
CS 858: Software Security
Offensive and Defensive Approaches

Meng Xu (University of Waterloo)

Introduction: course logistics

Fall 2022

Formalities Setup Introduction

Outline

1 Formalities

2 Course setup

3 Introduction to software security research

2 / 20

Formalities Setup Introduction

About me

Meng Xu

Assistant Professor at Cheriton School of Computer Science

- Joined on September 2021.

Member of CrySP and CPI.

Completed PhD at Georgia Tech (August 2020)

- Advisor: Prof. Taesoo Kim

Worked on several streams of software security research:

- Moving-target defense (i.e., software diversity)
- Static program analysis (e.g., symbolic execution) on the Linux kernel
- Dynamic program analysis (e.g., fuzz testing) on filesystems

One gap-year at Facebook / Meta on the blockchain division

Move — the secure smart contract language
Move Prover — a formal verification tool for Move programs

3 / 20

Formalities Setup Introduction

About me

Meng Xu

Assistant Professor at Cheriton School of Computer Science

- Joined on September 2021.

Member of CrySP and CPI.

Completed PhD at Georgia Tech (August 2020)

- Advisor: Prof. Taesoo Kim

Worked on several streams of software security research:

- Moving-target defense (i.e., software diversity)
- Static program analysis (e.g., symbolic execution) on the Linux kernel
- Dynamic program analysis (e.g., fuzz testing) on filesystems

One gap-year at Facebook / Meta on the blockchain division

Move — the secure smart contract language
Move Prover — a formal verification tool for Move programs

3 / 20

Formalities Setup Introduction

About me

Meng Xu

Assistant Professor at Cheriton School of Computer Science

- Joined on September 2021.

Member of CrySP and CPI.

Completed PhD at Georgia Tech (August 2020)

- Advisor: Prof. Taesoo Kim

Worked on several streams of software security research:

- Moving-target defense (i.e., software diversity)
- Static program analysis (e.g., symbolic execution) on the Linux kernel
- Dynamic program analysis (e.g., fuzz testing) on filesystems

One gap-year at Facebook / Meta on the blockchain division

Move — the secure smart contract language
Move Prover — a formal verification tool for Move programs

3 / 20

Formalities Setup Introduction

About this seminar course

First thing first: this is a seminar course.

We want to align the course content with your interests.

We hope the security aspects can be a supplement to your
research / work projects.

We DO NOT intend to test your knowledge about security in this
course — take CS 658 instead.

Summary: treat this course as a guided tour on the software
security research landscape.

4 / 20

Formalities Setup Introduction

About this seminar course

First thing first: this is a seminar course.

We want to align the course content with your interests.

We hope the security aspects can be a supplement to your
research / work projects.

We DO NOT intend to test your knowledge about security in this
course — take CS 658 instead.

Summary: treat this course as a guided tour on the software
security research landscape.

4 / 20

Formalities Setup Introduction

About this seminar course

First thing first: this is a seminar course.

We want to align the course content with your interests.

We hope the security aspects can be a supplement to your
research / work projects.

We DO NOT intend to test your knowledge about security in this
course — take CS 658 instead.

Summary: treat this course as a guided tour on the software
security research landscape.

4 / 20

Formalities Setup Introduction

Meeting logistics

Time: 1:00pm - 3:50pm every Tuesday

Location: in-person at DC 2585, online via Zoom

Format:

A an introductory overview on the topic (75 minutes).

1-2 paper presentation at 45 minutes each, including Q & A.

Materials available online include papers to read, presentation
slides, and any supplement materials to facilitate the understanding
of the topic. However, as these are not normal lectures, we will not
provide recordings.

5 / 20

https://uwaterloo.zoom.us/j/99866213419?pwd=YWtUeCtWYzM0Zk01L0dZRUI1QTlvUT09

Formalities Setup Introduction

Topics to cover

Refer to Course Outline.

6 / 20

https://cs.uwaterloo.ca/~m285xu/courses/cs858/syllabus/#course-outline

Formalities Setup Introduction

Assessment

Paper presentation — 20%

Capture-the-flag — 30%

Research project — 50%

We do not fit scores into curves.

Late submissions are generally not accepted, unless there are
long-lasting problems.

Reappraisal can be requested with a clear justification of your
claims — send the request to the instructor via university email
within one week of grade release.

7 / 20

https://cs.uwaterloo.ca/~m285xu/courses/cs858/assignments/presentation/
https://cs.uwaterloo.ca/~m285xu/courses/cs858/assignments/ctf/
https://cs.uwaterloo.ca/~m285xu/courses/cs858/assignments/project/

Formalities Setup Introduction

Assessment

Paper presentation — 20%

Capture-the-flag — 30%

Research project — 50%

We do not fit scores into curves.

Late submissions are generally not accepted, unless there are
long-lasting problems.

Reappraisal can be requested with a clear justification of your
claims — send the request to the instructor via university email
within one week of grade release.

