
CS 858: Software Security
Offensive and Defensive Approaches

Meng Xu (University of Waterloo)

Detection: declarative rules

Fall 2022



Intro Datalog Example Conclusion

Outline

1 Introduction

2 A primer on Datalog

3 Case study: dataflow analysis in Datalog

4 Conclusion

2 / 30



Intro Datalog Example Conclusion

Why this topic?

A significant portion of software security research is based on the
following observation:

If the program contains some specific code pattern, that program
is more likely to be vulnerable.

- e.g., strcpy taking a user-supplied src argument

Q: How do you even precisely define and express this code pattern?

- e.g., compare with another code pattern
- e.g., inter-op / composite with code patterns
- e.g., scale to more codebases
- e.g., argue for soundness / completeness

3 / 30



Intro Datalog Example Conclusion

Why this topic?

A significant portion of software security research is based on the
following observation:

If the program contains some specific code pattern, that program
is more likely to be vulnerable.

- e.g., strcpy taking a user-supplied src argument

Q: How do you even precisely define and express this code pattern?

- e.g., compare with another code pattern
- e.g., inter-op / composite with code patterns
- e.g., scale to more codebases
- e.g., argue for soundness / completeness

3 / 30



Intro Datalog Example Conclusion

Why this topic?

A significant portion of software security research is based on the
following observation:

If the program contains some specific code pattern, that program
is more likely to be vulnerable.

- e.g., strcpy taking a user-supplied src argument

Q: How do you even precisely define and express this code pattern?

- e.g., compare with another code pattern
- e.g., inter-op / composite with code patterns
- e.g., scale to more codebases
- e.g., argue for soundness / completeness

3 / 30



Intro Datalog Example Conclusion

Programming paradigm: imperative vs declarative

Declarative programming is a paradigm describing WHAT the
program knows and does, without explicitly specifying its algorithm.

Imperative programming is a paradigm describing HOW the
program should do something by explicitly specifying each
instruction (or state transition) step by step.

4 / 30



Intro Datalog Example Conclusion

Programming paradigm: imperative vs declarative

Declarative programming is a paradigm describing WHAT the
program knows and does, without explicitly specifying its algorithm.

Imperative programming is a paradigm describing HOW the
program should do something by explicitly specifying each
instruction (or state transition) step by step.

4 / 30



Intro Datalog Example Conclusion

Baking a chocolate cake

The imperative way

1 mix flour, sugar, cocoa powder,
baking soda, and salt

2 add milk, vegetable oil, eggs,
and vanilla to form the batter

3 preheat the oven at 180°C

4 put the batter in a cake pan
and bake for 30 minutes

The declarative way

cake = batter + 180°C oven +
30 minutes backing

batter = solid ingredients +
liquid ingredients

solid ingredients = flour, sugar,
cocoa powder, baking soda,
and salt

fluid ingredients = milk,
vegetable oil, eggs, and vanilla

5 / 30



Intro Datalog Example Conclusion

Finding a vulnerability

The imperative way

1 for each function in the
program, search for a strcpy
call in the function body

2 trace back how the src
argument in the strcpy call is
derived (via def-use analysis)

3 for any ancestor in the trace, if
it comes from untrusted
user-controlled input, mark the
strcpy call as vulnerable

The declarative way

program = [function]

function = [instruction] (per
each function)

defines(var, instruction)

uses(instruction, var)

is user controlled(var)

is strcpy vuln =
strcpy(..., src)

+ defines(src, i src)
+ uses(i src, x)
+ defines(x, i x)
+ uses(i x, var)
+ is user controlled(var)

6 / 30



Intro Datalog Example Conclusion

Outline

1 Introduction

2 A primer on Datalog

3 Case study: dataflow analysis in Datalog

4 Conclusion

7 / 30



Intro Datalog Example Conclusion

Datalog overview

Datalog programming is based on rules and facts.

For example

Fact: Vancouver is rainy

Fact: Waterloo is rainy

Fact: Waterloo is cold

Rule: If a city is both rainy
and cold, then it is snowy

Query: which city is snowy?

Encoded as Souffle rules

1 .decl rainy(city: symbol)
2 .decl cold(city: symbol)
3 .decl snowy(city: symbol)
4 .output snowy

5

6 rainy("Vancouver").

