
Mei Nagappan
Architectural Style Intro

Material and some slide content from: 
- Emerson Murphy-Hill, Reid Holmes 
- Software Architecture: Foundations, Theory, and Practice 
- Essential Software Architecture



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Attribute Driven Design
‣ Choose module to decompose


‣ Initially whole system is one module


‣ Refine the module


‣ Choose arch drivers from NFR and FR


‣ Choose arch style that satisfies them


‣ Create modules based on style


‣ Allocate functionality to each module


‣ Define interfaces for modules


‣ Verify and evaluate against NFR and FR


‣ Repeat until you cannot decompose




MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
‣ Some design choices are better than others


‣ Experience can guide us towards beneficial sets 
of choices (patterns) that have positive 
properties


‣ An architectural style is a named collection of 
architectural design decisions that:


‣ Are applicable to a given context


‣ Constrain design decisions


‣ Elicit beneficial qualities in resulting systems

[TAILOR ET AL.]



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
‣ A set of architectural design decisions that are 

applicable to a recurring design problem, and 
parameterized to account for different software 
development contexts in which that problem 
appears.


‣ e.g., Three-tier architectural pattern:

[TAILOR ET AL.]



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
[CZARNECKI]

‣ Defines a family of architectures that are 
constrained by:


‣ Component/connector vocabulary


‣ Topology


‣ Semantic constraints


‣ When describing styles diagrammatically:


‣ Nodes == components (e.g., procedures, modules, processes, databases, …)


‣ Edges == connectors (e.g., procedure calls, events, db queries, pipes, …)




MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Good properties of an architecture
‣ Result in a consistent set of principled techniques


‣ Resilient in the face of (inevitable) changes


‣ Source of guidance through product lifetime


‣ Reuse of established engineering knowledge

[CZARNECKI]



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

“Pure” architectural styles
‣ Pure architectural styles are rarely used in practice


‣ Systems in practice:


‣ Regularly deviate from pure styles.


‣ Typically feature many architectural styles.


‣ Architects must understand the “pure” styles to 
understand the strength and weaknesses of the 
style as well as the consequences of deviating 
from the style.

[CZARNECKI]



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural
Styles

Language
Based

Layered Dataflow

Shared
Memory

Interpreter
Implicit

Invocation

Peer-to-Peer

Main program &
Subroutines

Object-
oriented

Virtual
Machine

Client
Server

Batch-
sequential

Pipe-and-Filter

Blackboard

Rule-based Interpreter

Mobile
code

Publish-
subscribe

Event-based

[TOPOLOGY FROM 
TAILOR ET AL.]



MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Arch Activity



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Presentation
‣ 20 minute maximum


‣ Two primary components:


‣ Description of how the style / pattern is useful 
over time


‣ Comprehensive example / tutorial that 
demonstrates the dynamic nature of the style / 
pattern


‣ No slides; be creative. Make it memorable.



MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Arch Style - D2 Document
‣ Have its own vocabulary for its components and 

connectors? (define)


‣ Impose specific topological constraints?


‣ Most applicable to specific kinds of problems?


‣ What specific positive behaviours does it engender?


‣ Have any specific negative behaviours?


‣ Support/inhibit specific NFPs?