7 / 20

https://cs.uwaterloo.ca/~m285xu/courses/cs858/assignments/presentation/
https://cs.uwaterloo.ca/~m285xu/courses/cs858/assignments/ctf/
https://cs.uwaterloo.ca/~m285xu/courses/cs858/assignments/project/

Formalities Setup Introduction

University policies

In this course, you will be exposed to information about security
problems and vulnerabilities with computing systems and networks.
To be clear, you are NOT to use this or any other similar information
to test the security of, break into, compromise, or otherwise attack,
any system or network without the express consent of the owner.

Refer to the list of relevant university policies when in doubt.

8 / 20

https://cs.uwaterloo.ca/~m285xu/courses/cs858/syllabus/#highlighted-university-policies

Formalities Setup Introduction

Academic integrity

Don’t copy-paste!

9 / 20

Formalities Setup Introduction

Outline

1 Formalities

2 Course setup

3 Introduction to software security research

10 / 20

Formalities Setup Introduction

Round of introduction

Give a short introduction about yourself, including

Name

Area of research / work (or still exploring)

What do you want to learn from this course

Anything else you would like us to know

11 / 20

Formalities Setup Introduction

HotCRP conference management system

HotCRP is the conference management system used by all top-tier
security conferences.

In this course, we re-purpose it for several tasks, including:

Bidding for presentation slots

Submission of presentation evaluations and feedbacks

Registration of research projects and

Peer-review on others’ research projects.

Please register an account for this course using your UWaterloo
email address (if you haven’t done so).

12 / 20

https://waterloo-softsec22.hotcrp.com/

Formalities Setup Introduction

HotCRP conference management system

Briefly, every user will have one of the three roles in the system:

Author: your default role once registered

- Limited to submit papers and receive feedbacks

PC Member: all enrolled students will be promoted to PC member

- Submit papers and receive feedbacks from peer-reviews
- Provide reviews and evaluations of others submissions

PC Chair: the course instructor

- Everything a PC member can do
- Administrator tasks

13 / 20

Formalities Setup Introduction

Pesentation preference selection

Live walkthrough on HotCRP

14 / 20

https://waterloo-softsec22.hotcrp.com/

Formalities Setup Introduction

Outline

1 Formalities

2 Course setup

3 Introduction to software security research

15 / 20

Formalities Setup Introduction

Software security research landscape

Generally speaking, almost all research work in the software security
area can be categorized into four bins:

Exploitation:

Given a bug, exploit it to achieve a desired (and specific) goal

- f (Code,Bug) → Action

Attack:

Identify a bug in the program that may cause some damage

- f (Code) → Bug

Defense:

Given a bug and a set of intended exploitations, prevent them

- f (Code,Bug , {...Action...}) → Blockage

Detection:

Given a program, check the existence of a specific type of bug

- f (Code,Bug , [Action]) → Signal

16 / 20

Formalities Setup Introduction

Software security research landscape

Generally speaking, almost all research work in the software security
area can be categorized into four bins:

Exploitation:

Given a bug, exploit it to achieve a desired (and specific) goal

- f (Code,Bug) → Action

Attack:

Identify a bug in the program that may cause some damage

- f (Code) → Bug

Defense:

Given a bug and a set of intended exploitations, prevent them

- f (Code,Bug , {...Action...}) → Blockage

Detection:

Given a program, check the existence of a specific type of bug

- f (Code,Bug , [Action]) → Signal

What are the differences between them?

16 / 20

Formalities Setup Introduction

Software security research landscape

Generally speaking, almost all research work in the software security
area can be categorized into four bins:

Exploitation: Given a bug, exploit it to achieve a desired (and specific) goal

- f (Code,Bug) → Action

Attack:

Identify a bug in the program that may cause some damage

- f (Code) → Bug

Defense:

Given a bug and a set of intended exploitations, prevent them

- f (Code,Bug , {...Action...}) → Blockage

Detection:

Given a program, check the existence of a specific type of bug

- f (Code,Bug , [Action]) → Signal

What are the differences between them?

16 / 20

Formalities Setup Introduction

Software security research landscape

Generally speaking, almost all research work in the software security
area can be categorized into four bins:

Exploitation: Given a bug, exploit it to achieve a desired (and specific) goal

- f (Code,Bug) → Action

Attack: Identify a bug in the program that may cause some damage

- f (Code) → Bug

Defense:

Given a bug and a set of intended exploitations, prevent them

- f (Code,Bug , {...Action...}) → Blockage

Detection:

Given a program, check the existence of a specific type of bug

- f (Code,Bug , [Action]) → Signal

What are the differences between them?

