
The Composite Pattern

Siyuan Guo (s44guo), Vegard Seim Karstang (vskarsta)

Owen Linton (oclinton), Johan Sjöberg (jewsjobe)

SpaceQuest

Group 18

March 13, 2018

Motivation

Composite is a design pattern used to create a hi-

erarchy of (1) individual and (2) collections of objects

through a shared interface. This “unity” enables the

client to treat both single objects and groups equally,

without having to distinguish between the two (Free-

man, Freeman, Sierra, & Bates, 2004). Since a single

object and a collection of objects can be referred to

by their common interface, the client doesn’t have

to know whether she is managing a single instance

or a larger collection. Instead, she can make use of

polymorphism without having to apply unwanted

conditional statements that would make the code un-

tidy and harder to read (Skrien, 2009).

To illustrate this concept, imagine your computer’s

file system, which contains both individual files and

folders. Each file can be treated as an individual ob-

ject, whereas a folder is a collection of several different

files and/or sub-folders. There are situations in which

you want to perform the same operation on a com-

ponent f, whether it’s a file or a folder. For example,

you should be able to call f.copy() without having

to be concerned about the specific type of f, since this

functionality is shared by both files and folders.

Vocabulary

1. The Component is the shared interface that speci-

fies the operation(s) each component must implement.

A component can be either a leaf or a composite.

2. A Leaf is an individual component that exist on its

own. These can be combined into larger composites.

3. A Composite is a collection of components. It de-

fines the group’s behavior and has a reference to every

child. It can include both leaves and other composites.

4. The Client gets access to the different components

via the interface, taking advantage of polymorphism.

1

Leaf

oper at i on()

Component

oper at i on()

Composite

oper at i on()

*
Cl ient

add()
r emove()
get Chi l d()
get Par ent ()

Figure 1: The UML Diagram.

In the UML diagram above, operation() represents

the shared functionality. This method can be called on

any component. The specific implementation, how-

ever, will differ between different components so to

achieve the desired class-specific behavior. A call to a

leaf will be direct, whereas calling a composite will

most likely trigger a chain of operations, including

separate calls to its children. Lastly, there may be

a range of different leaves and various composites

enclosing a variety of components.

Varying Structures

Traversing the tree structure is an important as-

pect of the composite pattern. Four methods, rele-

vant for traversal and especially the manipulation

of composites are: add(), remove(), getChild() and

getParent(). However, these methods are not usually

relevant for leaves (assuming they cannot be trans-

formed into composites). This poses the dilemma of

where the implementation should take place; should

these methods be listed in the component interface,

or is it better to realize them only in composites?

This questions touches upon the balance between

transparency and safety. The decision will depend

on the specific implementation (Freeman et al., 2004).

Furthermore, instead of an interface, the overarching

component can be implemented as an abstract class.

This approach enables the implementation of default

behaviors for the shared methods which can be over-

ridden in each subclass (Gamma, Vlissides, Johnson,

& Helm, 1994). Initial questions to be answered:

1. What methods should leaves and composites share?

2. Should the components implement an interface or inherit

form an abstract class with default implementations?

3. How should the composites store information about their

children? What data structure should be used?

Benefits and Restrictions

This pattern simplifies manipulation of objects since

the client doesn’t have to distinguish between leaves

and composites. Furthermore, it arranges components

2

in a tree structure that can be traversed using recur-

sion in a part-whole fashion. It imposes flexibility by

allowing the client to add and/or remove new com-

ponents without much effort (Freeman et al., 2004).

Its applicability is often emphasized in graphical set-

tings where larger structures are created by combin-

ing smaller components, which can be further decom-

posed into basic building blocks. The composite de-

sign simplifies the manipulation of graphics by only

having to consider larger composites, while ignoring

its subcomponents. For example, calling refresh()

on the encompassing view will cause that command

to propagate down the hierarchy, enclosing all of

its subcomponents. Performance can be further im-

proved by using caching (Gamma et al., 1994). Here

are the benefits summarized:

1. Simplifies the client’s use of single and groups of objects,

allowing the same operations to be performed on both.

2. Applicable when components can be organized in tree

structures, such as graphical views.

3. Allows flexible manipulation of the hierarchy and its

components.

4. Can perform efficient traversal using caching.

However, one might argue that the combination of

traversal operations and other calculation methods

violates the single responsibility principle, implying that

the iteration and calculation should be handled sepa-

rately. Furthermore, Gamma et al. (1994) argues that

the flexibility imposed by this pattern may result

in undesirable options. For example, there are cases

when it is desirable to restrict a composite’s children

to certain types (e.g., a bike includes a handlebar

and two pedals, but not a steering wheel and a throt-

tle). Lastly, as discussed above, the client must con-

sider the balance between transparency and security.

Adding methods shared by composites (but not by

leaves) to the interface or abstract class will violate

the interface segregation principle, stating that no com-

ponent should depend on methods it doesn’t utilize.

Here are the restrictions summarized:

1. The combination of traversal and separate calculation

methods violates the single responsibility principle.

2. The benefit of flexible addition and removal imposes a

higher risk of intricate hierarchies and illegal composites.

3. Forces the client to make a trade-off between trans-

parency and security.

Non-Functional Properties

Based on the discussion above, we can conclude that

the composite pattern supports and inhibits the fol-

lowing non-functional properties:

Benefits: Scalability, Efficiency and Evolvability

Issues: Complexity and Security

Presentation Description

The presentation illustrates how a client can use sep-

arate components (both leaves and composites) to

draw two different objects: a bike and a car.

3

Scenario 1: The client wants to draw a bike and a car.

The client creates several components, composites and

adds leaves. The client calls draw() to draw the bike.

The client then removes the component that draws

the bike frame and replaces it with a component that

can draw a car frame. The client also removes the

bike wheels from the composite and adds some fancy

wheels. However when adding the leaves and com-

ponents that draws these wheels the client makes a

mistake and creates a loop. The client calls draw()

again to draw the car, but because of the loop the

car is not drawn properly. The client removes the

loop and calls draw() again to draw the car with the

fancy wheels. This scenario shows how the system

can easily evolve and scale, but that the structure may

quickly become very complex which can cause issues.

Scenario 2: In the second scenario, the client updates

the wheels of the component. Thus, the old leaf is re-

placed with a new version. To accomplish the drawing

of the second wheel, the client will give the composite

a reference to itself; however, this causes an infinite

recursion. This scenario shows that the patterns flexi-

bility may lead to complex hierarchy structures with

components having children of undesired type.

Scenario 3: The last scenario shows how a call (differ-

ent from drawing) to the main component propagates

down the hierarchy. The client wants to make the car

bigger so she calls resize(2) on the main component.

This composites forward the message to its leaves and

each leaf sets its size to twice the current size.

References

Freeman, E., Freeman, E., Sierra, K., & Bates, B. (2004). Head First

Design Pattern. O’Reilly.

Gamma, E., Vlissides, J., Johnson, R., & Helm, R. (1994). Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley.

Skrien, D. (2009). Object-Oriented Design Using Java. McGraw-

Hill.

4

	Motivation
	Vocabulary
	Varying Structures
	Benefits and Restrictions
	Non-Functional Properties
	Presentation Description