7 rainy("Waterloo").

8 cold("Waterloo").

9 snowy(city) :- rainy(city), cold(city).

8 / 30



Intro Datalog Example Conclusion

Datalog overview

Datalog programming is based on rules and facts.

For example

Fact: Vancouver is rainy

Fact: Waterloo is rainy

Fact: Waterloo is cold

Rule: If a city is both rainy
and cold, then it is snowy

Query: which city is snowy?

Encoded as Souffle rules

1 .decl rainy(city: symbol)
2 .decl cold(city: symbol)
3 .decl snowy(city: symbol)
4 .output snowy

5

6 rainy("Vancouver").

7 rainy("Waterloo").

8 cold("Waterloo").

9 snowy(city) :- rainy(city), cold(city).

8 / 30



Intro Datalog Example Conclusion

Datalog overview

Datalog programming is based on rules and facts.

For example

Fact: Vancouver is rainy

Fact: Waterloo is rainy

Fact: Waterloo is cold

Rule: If a city is both rainy
and cold, then it is snowy

Query: which city is snowy?

Encoded as Souffle rules

1 .decl rainy(city: symbol)
2 .decl cold(city: symbol)
3 .decl snowy(city: symbol)
4 .output snowy

5

6 rainy("Vancouver").

7 rainy("Waterloo").

8 cold("Waterloo").

9 snowy(city) :- rainy(city), cold(city).

8 / 30



Intro Datalog Example Conclusion

Predicates

Predicates are essentially parameterized propositions, which are also
called atoms. These are building blocks of any Datalog program.

Examples:

rainy(x), cold(x), snowy(x): city x is rainy, cold, and snowy.

canadianFood(x): x is iconic Canadian food (e.g., Tim Hortons).

In the above cases, predicates are used to describe attributes of one
entity. Predicates can also be used to describe relations between
multiple entities, such as.

parent(x, y): x is a parent of y

square(x, y): y is the square of x

xor(x, y, z): the xor of x and y is z

9 / 30



Intro Datalog Example Conclusion

Predicates

Predicates are essentially parameterized propositions, which are also
called atoms. These are building blocks of any Datalog program.

Examples:

rainy(x), cold(x), snowy(x): city x is rainy, cold, and snowy.

canadianFood(x): x is iconic Canadian food (e.g., Tim Hortons).

In the above cases, predicates are used to describe attributes of one
entity. Predicates can also be used to describe relations between
multiple entities, such as.

parent(x, y): x is a parent of y

square(x, y): y is the square of x

xor(x, y, z): the xor of x and y is z

9 / 30



Intro Datalog Example Conclusion

Relations

When encoding relations among different entities, parameters in the
predicates are not directional, i.e., relations are not functions that
bear input-output semantics.

For example, given:

- parent(Sam, Mike)

- parent(Sussan, Mike)

- parent(Don, Sam)

- parent(Rosy, Sam)

we can further define

- parentOfMike(x) :- parent(x, Mike)

who are the parents of Mike

- childrenOfSussan(c) :- parent(Sussan, c)

who are the children of Sussan

10 / 30



Intro Datalog Example Conclusion

Relations

When encoding relations among different entities, parameters in the
predicates are not directional, i.e., relations are not functions that
bear input-output semantics.

For example, given:

- parent(Sam, Mike)

- parent(Sussan, Mike)

- parent(Don, Sam)

- parent(Rosy, Sam)

we can further define

- parentOfMike(x) :- parent(x, Mike)

who are the parents of Mike

- childrenOfSussan(c) :- parent(Sussan, c)

who are the children of Sussan

10 / 30



Intro Datalog Example Conclusion

Horn clauses

A Horn clause has a head h, which is a predicate, and a body, which
is a list of literals l1, l2, . . . , ln, written as h← l1, l2, . . . , ln.

Each literal li is either a predicate or the negation of a predicate.

This means “h is true when l1, l2, . . . , ln are simultaneously true”

- e.g., snowy(city) :- rainy(city), cold(city).

Q: How to specify disjunction (i.e., OR)?

- parent(x, y) :- father(x, y).
- parent(x, y) :- mother(x, y).

When a Horn clause has no body and just a head, it is a fact.

