground

The activity
comes to the
foreground

Figure 2. Activity Lifecycle from Android Documentation

in the iOS Application Programming Guide2. According to

the guide, an application for iOS 4, which is the current

version, has the following five lifecycle states:

• An application in the state active displays contents in
the foreground of the screen and receives user and

system events.

• In the state inactive the application is running in the
foreground, but does not receive any events. Never-

theless it can execute code, e.g. when the system

prompts the user to react to a SMS message, the active

application changes its state to inactive.

• While being in the state background, the application
executes code, although it is not visible on the screen.

Often this state is only entered briefly, while changing

to the state suspended.

• If an application is suspended, it resides in the back-
ground and does not execute any code. In case of lack-

ing resources, the system kills suspended applications

without calling any callback method.

• An application in the state not running has either not
been launched or has been running and was terminated.

With the introduction of multitasking in iOS 4.0 Apple

extended the application lifecycle model. The states back-

ground and suspended were appended. They are available

only in iOS 4.0 and later and on Apple devices that support

multitasking.

2See http://developer.apple.com/library/ios.

Paused

AMS: Start
AMS: Destroy/ destroyApp()
MIDlet: notifyDestroyed()
…

Active

AMS: Start / startApp()
AMS: Pause / pauseApp()
AMS: Destroy / destroyApp()
MIDlet: notifyDestroyed()
MIDlet: notifyPaused()
…

Destroyed

MIDlet:
resumeRequest()

AMS: Start

MIDlet: notifyPaused()

MIDlet: notifyDestroyed()

AMS: destroyApp()
MIDlet: notifyDestroyed()

AMS: destroyApp() [MIDletStateChangeException thrown]

AMS: destroyApp()

AMS: pauseApp()

NOTES:
- The UML notation is: event

[guard] / action. When the event
happens and the guard is true
then the action will be invoked.

- Each state lists the events and
callbacks that can be initiated by
the AMS as “AMS“ and methods
that can be called by the MIDlet
as “MIDlet“.

- Each transition shows the action
that is associated with the
transition.

AMS: startApp()[MIDletStateChange thrown]

/AMS: Create MIDlet() [RuntimeException thrown]

Figure 3. Part of MIDlet lifecycle model from MIDP specification

C. Java ME MIDlet Lifecycle

Java Micro Edition (Java ME) is an edition of the

Java platform by Sun Microsystems, especially designed

for devices with limited resources. The Java technology is

characterized by their largely platform independent applica-

tion programs. Thus, Java ME applications are executable

on various devices by different vendors (Nokia, Ericsson,

Motorola, ...) with diverse operating systems (Symbian [8],

RIM OS, Motorola OS, Windows Mobile,...). In our work we

analyze the most common Java ME application class, called

MIDlets. A MIDlet is an application for mobile devices,

which is based on the Mobile Information Device Profile
(MIDP).
A part of the basic MIDlet lifecycle is shown in Figure

3 (the complete model can be found in the official MIDP

2.0 specification3). Each MIDlet’s lifecycle is managed by

the application management software (AMS), which calls the
callback methods on the system side. During its lifecycle a

MIDlet can reside in three different states [1]:

• An active MIDlet runs in the foreground on the screen
and handles events.

• In the paused state the MIDlet is initialized, but does
not display any application content on the screen and

does not receive any events. The MIDlet is able to

execute some code in a background thread, though

should not hold any shared resources and should not

disturb the active MIDlet.

• A destroyed MIDlet has terminated its program execu-

tion and has released all of its resources.

3See http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html.

285

Once the user starts the MIDlet, the AMS first instantiates

the MIDlet by calling its constructor. After that the MIDlet

resides briefly in the paused state. The AMS then transfers
the MIDlet into the active state and signals this transition

by invoking the MIDlet’s startApp() method. Similarly,
its pauseApp() and destroyApp() methods notify the
MIDlet, when it is paused or destroyed, respectively. In

contrast to iOS applications, a MIDlet itself is able to initiate

certain lifecycle transitions by calling notifyPaused()
or notifyDestroyed(). In Addition, by throwing a
MIDletStateChangeException a MIDlet is able to

prohibit, e.g., a state change from paused to active (see Fig.
3).

D. Application Lifecycle Problems

Our research reveals several lifecycle-related problems

that developers of a mobile application have to face. First,

our tests show that the emulators and even more the sim-

ulators, provided by the development environments of the

mobile platforms, often behave differently compared to a

corresponding real device. For instance, the iOS simulator

provides only a fraction of functions of the real iPhone.

