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Why this topic?

A significant portion of software security research is related to
program analysis:

@ derive properties which hold for program P (i.e., inference)

@ prove that some property holds for program P (i.e., verification)
@ given a program P, generate a program P’ which is

- in most ways equivalent to P

- behaves better than P w.r.t some criteria

(i.e., transformation)
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Why this topic?

A significant portion of software security research is related to
program analysis:

@ derive properties which hold for program P (i.e., inference)

@ prove that some property holds for program P (i.e., verification)
@ given a program P, generate a program P’ which is

- in most ways equivalent to P

- behaves better than P w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing
program analysis tools.
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Comparision with declaration programming

Q: Wait... how is abstraction interpretation different from Datalog
(or declarative programming in general)?
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Comparision with declaration programming

Q: Wait... how is abstraction interpretation different from Datalog
(or declarative programming in general)?

@ Abstraction is implicitly introduced in declarative rules but is
explicitly defined in abstract interpretation.

@ The search algorithm is customizable in abstract interpretation,
but is fixed in declarative programming.

Disclaimer: | am not an expert in neither of these areas.
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Abstract interpretation in a nutshell

Acknowledgement: the illustrations in this section is borrowed
from Prof. Patrick Cousot's webpage Abstract Interpretation in a
Nutshell.
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Program analysis: concrete semantics

Possible
trajectories

-
-

The concrete semantics of a program is formalized by the set of all
possible executions of this program under all possible inputs.

The concrete semantics of a program can be a close to infinite
mathematical object / sequence which is impractical to enumerate.
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Program analysis: safety properties

Forbidden zone

Possible
trajectories

Safety properties of a program express that no possible execution of
the program, when considering all possible execution environments,
can reach an erroneous state.

7/36



Intro

00000080000

Program analysis: testing

Forbidden zone Error Il

Possible
trajectories

Test of a few trajectories

Testing consists in considering a subset of the possible executions.
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Program analysis: bounded model checking

Forbidden zone — Error !

e . el o MU Possible
A ¥ i \....->*... [ trajectories
__/// . -~ .7;:.. \ ",)":V ......

=y R e i i

Bounded model-checking of trajectory prefixes

Bounded model checking consists in exploring the prefixes of the
possible executions.
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Program analysis: abstract interpretation

Forbidden zone

Possible
trajectories

Abstraction of the trajectories

Abstract interpretation consists in considering an abstract semantics,
that is a superset of the concrete program semantics.

The abstract semantics covers all possible cases
= if the abstract semantics is safe (i.e. does not intersect the
forbidden zone) then so is the concrete semantics. 10/36
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Program analysis: abstract interpretation false alarm 1

Forbidden zone False alarm
! Possible
‘ D trajectories
[

Imprecise trajectory abstraction

False alarms caused by widening during execution.
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Program analysis: abstract interpretation false alarm 2

Forbidden zone

False alarms _ _
T Possible

y trajectories

Imprecise trajectory abstraction by intervals

False alarms caused by abstract domains.
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© Example and intuition about abstract domains
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What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x,y,z, y:=read(file); x:=yxy;
if x > 0Othenz:=1lelsez:=0

14 /36



Abstraction
0000000000

What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x,y,z, y:=read(file); x:=yxy;
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@ Exhaustive analysis in the standard domain: non-termination

@ Human reasoning about programs — uses abstractions:
signs, order of magnitude, odd/even, ...
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What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x,y,z, y:=read(file); x:=yxy;
if x > 0Othenz:=1lelsez:=0

@ Exhaustive analysis in the standard domain: non-termination

@ Human reasoning about programs — uses abstractions:
signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of
computational objects to make the problem of program dataflow
analysis tractable.

14 /36
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What is abstract interpretation?

Abstract interpretation is a formalization of the above procedure:

@ define a non-standard semantics which can approximate the
meaning (or behaviour) of the program in a finite way

@ expressions are computed over an approximate (abstract) domain
rather than the concrete domain (i.e., meaning of operators has
to be reconsidered w.r.t. this new domain)
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Example: integer sign arithmetic

Consider the domain D = Z (integers)
and the multiplication operator: x : Z%2 — Z

We define an “abstract domain:" D, = {[-], [+]}
and abstract multiplication: *,, : D2 — D, defined by:

*o | [-] | [+]
[ [+ | [-]
[H =[]
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Example: integer sign arithmetic

Consider the domain D = Z (integers)
and the multiplication operator: x : Z%2 — Z

We define an “abstract domain:" D, = {[-], [+]}
and abstract multiplication: *,, : D2 — D, defined by:

*o | [-] | [+]
[ [+ | [-]
[H =[]

2

This allows us to conclude, for example, that y = x* = x * x is

never negative.
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Some observations

@ The basis is that whenever we have z = x x y then:

if x,y € Z are approximated by xu, Vo € Dq
then z € Z is approximated by z, = X *q Ya

- Essentially, we map from an unbounded domain to a finite domain.

