VISITOR DESIGN PATTERN - SPACE JUNK (GROUP# 1)

Ahmad Salar Gohar asgohar
Vidhyasagar Harihara v2mahade
Philip Young p5young

The visitor pattern is a behavioral design pattern, which means it affects how
objects interact with each other. Behavioral design patterns manage the

algorithms, relationships and responsibilities between objects.

The Gang of Four, who wrote the original book on design patterns, define the
purpose of visitor pattern as “Allowing for one or more operation to be
applied to a set of objects at runtime, decoupling the operations from the
object structure.” In less technical terms, the visitor pattern can be
employed where an operation or a set of operations need to be applied to
objects of a certain type. The objects affected are not changed themselves;
the added operational ability is solely the responsibility of the visitor
itself.

HOW VISITOR PATTERN WORKS

The following UML diagram shows the basic structure of the visitor pattern. It
also defines some of the specific terminology that the pattern uses. The
Client is the object that is requesting some action to be performed on a set
of related objects, here referenced as Element. Element is an interface which
is then implemented by many ConcreteElements, which are the objects on which a
new operation is desired. This new operation can be introduced by a Visitor
object. The Visitor itself is an interface which declares a
visitElement(ConcreteElement) method for each ConcreteElement in the Element
object hierarchy. The Element interface also defines an accept method which
takes a Visitor object as parameter. The Visitor object’'s visitElement is then
called and the object calling it passes itself as the argument so that the
right method is called. The UML shows this relationship and the mentioned

methods.

winterface s Cli ent
“isitor

+ wisitElementConcreteElement) : waid

winterfaces

Elerment
Concrete wisitor + acceptisitor) : woid
+ wisitElementConcreteElement) : woid %

Concrete Element

+ acceptMisitor) : woid

The intended use case for the Visitor pattern is to extend the set of
operations that can be performed on a set of objects with minimal changes to
the set of objects.

Visitor allows us to decouple the functionalities on the data from the data
structures themselves. The pattern allows the design to respect cohesion as
data structure classes are simpler (they have fewer methods) and the
functionalities are encapsulated into Visitor implementations. This 1is done
via double-dispatching: wusing accept() methods in the structure classes
(ConcreteElement) and visit() methods in the ConcreteVisitor classes.
Double-dispatch means that the function (visit) that will be called will be
determined at runtime. This pattern enables future changes on the Element
objects because a new operation on those objects can be defined without severe

changes.

BENEFITS OF USING VISITOR
- Add functions to class libraries for which you either do not have the
source or cannot change the source
- Obtain data from a disparate collection of unrelated classes and use it
to present the results of a global calculation to the user program
- Gather related operations into a single class rather than changing or

deriving classes to add these operations

It is simpler to substitute a set of operations by substituting the

ConcreteVisitor that visits the Elements.

DRAWBACKS OF USING VISITOR

In case of an unwieldy number of ConcreteElements, the number of visit
methods for each ConcreteElement can become too large and this will
affect complexity

For a smaller number of ConcreteElements (< &), it might be overkill to
introduce a separate class, especially if the added operation is simple
enough to be added to the class itself

The arguments and return types for the visiting methods needs to be
known in advance, so the Visitor pattern is not good for situations
where these visited classes are subject to change. Every time a new type
of Element is added, every Visitor derived class must be amended.

It can be difficult to refactor the Visitor pattern into code that
wasn't already designed with the pattern in mind. For example, the
object hierarchy of the Element class may not be as clean as the UML

diagram and complexities could be introduced.

NFPs IMPROVED

Complexity
Evolvability / Extensibility

NFPs DEGRADED

Efficiency

Reusability

EXAMPLE:

We will be presenting 3 different scenarios to explain the Visitor pattern.

Scenario 1: The Visit of the Empire

The Empire sends a convoy (Visitor) to visit planets (ConcreteElements) of

interest and act on them accordingly. This example servers as a parallel to

the Visitor pattern because the convoy has a different way of interacting with

each of the planets.

Scenario 2: Boarding Pass

The same convoy is now a guard at the airport. This example serves to show
that the same convoy is not able to handle tasks on a new set of Elements. It
has been tailored to particular set of objects, and new Visitor would be

required for a different set of objects.

Scenario 3: Security Consultant

A company hires a security consultant who does a poor job but replacing the
consultant identifies the security issues in the company. In this example the
Visitor is the consultant and the company is the Element object hierarchy.
This shows that if different (in this case, also better) operations are

requested, they can be implemented in a different Visitor.