16 / 20

Formalities Setup Introduction

Software security research landscape

Generally speaking, almost all research work in the software security
area can be categorized into four bins:

Exploitation: Given a bug, exploit it to achieve a desired (and specific) goal

- f (Code,Bug) → Action

Attack: Identify a bug in the program that may cause some damage

- f (Code) → Bug

Defense: Given a bug and a set of intended exploitations, prevent them

- f (Code,Bug , {...Action...}) → Blockage

Detection:

Given a program, check the existence of a specific type of bug

- f (Code,Bug , [Action]) → Signal

What are the differences between them?

16 / 20

Formalities Setup Introduction

Software security research landscape

Generally speaking, almost all research work in the software security
area can be categorized into four bins:

Exploitation: Given a bug, exploit it to achieve a desired (and specific) goal

- f (Code,Bug) → Action

Attack: Identify a bug in the program that may cause some damage

- f (Code) → Bug

Defense: Given a bug and a set of intended exploitations, prevent them

- f (Code,Bug , {...Action...}) → Blockage

Detection: Given a program, check the existence of a specific type of bug

- f (Code,Bug , [Action]) → Signal

What are the differences between them?

16 / 20

Formalities Setup Introduction

Software security research landscape

Generally speaking, almost all research work in the software security
area can be categorized into four bins:

Exploitation: Given a bug, exploit it to achieve a desired (and specific) goal

- f (Code,Bug) → Action

Attack: Identify a bug in the program that may cause some damage

- f (Code) → Bug

Defense: Given a bug and a set of intended exploitations, prevent them

- f (Code,Bug , {...Action...}) → Blockage

Detection: Given a program, check the existence of a specific type of bug

- f (Code,Bug , [Action]) → Signal

Anything better than detection?

Prevention!
But that’s usually the area of Programming Languages (PL)

16 / 20

Formalities Setup Introduction

Software security research landscape

Generally speaking, almost all research work in the software security
area can be categorized into four bins:

Exploitation: Given a bug, exploit it to achieve a desired (and specific) goal

- f (Code,Bug) → Action

Attack: Identify a bug in the program that may cause some damage

- f (Code) → Bug

Defense: Given a bug and a set of intended exploitations, prevent them

- f (Code,Bug , {...Action...}) → Blockage

Detection: Given a program, check the existence of a specific type of bug

- f (Code,Bug , [Action]) → Signal

Anything better than detection?

Prevention!
But that’s usually the area of Programming Languages (PL)

16 / 20

Formalities Setup Introduction

A general framework to appreciate software security papers

For example: given two defense papers P1 and P2 on the same bug:

P1(Code1,Bug , {...Action1...}) → Blockage1

P2(Code2,Bug , {...Action2...}) → Blockage2

Is Code2 more complicated than Code1?

Is Action2 larger than Action1 (i.e., protection scope is larger)?

Is Blockage2 more efficient Blockage1 (i.e., lower overhead)?

17 / 20

Formalities Setup Introduction

A general framework to appreciate software security papers

For example: given two defense papers P1 and P2 on the same bug:

P1(Code1,Bug , {...Action1...}) → Blockage1

P2(Code2,Bug , {...Action2...}) → Blockage2

Is Code2 more complicated than Code1?

Is Action2 larger than Action1 (i.e., protection scope is larger)?

Is Blockage2 more efficient Blockage1 (i.e., lower overhead)?

17 / 20

Formalities Setup Introduction

A general framework to appreciate software security papers

For example: given two detection papers P1 and P2 on the same
code base:

P1(Code,Bug1, [Action1]) → Signal1

P2(Code,Bug2, [Action2]) → Signal2

Is Bug2 more challenging than Bug1?

Is Action2 simpler than Action1 (i.e., easier to detect)?

Is Signal2 more accurate Signal1 (i.e., lower false positives)?

18 / 20

Formalities Setup Introduction

A general framework to appreciate software security papers

For example: given two detection papers P1 and P2 on the same
code base:

P1(Code,Bug1, [Action1]) → Signal1

P2(Code,Bug2, [Action2]) → Signal2

Is Bug2 more challenging than Bug1?

Is Action2 simpler than Action1 (i.e., easier to detect)?

Is Signal2 more accurate Signal1 (i.e., lower false positives)?

18 / 20

Formalities Setup Introduction

A general framework to create new research

For example: given an attack and detection paper

P(Code1) → Bug || P(Code1,Bug , [Action1]) → Signal1

we can ask ourselves, is another code base Code2 also vulnerable to
the same (or similar) type of bug?

P(Code2) → Bug || P(Code2,Bug , [Action2]) → Signal2

19 / 20

Formalities Setup Introduction

A general framework to create new research

For example: given an attack and detection paper

P(Code1) → Bug || P(Code1,Bug , [Action1]) → Signal1

we can ask ourselves, is another code base Code2 also vulnerable to
the same (or similar) type of bug?

P(Code2) → Bug || P(Code2,Bug , [Action2]) → Signal2

19 / 20

Formalities Setup Introduction

⟨ End ⟩

20 / 20

	course logistics
	Formalities
	Course setup
	Introduction to software security research