It is possible to simulate a couple of gestures to interact

with the touch screen, a low-memory warning, a locked

screen, a rotating of the device and pressing the home button.

But many events that affect the application lifecycle cannot

be simulated and thus are hard to test for the application

developer. For instance, it is not possible to simulate an

incoming phone call or an empty battery. Additionally, CPU

capacity and available memory space of the virtual device

equals the CPU capacity and available memory space of the

executing Mac. Thus, the iOS simulator is unable to be a

substitute for testing with a real iOS device.

Furthermore, the lifecycle representations published in the

documentation and specifications of Android, iOS and Java

ME vary strongly among the platforms. While the MIDlet

lifecycle model is a comparatively formal and well defined

state chart (see Fig. 3), the lifecycle representations of

Android and iOS have informal syntax and are incomplete.

The Android Developer’s Guide shows the activity lifecycle

model as a whole (see Fig. 2), whereas the iOS Application

Programming Guide gives no graphical overview model for

the overall iOS application lifecycle. In the iOS Application

Programming Guide the developer only finds descriptions

of partial lifecycle models and some exemplary events that

trigger certain lifecycle transitions.

Further, we found incompletion and inconsistencies in

the lifecycle representations. Regarding the Android plat-

form, both, the activity lifecycle and the service lifecycle

documentation in the Android Developer’s Guide, offer

several weaknesses. For instance, the state definition of the

activity lifecycle in the documentation does not define the

state shut down, but the graphical representation of the
lifecycle model comprises the two states states running and

shut down (see Fig. 2). The states paused and stopped
are not included in the graphical representation, whereas

they are existent in the textual documentation. Moreover

the sequence of the callback method calls onStart()
immediately followed by onStop() is not displayed in the
graphical model, although the documentation text as well as

our tests show that this sequence is possible. Additionally

there is an imprecise definition of the state running given in
the Android documentation. According to the Developer’s

Guide an activity in this state ”is in the foreground of the

screen and has user focus”. But a running activity is not

always in the focus of user interactions. We show this in

Section IV-A.

Although the MIDlet lifecycle specification is comparably

formal, not all transitions follow the defined syntax. E.g., a

transition from the start state to destroyed is labeled with /
AMS: Create MIDlet() [RuntimeException thrown] (see Fig.
3). This does not fit the notation event [guard] / action. Thus,
it is not clear if [RuntimeException thrown] is the guard of
the transition and what AMS: CreateMIDlet() is.
Due to the differing, ambiguous, incomplete and incon-

sistent representation of the lifecycle models, the developers

might run into problems understanding and implementing

the mobile application lifecycles properly. In this paper we

introduce a remedy to extract complete lifecycle models by

reverse engineering, with the objective of bringing clarity to

the developers.

III. REVERSE ENGINEERING LIFECYCLES

In this section, we present how to reverse engineer appli-

cation lifecycles of mobile applications. For this we assume

that the developer creates a test application, which might

be a minimal Hello, world! application. We explain the
technique in general and apply it in the next section to real

mobile platforms. The method consists of four steps.

Full Implementation of Lifecycle: As a first step the
developer has to implement the whole application lifecycle.

He has to overwrite each callback method that is called

by the platform as a result of lifecycle state changes (e.g.

pausing an active application). Taking the lifecycle model

shown in Figure 1 the developer had to overwrite the meth-

ods pauseApp(), startApp() and destroyApp().
Sometimes not all methods, which are relevant to the life-

cycle, are presented within a given lifecycle model. Addi-

tionally, some methods are called during lifecycle changes

only under certain conditions. For instance, the Android plat-

form calls methods like onSaveInstanceState() only
when an application is transferred (without user-intention)

to a state, where it might get killed by the Android system.

onSaveInstanceState() stores GUI status data, like
position of the cursor within a text view element. It is

called before Android’s onPause() method. But since

this method is only called under certain circumstances,

it is not treaded by the documentation as a part of the

286

Android application lifecycle. Thus, during this first step

the developer has to find out, which callback methods are

relevant to his application and overwrite them in his test

application.

Log Injection: In the second step the developer has to
add logging functionality to all overwritten methods. Each

time one of the callback methods is called, the name of the

callback method and the name of the current application

shall be logged. Further, if a sequence of callback methods

is called, the order shall be obvious. This can be done

either by logging additionally timestamps or by having one

central logger module, to which each software component

reports. This gets important if one application is started

by another application (see Section IV-A, third step). For

the model given in Figure 1 a possible logger output is

given in Figure 4. In this example application App1 is active

and another application, called App2, shall be started. Then

first App1’s pauseApp()-method is called, second App2’s
startApp()-method and last App1’s destroyApp()-
method.

