
Material and some slide content from: 
- Software Architecture: Foundations, Theory, and Practice 
- Krzysztof Czarnecki 
- John Vlissides 
- GoF Design Patterns Book 
- Atif Khan 
- Reid Holmes 

Design Introduction
Mei Nagappan



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Software Design
‣ Wikipedia: Software design is the process of 

implementing software solutions to one or more 
sets of problems. 


‣ Jack W. Reeves (What is software design?)


‣ If the design documents truly represent a 
complete design, the manufacturing team can 
proceed to build the product…. After reviewing 
the software development life cycle as I 
understood it, I concluded that the only software 
documentation that actually seems to satisfy the 
criteria of an engineering design is the source 
code listings.



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

From the Engg. World
‣ There are common problems that one faces during 

development.


‣ There can be common solutions to them.


‣ These are not specific problems like sorting, which 
has an algorithm.


‣ Deals with how you create classes, methods, and 
objects (at least in the OO world).


‣ The solution is called design patterns. 


‣ Note software design is an overloaded term. 



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Design patterns
‣ Common solutions to a recurring design problems.


‣ Abstract recurring structures.


‣ Comprises of class and/or object:

‣ Dependencies

‣ Structures

‣ Interactions

‣ Conventions


‣ Names the design structure explicitly.


‣ Distills design experience.


‣ Sounds a lot like Architecture. 



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Architecture vs Design
‣ Arch


‣ Higher level of abstraction


‣ How modules talk to each other


‣ Design


‣ Lower level of abstraction (meaning more 
concrete solutions)


‣ How is a particular module structured?


‣ All design is Arch but not other way around. 



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Why design patterns?
Leverage existing 
design knowledge

Enhance flexibility 
for future change

Increase reusability 
of developed code

Ease communication by 
using a shared vocabulary



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Leverage existing design knowledge
‣ Other people have faced similar situations.


‣ Eg. Building a house.


‣ Roofs in houses have been around for 1000s of 
years

https://i1.wp.com/www.roofcalc.net/wp-content/uploads/2014/06/Roof-Types-Diagram.png

https://i1.wp.com/www.roofcalc.net/wp-content/uploads/2014/06/Roof-Types-Diagram.png


MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Increase reusability
‣ If I have a problem with a known design solution, 

and I find an implementation with the same design 
then I can reuse the code


‣ Note: Cannot reuse all of it all the time, as is. 


‣ In the roof example, I can reuse parts of a roof 
from another house, but not all of it, exactly. 



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Ease of communication using a shared vocabulary

‣ Different stakeholders even in the development 
sphere


‣ Dev, Tester, Maintainer, Rel Engg. 


‣ Many in each of the stakeholders as well


‣ When I ask another person to implement a design, 
they know exactly what to do


‣ When a different stakeholder looks at the code, 
they know what design was implemented, and 
therefore the rationale. 


‣ Eg. As a home owner, when I request a gable roof, 
the builder knows exactly what I mean. 



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Enhance flexibility for change
‣ When maintainer looks at the code, and design 

choices, they know what changes they can make 
without breaking the design.



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Design patterns
‣ Design patterns have four main parts:


1.Name

2.Problem

3.Solution

4.Consequences / trade-offs


‣ Are language-independent.


‣ Are “micro-architectures”


‣ Cannot be mechanically applied

‣ Must be translated to a context by the developer.



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

GoF design patternsDesign Patterns
����������������
��

�
�������� ��
	��	
�� �������
��

�����
��������

����
���������
�

�	����


�
�������

���������

������
� ������

�
����

��!������

����
���


������

������
 �����

���"�����

�
�#�

$���
�
���


���������
�������������

��!!���

$��
���


�������


%�!������������

��!����

����
��


�����

��
�����

&�����


�
��

�
�

�
�
�

�
�



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Henri Poincaré
‣ “Science is built up of facts as a 

house is built of stones, but an 
accumulation of facts is no more 
a science than a heap of stones 
is a house.”



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Design process



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Motivation
‣ OOD methods emphasize design notations.

