
Deliverable: #6 - Project Architecture & Design
Title: SE2: Software Design and Architecture (CS 446, ECE 452, CS 646)

Deliverable Overview:
Your project proposals provided an overview of the functionality your project aims to provide; they also provided some
insight into the non-functional, or quality, attributes you want your project to exhibit. In class we have described a variety of
architectural styles and design patterns, each of which has both strengths and weaknesses. The intent of this deliverable is to
identify, describe, and justify the architecture and design of your project. Do not be constrained by the individual styles and
patterns we described in class; it is expected that a heterogenous set of styles and patterns (including ones we may not have
covered in class) may best suit your project.

Te written component of this deliverable will describe your project architecture (5 pages), design (5 pages).

Architecture:
The outcome of this deliverable is an architectural description of your project that describes how your system will support
the functional requirements and non-functional attributes described in your proposal. Non-functional attributes should be
specific enough to enable us to verify whether or not your app supports them in a measurable way. Note: a two-box client/
server component diagram will be insufficient here. For example, every phone-based/external service you interact with (e.g.,
NFC, Geolocation, Contacts, etc.) should be clearly identified and can be treated as individual components.

The written component should clearly and succinctly capture and justify the architecture of your system. It should describe
how your architecture supports the non-functional properties listed in your proposal. This description can be at most 5 pages
(3 pages of text and 2 pages of diagrams). The diagrams should include at least a component and physical representations of
your system.

You should also clearly mention which 2 architecture styles were used and where they are implemented in the code.

Design:
Document your project’s design. Your target audience for this documentation is a junior programmer who would be
responsible for implementing some portion of the project. This would be the first thing you would give a new employee to
get them up to speed on the low-level structure of your system.

Create a document that describes the design of your system, and its rationalization, such that a junior programmer could
implement some subset of the system and integrate it appropriately. Your design should include a clear description of the
structure of the classes and their externally-visible interfaces. Rationale must be provided documenting why you selected
your design. The applicability of your design compared to alternative designs should also be referenced in this discussion.

Your design should highlight key patterns, classes, abstractions, and data structures / algorithms that are critical to the
successful implementation of your system. A mapping between the design-level entities (e.g., the classes) and the
components described in the architecture is also required (or should be depicted on the diagrams). Use diagrams as
appropriate for this report. At a minimum, include a class diagram that shows all of the classes and public API for your
system and how they interact along with a sequence diagram that captures how your system behaves for each of the scenarios
from the initial proposal. Clarify the physical location of where the classes will reside (e.g., on the client, on a server), as well
as any external API your system will use. You should also clearly mention which 2 design patterns were used and where they
are implemented in the code.

An analysis of how your design minimizes coupling and could accommodate future requirement changes is required
(specifically, think about the coupling/cohesion slides from the design intro lecture). Think critically about how you could
envision your system being altered and discuss how your design would support or inhibit evolving to meet those changed
requirements. Identify one ways you think your system may need to evolve in the future and describe how your project’s
design would support these changes.

The written component should clearly and succinctly capture and justify the design of your system. This description can be at
most 5 pages (3 pages of primarily text and 2 pages of primarily diagrams).

Written deliverable:
1. Metadata: Project title, team member names, team member Quest IDs.
2. Architectural description (5 page maximum).
3. System design (5 page maximum).
4. Only one team member needs to upload this document to Learn. PDF only.

File naming scheme: cs446-d6_<project-name>.pdf (use - instead of space in file names)

Assessment:
This deliverable is worth 15% of your final grade.