Transition-Trigger Detection: Each mobile platform

has a finite amount of triggers, that cause a different reaction

of an application. For instance, an incoming SMS affects

an application different than an incoming call. While an

incoming call usually stops a running application and gives

the user the opportunity to react on the call, by accepting

or declining, an incoming SMS is often just denoted by

an acoustic or vibrating signal in the background, not

interfering with an active application. The goal of this step

is to get a catalog of triggers, that cause different reactions

of the mobile platform. This can be done by black-box

testing the mobile platform [9]. The developer defines a test

case, e.g. incoming call occurs while the test application
is active, and executes the test on a real mobile device.
With the corresponding logger messages, printed by the

test application, he can monitor which callback methods are

called by the mobile platform during this test.

We prefer real devices, as emulators or simulators do

not always behave like corresponding real devices. Some

disadvantages of emulators and simulators are given in

Section II-D. But emulators do also allow different actions,

that are hard to test with real devices. For instance in the

Android emulator you can limit the amount of available

memory. This way you can trigger the platform to kill a

pauseApp() called.

Time (ms)

10002 App1

Application Message

startApp() called. 10039 App2
destroyApp() called. 10048 App1

...

...

Figure 4. Logger Example with two Applications

startApp()
active

destroyed

paused
pauseApp()

App1

Log

pauseApp() called. App1

Application Message

destroyApp() called.App1

... ...

... ...

System

invokes
callback methods

Test Case
„Press Home-button
while App1 active.“

Figure 5. Logging during Test Execution

test application due to insufficient resources. This test case

is hard to execute on a real device, since recent devices often

have large amounts of available memory, e.g. Google Nexus

S has 512 MB of RAM, which cannot be decreased for test

purpose.

Figure 5 sketches a possible scenario. The test case con-

sists of pressing the Home-button, while application App1 is
active. After execution of this test the developer can see, that

pressing the Home-button, triggers App1 to be paused and
then to be destroyed, by calling first pauseApp() followed
by destroyApp(). After a certain number of test cases
the developer will notice, that no new sequences of callback

method calls accrue. In this case the catalog is complete.

Here it is important that the developer finds out all possible

lifecycle methods, that are called by the mobile platform.

For instance, if the method onSaveInstanceState()
would exist in the model used in Figure 5 and the developer

did not overwrite it, he wouldn’t notice that in some test

cases this method was called, and thereby the state of the

application was stored, and in other cases not. Further, often

nearly similar events might cause different reactions: In

Android it is a difference, if you exit an application via

Home- or Back-button, although on many user interfaces of
different applications the reaction is the same, like returning

to the home screen. Therefore, we advise developers to

check the following sources for lifecycle callback methods:

1) application lifecycle model, if available

2) documentation of the application lifecycle

3) source code documentation of the application class(es)

In general it is hard to determine, when a catalog of

triggers and consequences is complete. At least the developer

has to cover the most common triggers, that might occur

during the usage of a mobile application, like incoming

phone call, accepting the phone call, declining the call,

receiving SMS, interference by another application (e.g.

alarm-clock) and so on. In the following case study we

provide a number of triggers, which can be used as a basis

for other platforms. Mobile devices of the same class (e.g.

smartphones, tablets) have many equal triggers. Differences

287

occur especially if one mobile platform supports additional

keys, like an emergency or flashlight key. On Android even

rotating a device triggers multiple lifecycle methods to be

called. The developer has to investigate if and how such

platform specific triggers impact the application lifecycle.

Application Lifecycle Rebuild: Based on the collected
information the developer is able to derive an application

lifecycle model. If, for instance, startApp() would never
be followed by destroyApp(), then the correspond-

ing lifecycle model would not have a transition labeled

destroyApp() leaving a state X , with an incoming

transition to X labeled startApp(). So in Figure 1 the
transition connecting the states active and destroyed would
have to be deleted.

By this approach the developer can also find new states of

an application, that are neither mentioned by the model, nor

communicated comprehensible by the documentation. For

example, in Android a service can be running (e.g. music

playback service) and bound to an activity (e.g. music player

GUI) or running without being bound. For the developer it

is important if the service is bound or unbound, since in

both cases different transitions are possible. If a service is

bound, other transition sequences are possible, than if it is

unbound. Further an unbound service might be rather shut

down due to a lack of resources, than a bound service. In

the resulting model such states have to be added.