- e.g., cold("Waterloo")

11 / 30



Intro Datalog Example Conclusion

Horn clauses

A Horn clause has a head h, which is a predicate, and a body, which
is a list of literals l1, l2, . . . , ln, written as h← l1, l2, . . . , ln.

Each literal li is either a predicate or the negation of a predicate.

This means “h is true when l1, l2, . . . , ln are simultaneously true”

- e.g., snowy(city) :- rainy(city), cold(city).

Q: How to specify disjunction (i.e., OR)?

- parent(x, y) :- father(x, y).
- parent(x, y) :- mother(x, y).

When a Horn clause has no body and just a head, it is a fact.

- e.g., cold("Waterloo")

11 / 30



Intro Datalog Example Conclusion

Horn clauses

A Horn clause has a head h, which is a predicate, and a body, which
is a list of literals l1, l2, . . . , ln, written as h← l1, l2, . . . , ln.

Each literal li is either a predicate or the negation of a predicate.

This means “h is true when l1, l2, . . . , ln are simultaneously true”

- e.g., snowy(city) :- rainy(city), cold(city).

Q: How to specify disjunction (i.e., OR)?

- parent(x, y) :- father(x, y).
- parent(x, y) :- mother(x, y).

When a Horn clause has no body and just a head, it is a fact.

- e.g., cold("Waterloo")

11 / 30



Intro Datalog Example Conclusion

Horn clauses

A Horn clause has a head h, which is a predicate, and a body, which
is a list of literals l1, l2, . . . , ln, written as h← l1, l2, . . . , ln.

Each literal li is either a predicate or the negation of a predicate.

This means “h is true when l1, l2, . . . , ln are simultaneously true”

- e.g., snowy(city) :- rainy(city), cold(city).

Q: How to specify disjunction (i.e., OR)?

- parent(x, y) :- father(x, y).
- parent(x, y) :- mother(x, y).

When a Horn clause has no body and just a head, it is a fact.

- e.g., cold("Waterloo")

11 / 30



Intro Datalog Example Conclusion

Recursive rules

The real power of Datalog is on its expressiveness of (mutually)
recursively defined relations.

Consider the encoding of a control-flow graph (CFG):
1 .decl edge(b1, b2)

2 .input edge

3

4 .decl reachable(b1, b2)

5 reachable(b1, b2) :- edge(b1, b2).

6 reachable(b1, b2) :- edge(b1, b3), reachable(b3, b2).

7

8 .decl more_than_one_hop(b1, b2)

9 more_than_one_hop(b1, b2) :- reachable(b1, b2), !edge(b1, b2).

Q: How to interpret these rules (line 5, 6, and 9)?

12 / 30



Intro Datalog Example Conclusion

Outline

1 Introduction

2 A primer on Datalog

3 Case study: dataflow analysis in Datalog

4 Conclusion

13 / 30



Intro Datalog Example Conclusion

Overview

In this section, we will implement several dataflow analysis in
Datalog (Souffle to be specific).

We start by modeling the program execution flow in Datalog, based
on which we then define the declarative rules for typical dataflow
problems such as reaching definition, available expression, etc.

14 / 30



Intro Datalog Example Conclusion

CFG representation

Q: How to encode a sequential program in Datalog?

1 .type Label <: number

2

3 // control flow from l1 to l2

4 .decl flow(l1: Label, l2: Label)

5

6 // l is the start of the execution

7 .decl init_label(l: Label)
8

9 // l is the end of the execution

10 .decl exit_label(l: Label)

15 / 30



Intro Datalog Example Conclusion

CFG representation

Q: How to encode a sequential program in Datalog?

1 .type Label <: number

2

3 // control flow from l1 to l2

4 .decl flow(l1: Label, l2: Label)

5

6 // l is the start of the execution

7 .decl init_label(l: Label)
8

9 // l is the end of the execution

10 .decl exit_label(l: Label)

15 / 30



Intro Datalog Example Conclusion

CFG representation example

[x:=5]1;[y:=1]2; while [x>1]3 do ([y:=x*y]4;[x:=x-1]5;) [return y]6;

[L1]

x:=5

[L2]

y:=1

[L3]

x>1

[L4]

y:=x*y

[L5]

x:=x-1

[L6]

return y

flow.facts

1 2
2 3
3 4
3 6
4 5
5 3

init label.facts

1

exit label.facts

6

16 / 30



Intro Datalog Example Conclusion

CFG representation example

[x:=5]1;[y:=1]2; while [x>1]3 do ([y:=x*y]4;[x:=x-1]5;) [return y]6;

[L1]

x:=5

[L2]

y:=1

[L3]

x>1

[L4]

y:=x*y

[L5]

x:=x-1

[L6]

return y

flow.facts

1 2
2 3
3 4
3 6
4 5
5 3

init label.facts

1

exit label.facts

6

16 / 30



Intro Datalog Example Conclusion

Instruction encoding

Q: How to encode the semantics of each instruction?

