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Non Functional Properties
‣ System requirements fall into two broad 

categories:


‣ Functional Properties: what the system is 
supposed to do (‘the system shall do X’).


‣ Non-Functional Properties: what the system is 
supposed to be (‘the system shall be Y’).
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NFPs
‣ NFPs are constraints on the manner in which the 

system implements and delivers its functionality.


‣ E.g.,

‣ Efficiency

‣ Complexity

‣ Scalability

‣ Heterogeneity

‣ Adaptability

‣ Dependability

‣ Security and usability 


[TAILOR ET AL.]
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FP vs NFP
‣ Products are sold based on their FPs.


‣ e.g., Cell phone, Car, Tent.


‣ However, NFPs play a critical role in perception.


‣ “This program keeps crashing”


‣ “It doesn’t work with my [...]”


‣ “It’s too slow”

[TAILOR ET AL.]
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System Stakeholders
‣ Architectural documents are used by a variety of 

system stakeholders:


‣ Developers

‣ Managers

‣ Sales

‣ Testers

‣ Support

‣ Maintenance

‣ DevOps

‣ Customers
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Stakeholder Questions
‣ Management: are we on schedule?


‣ Developers: who is responsible for what?


‣ Sales: can we claim it can do this task?


‣ QA: what teams do we talk to about defects?


‣ DevOps: where should this component be 
deployed?


‣ Support: which QA team signed off on this?


‣ Maintenance: how can we add this feature?



MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Stakeholder Conflicts
‣ Each stakeholder will have their own opinion about 

what NFPs matter most:


‣ e.g., the development team will care about 
maintainability more than the customer


‣ e.g., QA will be more interested in the testability 
of the application than sales
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Tradeoffs

Reliability!

Low cost !
Increased Productivity!
Backward-Compatibility!
Traceability of requirements!
Rapid development!
Flexibility!

Client (Customer, Sponsor)! End User!

Portability!
Good Documentation!

Runtime!
Efficiency!

Developer/!
Maintainer!

Minimum # of errors!
Modifiability, Readability!
Reusability, Adaptability!
Well-defined interfaces!

Functionality!
User-friendliness!
Ease of Use!
Ease of learning!
Fault tolerant!
Robustness!
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Typical tradeoffs
‣ functionality vs. usability


‣ cost vs. robustness


‣ efficiency vs. portability


‣ dev velocity vs. functionality


‣ cost vs. reusability


‣ backward compatibility vs. readability
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Design guidelines for NFPs
‣ Provide guidelines that support various NFPs.


‣ Focus on architectural level:


‣ Components


‣ Connectors


‣ Topologies

[TAILOR ET AL.]
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Evaluating NFPs
‣ It is tempting to treat NFPs abstractly


‣ Thinking about NFPs concretely means thinking 
about how they might be measured


‣ If you do not do this, it is hard to validate whether 
a design / arch decision supports or inhibits an 
NFP
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NFP: Efficiency
‣ Efficiency is a quality that reflects a system’s 

ability to meet its performance requirements.


‣ Components:

‣ Keep them “small”.

‣ Simple and compact interfaces.

‣ Allow multiple interfaces to the same functionality.

‣ Separate data from processing components.

‣ Separate data from meta data.


‣ Connectors:

‣ Carefully select connectors.

‣ Be careful of broadcast connectors.

‣ Encourage asynchronous interaction.

‣ Be wary of location/distribution transparency.


‣ Topology:

‣ Keep frequent collaborators “close”.

‣ Consider the efficiency impact of selected styles.

[TAILOR ET AL.]
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NFP: Complexity
‣ Complexity is a property that is proportional to the 

size of a system, its volume of constituent 
elements, their internal structure, and their 
interdependencies.


‣ Components:

‣ Separate concerns.

‣ Isolate functionality from interaction.

‣ Ensure cohesiveness.

‣ Insulate processing from data format changes.


‣ Connectors:

‣ Isolate interaction from functionality.

‣ Restrict interactions provided by each connector.


‣ Topology:

‣ Eliminate unnecessary dependencies.

‣ Use hierarchical (de)composition.

[TAILOR ET AL.]
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NFP: Scalability / Heterogeneity
‣ Scalability: The capability of a system to be 

adapted to meet new size / scope requirements.


‣ Heterogeneity: A system’s ability to be composed 
of, or execute within, disparate parts.


‣ Portability: The ability of a system to execute on 
multiple platforms while retaining their functional 
and non-functional properties.

[TAILOR ET AL.]



MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Components:

‣ Keep components focused

‣ Simplify interfaces

‣ Avoid unnecessary heterogeneity

‣ Distribute data sources

‣ Replicate data


‣ Connectors:

‣ Use explicit connectors

‣ Choose the simplest connectors

‣ Direct vs. indirect connectors


‣ Topology:

‣ Avoid bottlenecks

‣ Place data close to consumer

‣ Location transparency

NFP: Scalability / Heterogeneity
[TAILOR ET AL.]
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NFP: Evolvability
‣ Evolvability: The ability to change to satisfy new 

requirements and environments.


‣ Components:

‣ Same as for complexity. 

‣ Goal is to reduce risks by isolating modifications.


‣ Connectors:

‣ Clearly define responsibilities.

‣ Make connectors flexible.


‣ Topology:

‣ Avoid implicit connectors.

‣ Encourage location transparency.

[TAILOR ET AL.]
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NFP: Dependability
‣ Reliability: The probability a system will perform 

within its design limits without failure over time.

‣ Availability: The probability the system is available at 

a particular instant in time.

‣ Robustness: The ability of a system to respond 

adequately to unanticipated runtime conditions.

‣ Fault-tolerance: The ability of a system to respond 

gracefully to failures at runtime.

‣ Faults arise from: environment, components, connectors, 

component-connector mismatches.

‣ Survivability: The ability to resist, recover, and adapt 

to threats.

‣ Sources: attacks, failures, and accidents.

‣ Steps: resist, recognize, recover, adapt.


‣ Safety: The ability to avoid failures that will cause loss 
of life, injury, or loss to property.

[TAILOR ET AL.]
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NFP: Dependability
‣ Components:

‣ Control external component dependencies.

‣ Support reflection.

‣ Support exception handling.


‣ Connectors:

‣ Use explicit connectors.

‣ Provide interaction guarantees.


‣ Topology:

‣ Avoid single points of failure.

‣ Enable back-ups.

‣ Support system health monitoring.

‣ Support dynamic adaptation.

[TAILOR ET AL.]


