
Material and some slide content from:
- Emerson Murphy-Hill, Reid Holmes
- Software Architecture: Foundations, Theory, and Practice
- Essential Software Architecture
- Steve Easterbrook

Mei Nagappan
Architectural Decomposition

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

What is SW architecture?
‣ Definition:

‣ Blueprint for construction and evolution.

‣ Encompasses:

‣ Structure

‣ Behaviour

‣ Non-functional properties

“The set of principal
design decisions about

the system”

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Components
‣ Elements that encapsulate processing and data at

an architectural level.

‣ Definition:

‣ Architectural entity that:

‣ encapsulates a subset of functionality.

‣ restricts access via explicit interface.

‣ has explicit environmental dependencies.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Connectors
‣ Definition:

‣ An architectural entity tasked with effecting and
regulating interactions between components.

‣ Connectors are often more challenging than
components in large heterogenous systems.

‣ Often consists of method calls, but be much more.

‣ Frequently provide application-independent
interaction mechanisms.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Configurations
‣ Bind components and connectors together in a

specific way.

‣ Definition:

‣ An architectural configuration, or topology, is a
set of specific associations between the
components and the connectors of the system’s
architecture.

‣ Differentiates a bag of components and
connectors from an implementable system.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Topological Goals
‣ Minimize coupling between components

‣ The less components know about each other,
the better (also known as information hiding).

‣ Maximize cohesion within each component

‣ Components should be responsible for a logical
service; extraneous functionality should not be
present.

1

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 4:
Showing the architecture

 Coupling and Cohesion
 UML Package Diagrams
 Software Architectural Styles:

 Layered Architectures
 Pipe-and-filter
 Object Oriented Architecture
 Implicit Invocation
 Repositories

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Coupling and Cohesion
Architectural Building blocks:

A good architecture:
Minimizes coupling between modules:

Goal: modules donʼt need to know much about one another to interact
Low coupling makes future change easier

Maximizes the cohesion of each module
Goal: the contents of each module are strongly inter-related
High cohesion means the subcomponents really do belong together

module module
connector

X

1

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 4:
Showing the architecture

 Coupling and Cohesion
 UML Package Diagrams
 Software Architectural Styles:

 Layered Architectures
 Pipe-and-filter
 Object Oriented Architecture
 Implicit Invocation
 Repositories

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Coupling and Cohesion
Architectural Building blocks:

A good architecture:
Minimizes coupling between modules:

Goal: modules donʼt need to know much about one another to interact
Low coupling makes future change easier

Maximizes the cohesion of each module
Goal: the contents of each module are strongly inter-related
High cohesion means the subcomponents really do belong together

module module
connector

X
[Steve Easterbrook: http://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf]

http://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf%5D

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstraction
‣ Complex problems can be approached by

abstracting away unnecessary detail

‣ Focus on the key issues while eliding extraneous
detail (some of these details will be pertinent
during more detailed design activities)

‣ In software two classes of abstraction dominate:

‣ Control abstraction

‣ (e.g., structured programming)

‣ Data abstraction

‣ (e.g., abstract data types)

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Decomposition
‣ Top-down abstraction is also called decomposition

‣ Break problem into independent components

‣ Describe each component

‣ Criteria for decomposition can include:

‣ Implementing teams

‣ Application domains (aka obvious partitions)

‣ Parallelization

‣ Make typical cases simple, and exceptional cases
possible

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Conway’s Law

“The structure of a
software system

reflects the structure
of the organization

that built it”

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Conway’s Law

3

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

People

Socio-Technical Congruence

C

G

B

E
F

D

A

L

JH

IK

Modules

3 7
2

5 6

4

1

12

10
8

9

11

See: Valetto, et al., 2007.

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Software Architecture
A software architecture defines:

The components of the software system
How the components use each otherʼs functionality and data
How control is managed between the components

An example: client-server
Servers provide some kind of service; clients request and use services
Reduced coupling: servers donʼt need to know what clients are out there

clientclient

client

method
invocation

method
invocation method

invocation

Server

[Steve Easterbrook: http://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf]

http://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf%5D

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Decomposition isn’t always great

HTTP://WWW.CS.TORONTO.EDU/~SME/CSC444F/SLIDES/L05-
DECOMPOSITIONABSTRACTION.PDF

1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 5:
Decomposition and Abstraction

➜ Decomposition
! When to decompose
! Identifying components
! Modelling components