One way to look at instructions is that they (optionally) use
variables to (optionally) define variable. It is only a partial semantic
view of instructions, but is sufficient for we are about to define next.

1 .type Var <: symbol

2

3 // instruction l defines var v

4 .decl def(l: Label, v: Var)
5

6 // instruction l uses var v

7 .decl use(l: Label, v: Var)

17 / 30



Intro Datalog Example Conclusion

Instruction encoding

Q: How to encode the semantics of each instruction?

One way to look at instructions is that they (optionally) use
variables to (optionally) define variable. It is only a partial semantic
view of instructions, but is sufficient for we are about to define next.

1 .type Var <: symbol

2

3 // instruction l defines var v

4 .decl def(l: Label, v: Var)
5

6 // instruction l uses var v

7 .decl use(l: Label, v: Var)

17 / 30



Intro Datalog Example Conclusion

Def-use example

[x:=5]1;[y:=1]2; while [x>1]3 do ([y:=x*y]4;[x:=x-1]5;) [return y]6;

[L1]

x:=5

[L2]

y:=1

[L3]

x>1

[L4]

y:=x*y

[L5]

x:=x-1

[L6]

return y

def.facts

1 x
2 y
4 y
5 x

use.facts

3 x
4 x
4 y
5 x
6 y

18 / 30



Intro Datalog Example Conclusion

Reaching definition analysis

Recall the semantics of reaching definition analysis: it determines,
at each point, what definitions can reach there.

Q: How to encode the reaching definition relation in Datalog?

19 / 30



Intro Datalog Example Conclusion

Reaching definition analysis

1 // var v defined at label def can reach *before* instruction l

2 .decl rd_entry(l: Label, v: Var, def: Label)
3

4 // var v defined at label def can reach *after* instruction l

5 .decl rd_exit(l: Label, v: Var, def: Label)
6

7 // rule 1: def of v can reach the end of def

8 rd_exit(l, v, l) :- def(l, v).

9

10 // rule 2: def of v can reach the end of l if l does not define v

11 rd_exit(l, v, def) :- rd_entry(l, v, def), !def(l, v).

12

13 // rule 3: def of v can reach next instruction

14 rd_entry(l, v, def) :- rd_exit(prev_l, v, def), flow(prev_l, l).

20 / 30



Intro Datalog Example Conclusion

Reaching definition analysis

1 ---------------

2 rd_entry

3 l v def

4 ===============

5 2 x 1

6 3 x 1

7 3 x 5

8 3 y 2

9 3 y 4

10 4 x 1

11 4 x 5

12 4 y 2

13 4 y 4

14 5 x 1

15 5 x 5

16 5 y 4

17 6 x 1

18 6 x 5

19 6 y 2

20 6 y 4

21 ===============

1 ---------------

2 rd_exit

3 l v def

4 ===============

5 1 x 1

6 2 x 1

7 2 y 2

8 3 x 1

9 3 x 5

10 3 y 2

11 3 y 4

12 4 x 1

13 4 x 5

14 4 y 4

15 5 x 5

16 5 y 4

17 6 x 1

18 6 x 5

19 6 y 2

20 6 y 4

21 ===============

21 / 30



Intro Datalog Example Conclusion

Liveness analysis

Recall the semantics of liveness analysis: given a variable v and a
code location l , it determines whether v will be used (and before
being re-defined by other instructions) in any program path starting
from l .

Q: How to encode the liveness relation in Datalog?

22 / 30



Intro Datalog Example Conclusion

Live variable analysis

1 // var v defined at label def is alive *before* instruction l

2 .decl lv_entry(l: Label, v: Var, def: Label)
3

4 // var v defined at label def is alive *after* instruction l

5 .decl lv_exit(l: Label, v: Var, def: Label)
6

7 // rule 1: use of v make v alive before the use

8 lv_entry(l, v, l) :- use(l, v).