Next to rebuilding the model the user can also derive

various other properties of the application lifecycle from the

test results. For instance, he can determine if an application

is always visible, when it is in the state running. Such in-
formation help the developer to assign a running application

to a certain state. Further, if an application is running and

not visible, resource-consuming interface components like

OpenGL computations can be paused. Another important

implication from the test results is to deduce if and which

callback methods are called if an application gets killed

by the system, e.g. due to a lack of resources. Some of

the reviewed mobile platforms still give the developer the

possibility to react on a kill command by the system and

others do not. If a mobile platform does not call any lifecycle

callback method when the application gets killed, the user

has no chance to react on the killing and data might get lost.

To get more concrete, we apply the presented approach in

the following section to three different mobile platforms. The

whole procedure has to be done once for a mobile platform.

After the model has been rebuilt and ambiguities in the

documentation have been clarified, the results apply to each

mobile application on this platform, since all applications

implement the lifecycle provided by the platform. Further-

more, the mobile platform has the control over the lifecycle

by calling the callback methods. The platforms behave equal

for all applications of the same type (e.g. activities). Of

course there might be different active components available

on a mobile platform, each having its own lifecycle, like

activities and services. Then this procedure has to be done

once for each active component the developer is interested

in.

IV. CASE STUDY

This section presents the application of the introduced

reverse engineering mobile applications procedure to the

three mobile platforms Android, iOS and Java ME. The

structure of each subsection aligns to the four steps given in

Section III.

A. Reverse Engineering the Android Activity Lifecycle

On the Android platform multiple active components

like activities and services are available. In the following

we present the reverse engineering of the Android activity

lifecycle (see Section II-A).

Full Implementation of Lifecycle: In a test application
we create an activity and overwrite the following methods:

• onCreate() (abbr. Cre())
• onStart() (abbr. Sta())
• onResume() (abbr. Resu())
• onPause() (abbr. Pau())
• onStop() (abbr. Sto())
• onRestart() (abbr. Rest())
• onDestroy() (abbr. Des())
• onSaveInstanceState() (abbr. SavIn())
• onRestoreInstanceState() (abbr. ResIn())

Most of these callback methods are given by the official

Android lifecycle model, except the last two. The meth-

ods onSaveInstanceState() and onRestoreIn-
stanceState() are not given in the official lifecycle

model. But as these methods are called on state changes

of the activity, we take them under consideration during our

tests. We want to know if and under which circumstances the

developer can use these methods to react on state changes

of the application.

Log Injection: Android provides an integrated Log
class in the android.util package. This class provides
multiple features to log information. In our tests we log data

by the following command Log.d(TAG, MESSAGE). The
log information are stored with a tag string and a message

string. The tag string must identify the current activity un-

ambiguously. The message string has to identify the current

overwritten method unambiguous. We give an example for

the log entry in the onCreate() method:

Log.d("activity1",
"onCreate() called.");

activity1 is the name of the activity that we start in our

test application at first. The tags in other activities have

simply incremented numbers in the string. You need further

activities in your test application, for instance, if you want

to know which lifecycle methods are called if another

activity is opened from within the current activity (see

288

Table I
TRIGGER CATALOG FOR ANDROID 2.2 PLATFORM

Trigger Reaction
(1) start application by clicking on the application
item on the home screen

Cre(), Sta(),
Resu()

(2) after (1) receive an incoming call Pau(), Sto()

(3) after (2) accept the incoming call -

(4) after (2) decline the incoming call Rest(),
Sta(), Resu()

(5) after (3) end the current call Rest(),
Sta(), Resu()

(6) after (1) receive incoming SMS -

(7) after (6) open SMS through Notification Window Pau(), Sto()

(8) after (7) return from SMS application back to
test application by pressing the Back-button

Rest(),
Sta(), Resu()

(9) after (1) press Back-button Pau(), Sto(),
Des()

(10) after (1) press Home-button Pau(), Sto()

(11) after (10) start test application again by click-
ing the application icon on the home screen

Rest(),
Sta(), Resu()

(12) after (1) press Call-button Pau(), Sto()

(13) after (12) return from phone application back
to test application by pressing the Back-button

Rest(),
Sta(), Resu()

(14) after (1) press Cancel-button Pau()

