
Visitor Design Pattern 

Purpose and Motivation 
The purpose of the visitor pattern is to add new operations to object structure but without                
changing the object structure. It’s very tempting to add new computations inside the object              
classes, which works fine if the program is simple or small. However, as the program grows                
more complex, the program will be hard to maintain if keep adding new methods to the original                 
code. It’s more error-prone. Visitor pattern solves this by separating the object structure and              
algorithms. New operations are added by creating new classes in the algorithm section. This              
pattern follows the open-close principle, meaning that the API is open for extensibility, but              
implementation close for modification. 

Intended Use Cases 
The Visitor design pattern is useful when many distinct and unrelated operations need to be               
performed on objects in an object structure, and you want to avoid “polluting” their classes with                
these operations. The Visitor design pattern lets you keep related operations together by defining              
them in one class. When object structure is shared by many applications, use visitor to put                
operations in just those applications that need them. In addition, this design pattern is used when                
you do not want your object structure to change much, but you want to keep expanding the                 
operations performed on the objects. 

Vocabulary 
Visitor (Interface): Declares a “visit” operation for each class of concrete element in the object               
structure. The operation's name and signature identify the class that sends the Visit request to the                
visitor. That lets the visitor determine the concrete class of the element being visited. Then the                
visitor can access the element directly through its particular interface. 
Concrete Visitor (Class): Implements each operation declared by Visitor. A Concrete Visitor            
provides the context for the algorithm and stores its local state. This state often accumulates               
results during the traversal of the structure. 
Visitable (Interface): Defines an “accept” operation that takes a visitor as an argument. 
Concrete Element (Class): Implement an “accept” operation that takes a visitor as an argument. 



Structure and Runtime Behaviour 
There are two parts: Visitor (Algorithm) and Visitable (Element), interacting in the Figure             
below. We have two interfaces for each part, and several concrete classes implementing the              
interfaces. The Client calls operation in Visitor through the method Accept(). The Visitable             
interface declares the Accept() method which takes in a Visitor. The Concrete Element             
implement the Accept() function: it uses the Visitor parameter; calls VisitConcreteElement()           
method and pass itself to the VisitConcreteElement() function. The “this” keyword allows the             
appropriate VisitConcreteElement() method to be called within the Visitor class at runtime.            
Notice that despite the Accept() method is exactly the same for each class, it is absolutely                
necessary to override it every time. Otherwise, if your class is inherited from a parent class,                
“this” will refer to the parent class’s context. Later, the Visitor interface declares             
VisitConcreteElement() methods for different types of elements. Each Visitor class will           
implement the methods for all visitable types. If you want to add a new operation, just add                 
another ConcreteVisitor class and implement methods for all visitable types. 
 

 



Known Consequences 

Positive Consequences 

● If the logic of operations in Element has to change i.e. we want to handle the Element                 
differently, we only need to modify code implemented in the Visit() methods of the              
concrete Visitor classes. 

● Visitors can have and maintain state relating to the different Elements. 
● Adding new Elements does not affect current functionality implemented for the other            

Elements. This ensures that the Visitor pattern does not violate the Open/Closed            
principle. 

Negative Consequences 

● The return type of the VisitConcreteElement() methods must be known prior to            
implementation, in the designing phase, otherwise the signatures in the interface and all             
of the implemented VisitConcreteElement() methods will have to be changed to adhere to             
the new return type. 

● As we increase the number of Visitor implementations, it makes the system difficult to              
maintain and extend. If a new Element is added, all the Visitors need to implement its                
VisitConcreteElement() method, even if that particular implementation is just an empty           
function. 

● A Visitor has access to the Element object and can, therefore, modify its properties,              
which may result in unwanted side effects. 

NFPs 

Improved NFPS 

● Scalability: Improves scalability in the case when new operations on Element classes are             
added frequently, and the program’s class hierarchy consists of many unrelated classes. 

● Readability: Improves readability as the code for the new operation is packed up in a               
Visitor class and not cluttered throughout the many Element classes. 

Inhibited NFPS 

● Maintainability: Degrades maintainability in the case when we need to add new Elements             
to the program’s class hierarchy. When a new Element is added, all existing Visitors must               
be updated with the new corresponding VisitConcreteElement() method for processing          
this Element. 



● Testability: Degrades testability due to the extensive use of polymorphism and the fact             
that its implementation is based on double dispatch. 

Code Example 
The Visitor class would be declared like this in C++: 
 
class Visitor { 

public: 

    virtual void VisitElementA(ElementA*); 

    virtual void VisitElementB(ElementB*); 

 

    // and so on for other concrete elements 

protected: 

    Visitor(); 

}; 

 

Each class of ConcreteElement implements an Accept() operation that calls the matching            
VisitElement() operation on the visitor for that ConcreteElement. Thus the operation that ends up              
getting called depends on both the class of the element and the class of the visitor. 
The concrete elements are declared as 
 
class Element { 

public: 

    virtual ~Element(); 

    virtual void Accept(Visitor&) = 0; 

protected: 

    Element(); 

}; 

class ElementA : public Element { 

public: 

    ElementA(); 

    virtual void Accept(Visitor& v) { v.VisitElementA(this); } 

}; 

 

class ElementB : public Element { 

public: 

    ElementB(); 

    virtual void Accept(Visitor& v) { v.VisitElementB(this); } 



 

}; 

 
A CompositeElement class might implement Accept() like this: 
 
class CompositeElement : public Element { 

public: 

    virtual void Accept(Visitor&); 

private: 

    List<Element*>* _children; 

}; 

 

void CompositeElement::Accept (Visitor& v) { 

    ListIterator<Element*> i(_children); 

 

    for (i.First(); !i.IsDone(); i.Next()) { 

        i.CurrentItem()->Accept(v); 

    } 

    v.VisitCompositeElement(this); 

} 

Credits 
Students: 

DDJC (Jennifer HGill, Di Wang, Chenshu Zhou) 
Kaze (Zeyad Abdulhani, Karan Bhandari, Eric Luo, Adil Mian) 

Instructor and TAs: 
Mei Nagappan, Arman Naeimian, Ivens Portugal 