‣ But... these notations must be expressible in code.


‣ The importance of experience in OOD cannot be 
overemphasized.


‣ Design-level reuse is valuable.


‣ Matches problems to design experience.


‣ Avoid previously-encountered difficulties.


‣ Good design can be marred by poor 
implementation, but good implementation cannot 
overcome bad design



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Concept
‣ OO systems exploit recurring design structures 

that promote:


‣ Abstraction


‣ Flexibility


‣ Modularity


‣ Elegance


‣ Capturing, communicating, and applying this 
knowledge is problematic


‣ Must contend with similar constraints as 
architecture (e.g., complexity, conformity, changeability, invisibility)



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstraction
‣ The removal of detail while retaining essential 

properties of its structure


‣ Plays a central role in the design process:


‣ Enables the designer to focus on the key issues 
without being distracted by implementation


‣ It can be easy for developers to be distracted by 
implementation minutiae


‣ Different abstractions are appropriate for different 
applications and needs



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Design principles
‣ System designs balance a variety of concerns 


‣ Design principles provide a set of considerations 
to keep in mind when modelling various 
dependencies in a design


‣ There is no one set of principles, designs should 
strive to support; here we describe a set of five 
high-level principles


‣ Dependency management heavily influences the 
evolvability, reusability, and brittleness of a system



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Design principles
‣ Some high-level advice exists in the form of 

principles that can help guide design decisions.


‣ SOLID represents common subset of these:


‣ Single Responsibility


‣ Open/Close


‣ Liskov Substitution Principle


‣ Interface Segregation


‣ Dependency Inversion



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Single Responsibility
‣ Classes should have only one major task


‣ Insulates classes from one another



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Open/Close
‣ Classes should be open for extension but closed 

to modification


‣ If a class needs to be extended, try to do it 
through subclassing to minimize impact on 
existing clients



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Liskov substitution principle
‣ Subtypes should behave as their parent types


‣ aka a program should still behave correctly should 
two subtypes of a common type be interchanged

http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle

http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle


MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Interface segregation
‣ Only place key methods in interfaces


‣ Clients should not need to support methods that 
are irrelevant to their behaviour


‣ This can lead to a larger number of smaller 
interfaces in practice

https://lostechies.com/derickbailey/files/2011/03/InterfaceSegregationPrinciple_60216468.jpg

https://lostechies.com/derickbailey/files/2011/03/InterfaceSegregationPrinciple_60216468.jpg


MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Dependency inversion
‣ Also known as the ‘inversion of control’


‣ High-level methods should not depend on lower-
level modules


‣ Minimizes direct coupling between concrete 
classes


‣ These dependencies often manifest during object 
creation



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Lower-level principles
‣ Encapsulate what varies


‣ This is a key concern to increase reusability and 
reduce the impact of regression bugs


‣ Program to interfaces, not implementations


‣ Reduces coupling between classes


‣ Favour composition over inheritance


‣ Enables runtime behaviour changes and makes 
code easier to evolve in the future


‣ Strive for loose coupling



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Quality attributes	
‣ Simplicity


‣ “There are two ways of constructing a software 
design. One way is to make it so simple that 
there are no obvious deficiencies. And the other 
is to make it so complicated that there are no 
obvious deficiencies.” -- Hoare [1981]


‣ Meets goals without extraneous embellishment


‣ Measured by its converse --> complexity



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Coupling
MORE LESS

Content No 
interaction

Message

Data (params)

Global

Control



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Cohesion
WORSE BETTER

Coincidental

Sequential

Communication

Logical

Temporal

Functional



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Spotting incoherency
‣ An operation’s description is full of ‘and’ clauses:


‣ e.g., ‘initialize the data structure and initialize the screen and initialize the 
history and initialize the layout and show the spash screen’


‣ Results in temporal cohesion, logical cohesion


‣ An operation’s description has many ‘if..then..else’


‣ e.g., ‘if x==0 do foo else if x == 1 then do bar, else if x == 2 baz else do bah.’


‣ Results in control coupling, coincidental cohesion, 
logical cohesion


