
Proxy Pattern

Introduction
Proxy pattern is to provide a surrogate or placeholder for another object to control access to

it. It uses an extra level of indirection to support distributed, controlled, or intelligent. Add a

wrapper and delegation to protect the read component from undue complexity. The proxy

pattern is applicable whenever there is a need for a more versatile or sophisticated reference

to an object than just a simple pointer.

Motivation
➔ Virtual Proxy: Delay or defer the cost of initializing an object.

◆ Cache some details of the data.

◆ Use a small object to provide an interface to a huge real subject.

➔ Remote Proxy: Object in a different address space.

◆ Send the request to the real subject in a different address space.

◆ To hide the fact that the real subject is in a different address space and it

might respond faster to user requests.

➔ Protection Proxy: To control access based on rights.

◆ Give different users different accessing privileges.

◆ E.g. reverse proxy with access control policy (nginx)

➔ Smart Proxy: Interpose additional actions when an object is accessed.

◆ Process some simple tasks that are irrelevant to the real subject. Such as

counting how many times the subject is referenced.

◆ Keep multiple copies of real subject and manage user tasks to different real

subjects. User tasks only see the manager subject. (E.g. Scheduler)

Terminology
➔ Client: object that need allen to a real subject

➔ Real object: the actual object/payload to be passed to destination

➔ realsub/proxy,so that proxy can be used anywhere that a real subject can.

➔ Proxy: The surrogate object

◆ Maintain a ref to the actual subject.

◆ Interface in identical to sub/real sub.

◆ Control allen to real subject.

◆ Responsible for creating and deleting it.

Structure

Advantage
➔ A virtual proxy can optimize performance

➔ A remote proxy can hide location

➔ A protect proxy can do additional checks

➔ Reduce cohesion

Disadvantage
➔ when used in other cases may be an overkill.

➔ Implementing a proxy may require extra work, some proxy patterns

implementation is very complex.

NFP’s
➔ Improve:

◆ Performance

◆ Security

➔ Degrade:

◆ Complexity

Similar Patterns
➔ Adapter

➔ Decorator

◆ changes a few methods

◆ adds one/more responsibility

