
Mobile Code
Group: GetTogether
Michael Kang (mmkang), Nerman Nicholas (nnichola), Jade Pearce (japearce)

Overview

Mobile code is an architectural style where code is moved from one machine to

another across the network and executed remotely. There can be two basic reasons

for why this is done:

● The client has resources, but does not have the code

● The client has the code, but not the resources

In the first scenario, the client would request the code from the server and then run it

locally. It follows that in the second scenario, the client would send the code to the

server, the server runs the code, and then sends the results back to the client.

Components & Definitions

Resources ​ - Can be physical (processing power) or digital (compiler/interpreter).

Client​ - The user for which the code is intended for. Can also be called the initiator.

Server ​ - The host that either evaluates code received from the client, or pushes code

requested by the client.

Code ​ - Self explanatory.

Applications

As stated in the overview, there are two basic reasons for why one would adopt the

mobile code architecture. They can formally be defined as following:

Code on demand - client has resources, lacking code, does process code

One major reason for this is simply because it would be infeasible for the

application to be stored locally on every machine. For example, webpages on

the internet are hosted on their respective servers until a client connects to the

website and thus initiates a demand for the code. The server will send the code

for the website to the client’s browser, which will then execute the code and

display the webpage. This can be extended to sophisticated webapps that have

all kinds of scripts and code stored on the server. This allows clients to use

applications without being required to download everything locally.

Remote execution - client has code, lacking resources, does not process code

The client could be lacking the actual processing power or may just not have

the required interpreter(s) for the code to function. For extremely complex

problems, code may need to be executed by a more powerful

machine/computing grid in order to be evaluated in a reasonable timeframe.

Additionally, it could also be a matter of convenience: for example, you want to

compile a LaTeX document but don’t have a compiler on your machine. You can

use the plethora of online LaTeX compilers to execute the code for you and

then download the result file.

There is also a third general application of the mobile code architecture style:

Mobile Agent - client has code, lacking resources, does processes code

In a mobile agent application, the client may not have all the necessary

resources to execute the code that it has. The needed resources may be

located on a remote server. In order to execute the code, the client will pass it

to different hosts with the required resources until the code is finished

executing. Mobile agents are useful in applications that must collect

information over a network, modify other programs or even report on

problems on the network. Due to the autonomous executing nature of mobile

agents, they share many traits with worms and computer viruses; as a result,

this architecture may be exploited for malicious purposes. An example of when

a mobile agent may be used is in price or spec comparisons on shopping

websites.

Change Resilience

The mobile code architecture is quite open to changes and updates. Since it is simply

the movement of code from one machine to another, any changes made should be

cleanly represented without any problems, provided that all resources are up to date.

The only potential issue would be change that drastically alters the resource

requirements of the application. If the client and/or server can no longer process the

code with the resources provided due to the change, then adjustments would need to

be made, either to add more resources or to optimize the code.

Negative Behaviour

The biggest issue with mobile code is security. Since code is being sent across the

network, there is no guarantee that the code is secure/clean. It is very possible that

some servers will look to send malicious code with the intent to infect clients, and vice

versa.

NFPs

Mobile code supports:

● Scalability ​ - Since code is being executed remotely, computing power is being

shared and thus growing users are easily accommodated.

● Portability ​ - Clients do not need to have all the necessary components stored

locally; they can request/push the code needed to run the application.

● Efficiency ​ - Code can be run across multiple machines as required if a single

machine does not have enough resources.

Mobile code inhibits:

● Security ​ - Code can come from unknown sources of questionable cleanliness.

Presentation Scenarios

1. Code on Demand

a. Scenario: You want to make some coffee and you have everything you

need to make the coffee (coffee maker, sugar, water, milk) except for

the coffee beans. You go to your local grocery store and buy the coffee

beans from them. Once you buy the coffee beans you can use all your

resources to brew up some coffee.

b. Explanation: In this scenario you are the client with all of the resources

(coffee maker, sugar, water, milk) but you do not have the coffee beans

which is the code. By going to the grocery store and buying coffee

beans, you are requesting the server (grocery store) for the code (coffee

beans).

2. Remote Evaluation

a. Scenario: You want to make some coffee but you only have some coffee

beans. You ask your neighbour if they can make some coffee for you

using your beans with their coffee brewing resources. They prepare you

the coffee and give that back to you.

b. Explanation: In this scenario, you are the client and have the code (coffee

beans). You make a request to your neighbour (server) who has the

coffee maker, milk, sugar, and water (resources) to make your coffee

and return that to you.

3. Mobile Agent

a. Scenario: You want to make some coffee and you have the coffee beans

and some of the resources to make it (coffee maker, water) but lack

other resources (milk, sugar). You brew up some black coffee and then

ask a neighbour if they can finish up your coffee using their resources.

One neighbour has milk and sugar and is able to complete your coffee

the way you like it and returns that to you.

b. Explanation: In this scenario, you are the client and you have the code

(coffee beans) but only some of the resources (coffee maker, water).

You make a request to your neighbour (server) that has the missing

resources (milk, sugar) to help complete your coffee.

4. Inhibits Security

a. Scenario: You want to make some coffee and you have all the resources

to make some coffee (coffee maker, sugar, water, milk) but you do not

have the coffee beans. You ask your neighbour if you could use some of

their coffee beans and then give you some of theirs. You immediately

start brewing the coffee and after tasting it notice that the coffee beans

your friend gave you was expired.

b. Explanation: In this scenario, you are the client and you have all the

resources (coffee maker, sugar, water, milk) but you do not have the

code (coffee beans) to brew the coffee. You make a request to the

server (neighbour) for the code (coffee beans) and start making the

coffee (executing the code) without realizing that the code (coffee

beans) was expired (infected), thus inhibiting security.

Resources

● https://www.lysator.liu.se/~matpe/publish/agark.pdf

● http://searchitoperations.techtarget.com/definition/on-demand-computing

● http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.550.9365&rep=rep1

&type=pdf

https://www.lysator.liu.se/~matpe/publish/agark.pdf
http://searchitoperations.techtarget.com/definition/on-demand-computing
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.550.9365&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.550.9365&rep=rep1&type=pdf

