
Proxy Design Pattern 

Purpose and Motivation 
Proxy means “a figure that can be used to represent something else”. The proxy design pattern is                 
used to create a wrapper to cover the main object’s complexity from the client.  
The main purpose of the proxy design pattern is to abstract and encapsulate code segments. It                
solves many different problems, but all of them involve some object taking the place of and/or                
acting like another object. They are widely used for security purposes, to hide networking logic               
and to load large objects on demand.  
 

Intended Use Cases 
There are 4 main intended use cases for the proxy design pattern. Because of this, there are 4                  
main realizations of the proxy pattern:  

● Protection proxy: Manipulates the arguments of the real object’s functions for security            
reasons, such as filtering, or masking inputs and outputs to and from the real object. It                
uses access rights to facilitate access control of resources. It effectively abstracts the real              
object away from the users.  

● Remote proxy: There are many frameworks and libraries that allow remote code             
execution 1 using objects. These objects are created on the client-side but are executed on               
the server-side where they are able to access information unavailable to the clients. A              
widely used example is object-relational mappers, these will map database rows to            
objects for blending the two technologies together. 

● Virtual proxy: Provides placeholders and default values while invoking the real object to              
perform the actual task. Upon completion of the real object’s operation, the virtual proxy              
will send the real data to the clients who received the mocked values. The most common                
use-case is to provide the user information on a need-to-know basis. A good example of               
this is file explorer not returning detailed file information until file properties are pressed.  

● Smart proxy: is used to add additional actions such as assertions when accessing the real               
object. A use case is when accessing a resource, the proxy can check if the resource lock                 
is available to hold. The smart proxy can be used to implement the smart pointer, it can                 
keep track of the number of references to the real object, and free the object automatically                
once the number of references falls to zero.  

 

Vocabulary 



● Subject Interface: Relays requests made to the proxy. The client does not know whether              
they are calling a proxy or the real subject as the subject interface (a form of API layer)                  
will handle the request.  

● Real Subject: The real subject is where the core logic of the design pattern resides. The                
proxy can abstract a variety of fundamental security checks or cache commonly used             
requests, however, the subject must be in charge of most of the real functionality.  

● Proxy: Design pattern; wrapper that encapsulates access to the resource 
● Request: The function call made by the client, expecting some form of action in return               

from the subject. This request is sent to the interface which forwards it to the proxy. The                 
proxy can then decide how the request should be completed.  

● Client: Component that requests data or action to be performed 
 

Structure and Runtime Behaviour 
Structure (Class Diagram): 

 
 
Behaviour (Sequence Diagram): 
 



 
The client makes a request to what they believe to be the real subject. The request is parsed in the                    
subject proxy and delegated accordingly to the logic that resides in the real subject. Before the                
request is delegated, the proxy is able to filter and handle edge cases according to the specific                 
needs of the system. The proxy object should implement the same fields/methods as the real               
subject, as defined by the subject interface. The proxy must then delegate workload for each               
method to the real subject according to its desired use-case 
 

Known Consequences 

PositiveConsequences 

●  Increases modularity and encapsulation  
●  Protection proxy: adds security  
●  Smart proxy: adds assertions, memory management  
●  Virtual proxy: Improves performance with lazy loading  
●  Remote proxy: Facilitates remote code execution  

Negative Consequences 

● Developers may misuse the remote proxy thinking the logic runs locally not knowing the              
overhead they create with network requests  

● Extra developer bandwidth is required as new changes must be made in the proxy              
concurrently with the real object. 

● The additional level of indirection introduces complexity 
 

NFPs 



Improved NFPs 

● Performance: Computation and memory expensive objects are instantiated by the proxy           
so those objects are only created when they are needed. The proxy implements the same               
interface as the expensive object so the methods are exposed by the light proxy object               
without the actual object being instantiated. So, the object is not created if the user does                
not have access to the method.  

● Security: Only authorized users are allowed to access specific resources and methods of             
an object which increases confidentiality and integrity. Proxies can be chained to provide             
varying levels of authorization. Method usage can also be logged for increased            
monitoring and analysis.  

● Availability: Returns a resource even if one is not currently found i.e. it takes some time                
to load an image so the proxy returns a loading image as opposed to an empty view until                  
the image is fully loaded. The proxy will cache the image for future use.  

Inhibited NFPs 

Complexity: Having a proxy increases the size of the system, adding extra interdependency             
between client and subject. 
Reliability: Difficult to assess as proxy can add another point of failure that must reflect any                
changes done to the object.  
Maintainability: Someone may accidentally update one but not the other. 

Credits 
Students: 

Chore Story (Cristian David, Mark Keller, Isabelle Leeson, Jim Wang) 
Morpheme (Arthur Leung, Michael Li, Mark Liang, Victor Yan) 

Instructor and TAs: 
Mei Nagappan, Arman Naeimian, Ivens Portugal 