➜ Abstraction
! Abstraction by parameterization
! Abstraction by specification
! Pre-conditions and Post-conditions

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Decomposition
➜ Large problems can be tackled with “divide and

conquer”

➜ Decompose the problem so that:
! Each subproblem is at (roughly) the same level of detail
! Each subproblem can be solved independently
! The solutions to the subproblems can be combined to solve the original

problem

➜ Advantages
! Different people can work on different subproblems
! Parallelization may be possible
! Maintenance is easier

➜ Disadvantages
! the solutions to the subproblems might not combine to solve the original

problem
! Poorly understood problems are hard to decompose

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Decomposition Examples
➜ Decomposition can work well:

! E.g. designing a restaurant menu

➜ Decomposition doesn’t always work
! E.g. writing a play:

➜ Decomposition isn’t always possible
! for very complex problems (e.g. Managing the economy)
! for impossible problems (e.g. Turning water into wine)
! for atomic problems (e.g. Adding 1 and 1)

Choose a set of
character parts

write character 1’s part

write character 2’s part

write character 3’s part

 …etc…

merge

Choose style
and theme

Design appetizers menu

Design entrees menu

Design desserts menu

Design drinks menu

Assemble
and edit

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

How to decompose
➜ Step 1: Identify components

! a good decomposition minimizes dependencies between components
! coupling - a measure of inter-component connectivity
! cohesion - a measure of how well the contents of a component go together

! information hiding
! having modules keep their data private
! provide limited access procedures
! this reduces coupling

“Lksdfkiroer
erte;roifgkd
peoritlkgpeo
werp;tlkpoig
rtmnkm;km”

[a, c, fg, e];
[df, 4, rt, 5];
[qw, 1, t, 6]
[c, fg, 8, 1];

Private
data

Private
data

.x=?

“42!”

module a module b

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Activity
‣ Decompose the garage door opener example from

last class.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural representations
‣ Software architecture is fundamentally about

facilitating technical communication between
project stakeholders

‣ An opaque architecture has no value as it will not be
adequately understood

‣ Properties of representations:

‣ Ambiguity: Open to more than one interpretation?

‣ Accuracy: Correct within tolerances

‣ Precision: Consistent but not necessarily correct

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE
NOAA [http://celebrating200years.noaa.gov/magazine/tct/tct_side1.html]

http://celebrating200years.noaa.gov/magazine/tct/tct_side1.html

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural views
‣ Architectural models can be overwhelming

‣ Different views focus on specific subsets of
elements or subsets of relationships

‣ Views often focus on specific concerns or
scenarios within a system

‣ Views overlap; maintaining consistency between
views is challenging

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Component diagram
‣ Captures components and relationships.

‣ Required and provided APIs explicitly recorded.

IBM [http://www.ibm.com/developerworks/rational/library/dec04/bell/]

http://www.ibm.com/developerworks/rational/library/dec04/bell/

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Sequence diagram
‣ Focus on inter-component collaboration.

‣ Capture behaviour for specific runtime scenarios.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Activity
‣ Sequence diagram for one use case of the garage

door opener.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Deployment diagram
‣ Provide mapping between physical devices

VP [http://www.visual-paradigm.com/VPGallery/diagrams/Deployment.html]

http://www.visual-paradigm.com/VPGallery/diagrams/Deployment.html

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Activity
‣ Deployment diagram for the garage door opener

example from last class.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Statechart diagram
‣ More formal description of system behaviour.

‣ Poor mapping between states and components.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Prescriptive vs descriptive
‣ Prescriptive architecture dictates how the system

will be built a priori.

‣ (as-conceived)

‣ Descriptive architecture captures how the system
was actually built after the fact.

‣ (as-implemented)

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural degradation
‣ Drift

‣ Introduction of changes that are not captured in
the current architecture but do not violate it.

‣ Erosion

‣ Introduction of changes that violate the current
architecture.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTUREREID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural recovery
‣ [ICSE 1999: Bowman, Holt, and Brewster]

‣ Conceptual architecture

‣ How developers think about the system.

‣ Focuses on meaningful relationships.

‣ Concrete architecture

‣ How the system was actually built.

‣ Necessary: the devil is in the details.

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Conceptual Architecture

MEI NAGAPPAN- SE2: SOFTWARE DESIGN & ARCHITECTURE

Concrete Architecture

