
Material and some slide content from:
- Software Architecture: Foundations,
Theory, and Practice
- Elisa Baniassad
- Reid Holmes

Mei Nagappan
Non-Functional Properties

Home Gallery Create Shop About

Title
Drag-‐and drop cells to

rearrange the cells.

Click on the captions to

edit them.

To remove a cell, just

leave the caption empty.

Description

Save Cancel

Privacy & Terms

Type the text

How the customer explained

it

How the project leader

understood it

How the programmer wrote

it

How the analyst designed it How the business consultant

described it

What the customer really

needed

Home Gallery Create Shop About

Title
Drag-‐and drop cells to

rearrange the cells.

Click on the captions to

edit them.

To remove a cell, just

leave the caption empty.

Description

Save Cancel

Privacy & Terms

Type the text

How the customer explained

it

How the project leader

understood it

How the programmer wrote

it

How the analyst designed it How the business consultant

described it

What the customer really

needed

Intro graphic:
[http://projectcartoon.com]

http://projectcartoon.com

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Non Functional Properties
‣ System requirements fall into two broad

categories:

‣ Functional Properties: what the system is
supposed to do (‘the system shall do X’).

‣ Non-Functional Properties: what the system is
supposed to be (‘the system shall be Y’).

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFPs
‣ NFPs are constraints on the manner in which the

system implements and delivers its functionality.

‣ E.g.,

‣ Efficiency

‣ Complexity

‣ Scalability

‣ Heterogeneity

‣ Adaptability

‣ Dependability

‣ Security and usability

[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

FP vs NFP
‣ Products are sold based on their FPs.

‣ e.g., Cell phone, Car, Tent.

‣ However, NFPs play a critical role in perception.

‣ “This program keeps crashing”

‣ “It doesn’t work with my [...]”

‣ “It’s too slow”

[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

System Stakeholders
‣ Architectural documents are used by a variety of

system stakeholders:

‣ Developers

‣ Managers

‣ Sales

‣ Testers

‣ Support

‣ Maintenance

‣ DevOps

‣ Customers

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Stakeholder Questions
‣ Management: are we on schedule?

‣ Developers: who is responsible for what?

‣ Sales: can we claim it can do this task?

‣ QA: what teams do we talk to about defects?

‣ DevOps: where should this component be
deployed?

‣ Support: which QA team signed off on this?

‣ Maintenance: how can we add this feature?

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Stakeholder Conflicts
‣ Each stakeholder will have their own opinion about

what NFPs matter most:

‣ e.g., the development team will care about
maintainability more than the customer

‣ e.g., QA will be more interested in the testability
of the application than sales

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Tradeoffs

Reliability!

Low cost !
Increased Productivity!
Backward-Compatibility!
Traceability of requirements!
Rapid development!
Flexibility!

Client (Customer, Sponsor)! End User!

Portability!
Good Documentation!

Runtime!
Efficiency!

Developer/!
Maintainer!

Minimum # of errors!
Modifiability, Readability!
Reusability, Adaptability!
Well-defined interfaces!

Functionality!
User-friendliness!
Ease of Use!
Ease of learning!
Fault tolerant!
Robustness!

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Typical tradeoffs
‣ functionality vs. usability

‣ cost vs. robustness

‣ efficiency vs. portability

‣ dev velocity vs. functionality

‣ cost vs. reusability

‣ backward compatibility vs. readability

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design guidelines for NFPs
‣ Provide guidelines that support various NFPs.

‣ Focus on architectural level:

‣ Components

‣ Connectors

‣ Topologies

[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

Evaluating NFPs
‣ It is tempting to treat NFPs abstractly

‣ Thinking about NFPs concretely means thinking
about how they might be measured

‣ If you do not do this, it is hard to validate whether
a design / arch decision supports or inhibits an
NFP

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Efficiency
‣ Efficiency is a quality that reflects a system’s

ability to meet its performance requirements.

‣ Components:

‣ Keep them “small”.

‣ Simple and compact interfaces.

‣ Allow multiple interfaces to the same functionality.

‣ Separate data from processing components.

‣ Separate data from meta data.

‣ Connectors:

‣ Carefully select connectors.

‣ Be careful of broadcast connectors.

‣ Encourage asynchronous interaction.

‣ Be wary of location/distribution transparency.

‣ Topology:

‣ Keep frequent collaborators “close”.

‣ Consider the efficiency impact of selected styles.

[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Complexity
‣ Complexity is a property that is proportional to the

size of a system, its volume of constituent
elements, their internal structure, and their
interdependencies.

‣ Components:

‣ Separate concerns.

‣ Isolate functionality from interaction.

‣ Ensure cohesiveness.

‣ Insulate processing from data format changes.

‣ Connectors:

‣ Isolate interaction from functionality.

‣ Restrict interactions provided by each connector.

‣ Topology:

‣ Eliminate unnecessary dependencies.

‣ Use hierarchical (de)composition.

[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Scalability / Heterogeneity
‣ Scalability: The capability of a system to be

adapted to meet new size / scope requirements.

‣ Heterogeneity: A system’s ability to be composed
of, or execute within, disparate parts.

‣ Portability: The ability of a system to execute on
multiple platforms while retaining their functional
and non-functional properties.

[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Components:

‣ Keep components focused

‣ Simplify interfaces

‣ Avoid unnecessary heterogeneity

‣ Distribute data sources

‣ Replicate data

‣ Connectors:

‣ Use explicit connectors

‣ Choose the simplest connectors

‣ Direct vs. indirect connectors

‣ Topology:

‣ Avoid bottlenecks

‣ Place data close to consumer

‣ Location transparency

NFP: Scalability / Heterogeneity
[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Evolvability
‣ Evolvability: The ability to change to satisfy new

requirements and environments.

‣ Components:

‣ Same as for complexity.

‣ Goal is to reduce risks by isolating modifications.

‣ Connectors:

‣ Clearly define responsibilities.

‣ Make connectors flexible.

‣ Topology:

‣ Avoid implicit connectors.

‣ Encourage location transparency.

[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Dependability
‣ Reliability: The probability a system will perform

within its design limits without failure over time.

‣ Availability: The probability the system is available at

a particular instant in time.

‣ Robustness: The ability of a system to respond

adequately to unanticipated runtime conditions.

‣ Fault-tolerance: The ability of a system to respond

gracefully to failures at runtime.

‣ Faults arise from: environment, components, connectors,

component-connector mismatches.

‣ Survivability: The ability to resist, recover, and adapt

to threats.

‣ Sources: attacks, failures, and accidents.

‣ Steps: resist, recognize, recover, adapt.

‣ Safety: The ability to avoid failures that will cause loss
of life, injury, or loss to property.

[TAILOR ET AL.]

MEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTUREMEI NAGAPPAN - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Dependability
‣ Components:

‣ Control external component dependencies.

‣ Support reflection.

‣ Support exception handling.

‣ Connectors:

‣ Use explicit connectors.

‣ Provide interaction guarantees.

‣ Topology:

‣ Avoid single points of failure.

‣ Enable back-ups.

‣ Support system health monitoring.

‣ Support dynamic adaptation.

[TAILOR ET AL.]