(15) after (1) activate screen locking by shortly
pressing the On/Off -button

Pau()

(16) after (15) press Menu-/Home-/Call- or Cancel-
button

Resu()

(17) after (16) unlock screen locking or pull status
bar over the whole visible test application

-

(18) start test application externally (e.g. via USB)
while screen locking is active

Cre(), Sta(),
Resu(), Pau()

(19) after (1) change device orientation (e.g. from
vertical to horizontal)

Pau(), Sto(),
Des(), Cre(),
Sta(), Resu()

(20) after (15) change device orientation (e.g. from
vertical to horizontal)

Sto(), Des(),
Cre(), Sta(),
Resu(), Pau()

(21) after (10) change device orientation (e.g. from
vertical to horizontal) and start test application by
clicking the application icon on the home screen

Des(), Cre(),
Sta(), Resu()

(22) after (1) change volume by using Volume-
buttons

-

(23) after (1) alarm clock rings Pau()

(24) after (23) discard or snooze alarm clock Resu()

(25) after (1) devices shuts down due to low battery Pau()
onStop()

(26) after (1) start a sub-activity that overlays the
main activity only partially (e.g. small Dialog-
activity), then press the Home-button and return to
test application by clicking the application icon on
the home screen, then press the Home-button again

Pau(), Sto(),
Rest(),
Sta(), Sto()

example in Figure 4). The message string is adjusted for

each overwritten method, containing the method name of

the surrounding method.

Transition Trigger Detection: Table I lists in the left
column the various triggers that we identified for the An-

droid platform and in the right column the lifecycle reactions

of the main test activity (not of any sub-activity). Due

to space limitations we use the abbreviations given above.

The start configuration for each of the tests consists of the

device after a fresh startup, with no services or applications

started but the default system applications and services, and

navigated to the home screen, on which an application icon

of the test application is visible. In the test results we do

not list calls of the methods onSaveInstanceState()
and onRestoreInstanceState(), since their behavior
during all tests corresponded to the specified behavior in

the documentation. And as predicted in the documentation

these methods are only called under certain circumstances,

given in the Android documentation as well. For this reason

we also do not integrate these methods in the resulting

lifecycle model. During all tests all buttons had the default

functionality, given by the system. We did not overwrite any

functionality of the buttons, e.g. Back- and Volume-buttons.
The results of test case 16 show one of the mentioned

problems. Although the test application is currently not

visible, since the screen locking is active, the user is able, by

pressing the Home-button, to change the state of the current
application to running. Following the official documentation
the application should be visible, while it is running. In test

case 18 the test application was started externally by using

a USB-cable and Android Debug Bridge (ADB). ADB is

one of the official Android development tools, with which

developers, for instance, can remotely install, start and

remove applications on a device. In the test cases 19 – 21

the configuration of the device (e.g. vertical or horizontal

orientation) is changed, while the test application is in state

running (test case 19), paused (test case 20) and stopped
(test case 21). Test case 20 leads to an error, if executed in

the Android emulator. If screen locking is active (activity is

in state paused) and the developer changes the orientation
of the emulator, the application is restarted, as listed in

Table I, and remains in state running instead of paused,
being in the foreground visible to the user without screen

locking. On a real device this test is executed properly, so

that the test application results again in the paused-state,
after configuration change. In test case 23 the alarm clock

was set before the test application was entered. Test case

25 was executed in the Android emulator, by simulating

a low battery status via telnet-commands to the emulator.

This test cannot be executed on a real device, while the log

information is being watched, since connecting the device

to a computer leads to charging the battery of the device. So

the device battery will not be discharged, while the device

is connected to a computer.

Test case 26 shows an interesting behavior of the main

test activity in combination with a sub-activity. After the

sub-activity, which only partially overlays the main activity,

is started, the state of the main activity changes to paused
by onPause(). Pressing the Home-button the main ac-
tivity is stopped (onStop()). Returning again to the test
application, the main activity is not set to running, but to
paused (onRestart() followed by onStart()), since
the sub-activity is still running and in the foreground. If

the user presses the Home-button again, the main activity is
stopped onStop(). So the main activity was started and

289

onStart()

onCreate()

shut down

paused

running stopped

Process of
Activity is
killed

onRestart()

onDestroy()

Figure 6. Activity Lifecycle Model

stopped, without reaching the state running. The transition
sequence of onStart(), being followed immediately by
onStop(), is not possible in the official lifecycle model
(see Fig. 2).