9

10 // rule 2: use of v can reach the entry of l if l does not define v

11 lv_entry(l, v, def) :- lv_exit(l, v, def), !def(l, v).

12

13 // rule 3: def of v can reach next instruction

14 lv_exit(l, v, def) :- lv_entry(next_l, v, def), flow(l, next_l).

23 / 30



Intro Datalog Example Conclusion

Outline

1 Introduction

2 A primer on Datalog

3 Case study: dataflow analysis in Datalog

4 Conclusion

24 / 30



Intro Datalog Example Conclusion

A new trend: Datalog in smart contract auditing

Recent years have observed a new trend in applying Datalog-style
tooling in finding security vulnerabilities in smart contracts.

Sample projects include:

Gigahorse

Vandle

Securify 2.0

25 / 30

https://github.com/nevillegrech/gigahorse-toolchain/tree/master/logic
https://github.com/usyd-blockchain/vandal/tree/master/datalog
https://github.com/eth-sri/securify2/tree/master/securify/staticanalysis/souffle_analysis


Intro Datalog Example Conclusion

Basis of analysis

1 .type Statement

2 .type Variable

3 .type Opcode

4 .type Value

5

6 .decl entry(s:Statement)
7 .decl edge(h:Statement, t:Statement)
8 .decl def(var:Variable, stmt:Statement)
9 .decl use(var:Variable, stmt:Statement)

10 .decl op(stmt:Statement, op:Opcode)
11 .decl value(var:Variable, val:Value)
12

13 .input entry, edge, def, use, op, value

26 / 30



Intro Datalog Example Conclusion

Sample checkers

1 .decl uncheckedCall(u:Statement)
2

3 uncheckedCall(u) :-

4 callResult(_, u),
5 !checkedCallThrows(u),

6 !checkedCallStateUpdate(u).

1 .decl reentrantCall(stmt:Statement)
2

3 reentrantCall(stmt) :-

4 op(stmt, "CALL"),

5 !protectedByLoc(stmt, _),
6 gassy(stmt, gasVar),

7 op_CALL(stmt, gasVar, _, _, _, _, _, _).

27 / 30



Intro Datalog Example Conclusion

Sample checkers

1 .decl unsecuredValueSend(stmt:Statement)
2

3 unsecuredValueSend(stmt) :-

4 op_CALL(stmt, _, target, val, _, _, _, _),
5 nonConstManipulable(target),

6 def(val, _),
7 !value(val, "0x0")

8 !fromCallValue(val),

9 !inaccessible(stmt).

1 .decl originUsed(stmt:Statement)
2

3 originUsed(stmt) :-

4 op(stmt, "ORIGIN"),

5 def(originVar, stmt),

6 depends(useVar, originVar),

7 usedInStateOrCond(useVar, _).

28 / 30



Intro Datalog Example Conclusion

Other deployments

Datalog has also been widely used in other program analysis areas,
including

DOOP points-to analysis (for Java)

cclyzer++ points-to analysis (for LLVM)

DDisasm disassembler

It is not yet heavily adopted in software security / bug finding yet,
but seems to be a very promising candidate.

29 / 30

https://bitbucket.org/yanniss/doop/src/master/souffle-logic/
https://github.com/GaloisInc/cclyzerpp/tree/main/datalog/points-to
https://github.com/GrammaTech/ddisasm/tree/main/src/datalog


Intro Datalog Example Conclusion

Other deployments

Datalog has also been widely used in other program analysis areas,
including

DOOP points-to analysis (for Java)

cclyzer++ points-to analysis (for LLVM)

DDisasm disassembler

It is not yet heavily adopted in software security / bug finding yet,
but seems to be a very promising candidate.

29 / 30

https://bitbucket.org/yanniss/doop/src/master/souffle-logic/
https://github.com/GaloisInc/cclyzerpp/tree/main/datalog/points-to
https://github.com/GrammaTech/ddisasm/tree/main/src/datalog


Intro Datalog Example Conclusion

⟨ End ⟩

30 / 30


	declarative rules
	Introduction
	A primer on Datalog
	Case study: dataflow analysis in Datalog
	Conclusion


