
Publish-Subscribe architecture

Definition

● The Publish-Subscribe architecture is a messaging pattern that decouples the entities sending
the messages and the ones listening for the messages. It allows publishers (senders) to
broadcast messages to several subscribers (receivers) without them being tightly coupled.
Essentially, the publishers are unaware of which application is going to receive the message
whereas the subscribers do not really care about who actually sent it.

● Vocabulary for components and connectors:​Publishers​ :
○ Broadcasts messages with no knowledge of who is subscribing.
○ Eventbus/Broker​ : Transfers messages from publisher to subscriber; holds messages

until they are taken by subscribers or they timeout.
○ Subscribers​ : “Listens” for messages they are interested in without knowing who is

sending the messages (publishers). Acknowledges when it has taken a subscribed
message from the bus.

Topological constraints

(The figure above shows a publish-subscribe model with 2 publishers, an event bus and 3 subscribers.
Subscriber 1 is subscribed to Topic A so it will receive messages with Topic A. Subscriber 2 is
subscribed to Topic A and Topic B, thus it will receive messages with both topics. Lastly, Subscriber 3
is subscribed to Topic B so it will receive messages with Topic B.)

● This architecture involves multiple publishers and multiple subscribers.
● Multiple subscribers can subscribe to multiple topics.
● Communication is one way , from the publishers to the subscribers via the brokers.

Applicable problems

● ​Applications that require N to N scalability​: Pub-Sub architecture supports many different
communication patterns. Those patterns include 1 to 1 , many to many , 1 to many , and many to 1 . This
means each subscriber subscribes to at least one publisher and each publisher sends messages to at
least one subscriber. These loosely coupled components allow for more publishers and subscribers to
scale quickly and dynamically.

● ​Need for independent operations​: Publishers do not need to know of a subscribers existence.
Since publishers post to topics, and subscribers subscribe to topics, neither need to know the system
topology and can operate independently of one another.

Resilience to change

● This architecture is resilient to many changes. Adding or removing topics is convenient and
scalable because it can be done without changing the architecture.

● Adding and removing both publishers and subscribers are seamless.

Negative behaviours

● ​Bottlenecks:​ The eventbus/broker is the bottleneck of the system. This means as the
system scales the performance of the broker is proportionate to the performance of the
system.

● ​No Guaranteed Stability:​ Since publishers and subscribers do not have any knowledge of
each other, publishers can not guarantee that all messages have been sent properly. The
stability of the messages being sent is dependant on the broker or bus delivering the messages
properly. This issue can be mitigated by forcing subscribers to send a handshake or
acknowledgement of receipt to publishers.

● ​Lack of Message Flexibility: ​After the creation of a message data structure, modifying the
message format can be complex. This is due to the fact that modifying the message structure
results in all users of that message having to be altered to accept the new format. If subscribers
are external, this may be impossible. Possible mitigation strategies include sending messages
with a version number so that subscribers can ensure they are receiving the correct message
format.

● ​Asynchronous Publishing: ​If a subscriber begins subscribing to a topic after its initial
inception, messages posted to that topic prior to the subscription may be lost.

Supported NFPs

● Scalability:
○ Supported by the decoupled nature of the architecture, allowing additional publishers

and subscribers to be added efficiently without modifications to the rest of the
system. However, scalability is inhibited by the slowdowns that might occur when
there are many subscribers to a topic.

● Adaptability:

○ Supported again by the decoupled nature of the architecture, allowing new publishers,
subscribers and topics to be added to the system without modifications to existing
components. Additionally, implementations and algorithms of individual
components can be modified without affecting upstream or downstream
components. However, adaptability is inhibited when the structure of existing
message data needs to be modified.

● Dependability:

○ Inhibited by the fact that messages are not guaranteed to be delivered to subscribers
due to the lack of message delivery acknowledgement in the architecture.

Inhibited NFPs
● Flexibility :

○ Once the structure of the payload is decided, it is hard for it to be changed in the
Pub-Sub pattern

● Stability:
○ Due to the decoupled nature of the publish-subscribe architecture, two scenarios arise

where message delivery to subscribers may fail. If an event bus is designed to deliver
messages for a specified time and stop sending messages thereafter, there is no

guarantee that all subscribers receive the message because there is no acknowledgment
mechanism in the architecture. Another scenario where message delivery fails is
caused by the fact that publishers assume that subscribers are listening even when
they are not. Publishers will not know that there are no subscribers listening and
important messages can be lost.

Comparison with other architectures
● Event-based architecture is not subscribing to a generator, rather than a bus and

Publish-subscribe architecture involves a bus that acts as an intermediary between the
publisher and subscriber.

● Unlike client server architecture, two way communication is not possible in publish
subscribe architecture.

Credit:
Students:

Ripe (Mena Labib, Shakaib Khan, Zuheir Al Sagha, Mark Emery)
CannaBuds (Brandom Lam, Shiyu (Alexis) Zhang)

Instructor and TAs:
Mei Nagappan, Achyudh Ram Keshav Ram, Aswin Vayiravan, Wenhan Zhu