Activity Lifecycle Rebuild: Figure 6 shows the rebuilt
Android activity lifecycle as a model, derived from the

described test results. It consists of four states: shut down,
paused, running and stopped. The additional state between
shut down and paused has no label and is printed smaller
than the other states, since an activity does never remain

in this state. An activity enters this state briefly either by

onCreate() or by onRestart() and leaves it immedi-
ately by onStart(). The transitions are labeled with the
lifecycle callback methods also given in the official lifecycle

model (see Fig. 2).

The resulting model shows, for instance, that an applica-

tion in the state running cannot be killed. In each test, an
application first was paused, before being killed. This means

to the developer that data should be stored persistently in the

onPause()-method, since this is the only method, that is
definitely called, before a running application is killed. In

the states paused and stopped an application might get killed
by the system, without any callback method being executed.

In this case neither data can be stored nor open connections

appropriately closed any more.

Another interesting fact, that the resulting model points

out, is that after onRestart() and onCreate() imme-
diately onStart() is called. There is no possibility to call
onRestart() or onCreate() without onStart()
being called immediately afterwards. This means to the

developer, that independent of starting or restarting an

activity onStart() is called each time. So establishing

network connections or initializing data should be done in

onStart() instead of onCreate() or onRestart(),
because else the code is redundant. This might lead to errors

if the redundant code is changed in one method, but not in

the other.

The rebuilt model also shows what test case 26 pointed

out: It is possible that onStop() is called immediately

after onStart(), without running the activity by on-
Resume(). For instance, this could lead to an error if
the developer closes a connection in onStop(), which he
establishes in onResume(). Since onResume() is not

called, the connection cannot be closed, which might cause

runtime errors. This is one of the most obvious sequences

that is not possible in the official activity lifecycle model

(see Fig. 2).

B. Reverse Engineering iOS Application Lifecycle

This section describes the reverse engineering of the iOS

4.0 application lifecycle.

Full Implementation of Lifecycle: In an iOS test ap-
plication we overwrite the following methods, given by the

official iOS 4.0 documentation:

• application:didFinishLaunchingWith-
Options:

• applicationDidBecomeActive:
• applicationWillResignActive:
• applicationDidEnterBackground:
• applicationWillEnterForeground:
• applicationWillTerminate:

Log Injection: Like Android, iOS also provides a built-
in functionality to log information. The NSLog function

is part of the Foundation Framework which is available in
the iOS as well as in recent Mac OS. In the tests we log

information by the following method call:

NSLog(@"App1: application:didFinish
LaunchingWithOptions:");

This example shows the log message in the applica-
tion:didFinishLaunchingWithOptions:-method
of the application App1, which is our ID of the main

application. Like in our Android tests each application has

an unambiguous ID in the log messages and each method

is represented by its method name.

Transition Trigger Detection: We execute the iOS test
application on an iPhone 4. Table II presents triggers to

the test application and the reactions of the application.

For reasons of clarity and limited space in this paper we

use in the table didFinishLaunchingWO: as abbre-

viation for applications:didFinishLaunching-
WithOptions: and remove in all other method names the
word application (e.g. applicationWillResign-
Active: is abbreviated by WillResignActive:). For
test case 2 the application code had to be changed from test

case 1 so that the application executes work in background.

We further did introduce a transition label, which is no

callback method from iOS: no more background work. This
is necessary, since depending on the fact, if the application

is performing background work or not, different lifecycle

methods can be triggered. This is also made clear in the

rebuilt model (see next step). In test case 9 data was logged

persistently to a file, since the device was not connected to

290

Table II
TRIGGER CATALOG FOR IOS 4.0 PLATFORM

Trigger Reaction
(1) start application with intention to
work in foreground (by clicking on the
application item on the home screen)

didFinishLaunchingWO:
DidBecomeActive:

(2) start application with intention to
work in background (by clicking on the
application item on the home screen)

didFinishLaunchingWO:
DidEnterBackground:

(3) after (1) receive an incoming call WillResignActive:

(4) after (3) accept the incoming call DidEnterBackground:

(5) after (3) decline the incoming call DidBecomeActive:

(6) after (4) end the current call WillEnterForeground:
DidBecomeActive:

(7) after (4) if the application has no
code to be executed in the background

no more background work

(8) after (4) application is killed due to
low resources

WillTerminate:

(9) after (1) devices shuts down due to
low battery

DidEnterBackground:
WillTerminate:

(10) after (1) press Home-button WillResignActive:
DidEnterBackground:

(11) after (1) shut device down by
pressing On/Off -button

WillResignActive:
kill

(12) after (7) application is killed due
to low resources

kill

(13) after (7) end the current call WillEnterForeground:
DidBecomeActive:

(14) after (1) press Home-button (only
on iOS 3 and older)

WillResignActive:
WillTerminate:

the computer. If it was connected to the computer, it would

not discharge. In contrast to the Android emulator, the iOS

simulator is not capable of shutting iOS down due to a

low battery level. We present test case 14 to show where

an important difference was made to the iOS application

lifecycle, by introducing multitasking. With iOS 3 and older

versions an application was terminated, each time the user

pressed the Home-button. Further test cases on the iOS
did not lead to a different lifecycle behavior. The rebuilt

application lifecycle model in the following paragraph shows

that with multitasking this is not the case any more.

Application Lifecycle Rebuild: Figure 7 presents the
rebuilt application lifecycle of iOS 4.0 applications. For

reasons of clarity and limited space in this paper the method

names are abbreviated like in the previous step. Like in the

Android lifecycle there is no possibility to kill an active ap-

kill
(v WillTerminate:)

WillResignActive:

didFinish-
Launching-
WithOptions:

not running

inactive active background

kill

DidEnterBackground:

suspended

DidBecomeActive: WillEnterForeground:

 DidEnterBackground:

no more
background

work

Figure 7. iOS Application Lifecycle Model

plication without any method being invoked. Either appli-
cationWillResignActive: or applicationDid-
EnterBackground: are called before the application is
shut down. Further, the model shows why the no more
background work transition is needed. From the suspended
state an application can be killed, without any callback

method being invoked. From the background state this is

not possible.

C. Reverse Engineering Java ME MIDlet Lifecycle

Concerning reverse engineering of the Java ME MIDlet

lifecycle we faced different interesting issues. This section

describes the MIDlet reverse engineering process along with

the found issues.

Full Implementation of Lifecycle: In order to re-

verse engineer the MIDlet lifecycle we first create a test

MIDlet based on MIDP 2.0 specification, which over-

writes the constructor as well as the callback methods

startApp(), pauseApp() and destroyApp(). Ad-
ditionally the test MIDlet displays three buttons: One

button triggering notifyPaused() on the current MI-

Dlet, another button triggering notifyDestroyed()
and with the third button the developer can configure,

whether a MIDletStateChangeException is thrown
if destroyApp(false) is called.

Log Injection: We test the behavior of the MIDlet

lifecycle on several emulators as well as on different real

devices. On real devices it is not always possible to print

log information in a console. Instead, we use a Logger-
object of the net.sf.microlog (from www.microlog.

sourceforge.net) package to display the lifecycle data in

an interface form within the test MIDlet GUI and save

the logged data persistently using the Record Management
System of the javax.microedition.rms package. For
instance, the log entry in the startApp()-method in a
MIDlet called MIDlet1 is:

logger.info("startApp() called.");

Transition Trigger Detection: In our tests we executed
the described test MIDlet in emulators and devices with dif-

ferent underlying platforms and mobile operating systems:

• Emulator of the Java ME SDK 3.0
• Device Nokia E71 and emulator of the Nokia Symbianˆ3

SDK v0.9 each with Nokia S60
• Device Nokia 6300 and emulator of the Nokia Series

40 5th Edition SDK each with Nokia Series 40
• Device VPA compact II with Windows Mobile
• Emulator with Motorola OS, emulator with Motorola

UIQ and emulator of two MOTOMAGX devices, MO-
TOMING A1600 and MOTO Z6w, from the MOTODEV
SDK for Java ME v3.0

The main result of the tests is: Although all underlying

platforms support the MIDP 2.0, the behavior of our test

MIDlet lifecycle differs significantly between the platforms.

291

The underlying mobile platforms often do not implement

the MIDlet lifecycle model of the MIDP 2.0 exactly. A

call of notifyPaused() in the active state often leads
to problems or does not cause the expected behavior. For

instance, if notifyPaused() is called on the device or
the emulator with Nokia S60 or Series 40 platform, the

MIDlet is not transferred from active into paused state.

In tests with the emulators from the MOTODEV SDK we

found some limitations and bugs in all kinds of emulators.

For example, after a call of notifyPaused() the GUI of
the test MIDlet vanishes from screen, as specified by MIDP

2.0. But if the user opens the MIDlet again, the constructor

and afterwards destroyApp(true) is called. Hence,

startApp() is not called according to the specification
and the MIDlet does not get back to the foreground. The

Windows Mobile device, on the other hand, matches almost

all specified lifecycle elements. Only if notifyPaused()
is called on the Windows Mobile device, the MIDlet

shows a strange behavior. It freezes, pauseApp() and

startApp() are called, and the MIDlet does not react

on any user input, despite pressing the button which closes

the MIDlet. On all tested Nokia S60 and Series 40 devices

and emulators pauseApp() is never called by default. So
when an incoming call occurs, the active test MIDlet on

the Windows Mobile device changes its state to paused,
since the AMS calls its pauseApp() method. But on

Nokia S60, respectively Nokia Series 40 platform, in this

case no callback method is called by default. Therefore,

contrary to the test concerning the android activity and iOS

application lifecycle, no general statements about triggers

of the lifecycle callback methods are possible. And thus we

cannot give a set of test cases that trigger every possible

transition sequence in the MIDlet lifecycle model.

MIDlet Lifecycle Rebuild: Due to the different behavior
of test MIDlet on divers underlying platforms it is not

possible to rebuild the MIDlet lifecycle unambiguously. If a

developer is interested in the MIDlet lifecycle on a specific

device, he can apply the four steps explained in Section

III and reverse engineer the application lifecycle for this

device. But our results show that such results are mostly not

applicable to other devices. Thus, the MIDlet lifecycle needs

to be reverse engineered for each Java ME device.

V. CONCLUSION

For high quality mobile applications the correct imple-

mentation of the application lifecycle is crucial. This is

especially true when mobile devices are not used as pure end

user devices – where occasional errors might be tolerable

– but instead are used as control interfaces for industrial

applications, e.g. as on-board controllers in vehicles like

busses, trams, rail or road trains. Here malfunctioning must

be avoided as it might imply high cost for the user and

penalty payments for the software provider.

We have shown in this paper that lifecycles of contempo-

rary (iOS and Android) as well as older mobile platforms

(Java ME) have issues with the official lifecycle models

and corresponding documentation. We present a way to

reverse engineer any mobile application lifecycle in four

steps. Further, we prove the applicability of the introduced

method to the mobile platforms iOS, Android and Java ME.

Thus, we find for each of the three platforms either errors

in the official models, inconsistencies in the documentation

or lacks of information in both. The three case studies

also highlight, where problems with different platforms

and corresponding development tools (e.g. simulators and

emulators) might arise and we present some solutions, how

to deal with them. To facilitate reverse engineering of other

mobile platforms we provide two catalogs with various

triggers for lifecycle callback methods. As future work we

plan to evaluate the applicability of the presented method to

further current mobile platforms and to check its adaptability

to platform changes (e.g. in Android 3.0).

ACKNOWLEDGMENT

This work was supported by the UMIC Research Centre,

RWTH Aachen University Germany.

REFERENCES

[1] R. Rischpater, Beginning Java ME Platform. Berkeley, CA,
USA: Apress, 2008.

[2] T. Systä, “Understanding the Behavior of Java Programs,”
in Proceedings of the 7th Working Conference on Reverse
Engineering, 2000, pp. 214 – 223.

[3] E. Stroulia and T. Systä, “Dynamic Analysis for Reverse Engi-
neering and Program Understanding,” ACM SIGAPP Applied
Computing Review, vol. 10, pp. 8–17, April 2002.

[4] M. Shevertalov and S. Mancoridis, “A Reverse Engineering
Tool for Extracting Protocols of Networked Applications,”
in Proceedings of the 14th Working Conference on Reverse
Engineering, 2007, pp. 229 –238.

[5] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the Re-
verse Engineering of UML Sequence Diagrams for Distributed
Java Software,” IEEE Transactions on Software Engineering,
vol. 32, 2006.

[6] A. Al-Gahmi, C. John, J. Cook, and B. Du, “Supporting
Quick and Dirty CORBA Introspection and Manipulation,”
in Proceedings of the 10th Working Conference on Reverse
Engineering, 2003, pp. 228 – 237.

[7] R. Meier, Professional Android 2 Application Development.
Indianapolis, IN, USA: John Wiley & Sons, 2010.

[8] R. B. Hayun, Java ME on Symbian OS: Inside the Smartphone
Model. West Sussex, England: John Wiley & Sons, 2009.

[9] G. J. Myers, The Art of Software Testing, 2nd ed. Hoboken,
NJ, USA: John Wiley & Sons, 2004.

292