@ It is important to formalize this notion of approximation,
in order to be able to reason/prove that the analysis is correct.

@ Approximate computation is generally less precise but faster
(hence the tradeoff).
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Example: integer sign arithmetic (refined)

Again, D = Z (integers)
and: x: 2% - Z

We can define a more refined “abstract domain”

. e 2
and the corresponding abstract multiplication: *, : D', — D,

*o | [=] ] [0] | [+]
(=1 o] [-]
[0] | [0] | [0] | [0]
(H =10 ] [+]
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Example: integer sign arithmetic (refined)

Again, D = Z (integers)
and: x: 2% - Z

We can define a more refined “abstract domain”

. e 2
and the corresponding abstract multiplication: *, : D', — D,

*o | [=] ] [0] | [+]
(=1 o] [-]
[0] | [0] | [0] | [0]
(H =10 ] [+]

This allows us to conclude, for example, that z = y % (0 % x) is zero.
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More observations

@ There is a degree of freedom in defining different abstract
operators and domains.

@ The minimal requirement is that they be “safe” or “correct”.

o Different “safe” definitions result in different kinds of analysis.
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Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z? — Z
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Again, D = Z (integers)
and now we want to define the addition operator + : Z? — Z

We cannot use D!, = {[—],[0],[+]} because we wouldn't know how
to represent the result of [+] +4 [—], (i-e., the abstract addition
would not be closed).

20/36



Abstraction
00000008000

Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z? — Z

We cannot use D!, = {[—],[0],[+]} because we wouldn't know how
to represent the result of [+] +4 [—], (i-e., the abstract addition

would not be closed).

Solution: introduce a new element “T" in the abstract domain as
an approximation of any integer.

20/36



Example: integer sign arithmetic (with addition)

New “abstract domain”:

Abstract +,, : D’i — D',

D'o ={[=].[0], [+], T}

to [[Z1] O [ [+] ] T
I =TT
[0 | =10 | [+]| T
H1) T T
T T | T | T|T

Abstract *,, : D’i — D',

*o | [Z][[O] [+ | T
1o =] T
[0] | [0] | [0] | [0] | [O]
O | T
Tl Tl T|T
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Example: integer sign arithmetic (with addition)

New “abstract domain”:

Abstract +,, : D’i — D',

D'o ={[=].[0], [+], T}

to | [F] ][0 [ [+H]|T
I T T
0 | =1 [0 | [+]| T
) T [T
T T | T | T|T

We can now reason that z = x2 + y?2 is never negative
y g

Abstract *,, : D’i - D,

*o | [Z][[O] [+ | T
1o =] T
[0] | [0] | [0] | [0] | [O]
O | T
Tl Tl T|T
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More observations

@ In addition to the imprecision due to the coarseness of D,, the
abstract versions of the operations (dependent on D,) may
introduce further imprecision

@ Thus, the choice of abstract domain and the definition of the
abstract operators are crucial.
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Concerns in abstract interpretation

@ Required:

- Correctness — safe approximations: the analysis should be
“conservative” and errs on the “safe side”
- Termination — compilation should definitely terminate

(note: not always the case in everyday program analysis tools!)

@ Desirable — “practicality”:
- Efficiency — in practice finite analysis time is not enough: finite and
small is the requirement.
e Accuracy — too many false alarms is harmful to the adoption of the
analysis tool (“the boy who cried wolf").
o Usefulness — determines which information is worth collecting.
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© Reaching fixedpoint: joining, widening, and narrowing
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Abstract domain example: intervals

Consider the following abstract domain for x € Z (integers):
x = [a, b] where

- a can be either a constant or —co and

- b can be either a constant or oo.
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Abstract domain example: intervals

Consider the following abstract domain for x € Z (integers):
x = [a, b] where
- a can be either a constant or —oo and

- b can be either a constant or oo.

Example:
{X# = [039]7 y# = [_17 1]}

zZ=xX+2%*y

{z# =1[0,9] +# 2 x# [-1,1] = [-2,11]}
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Abstract domain example: intervals

Consider the following abstract domain for x € Z (integers):
x = [a, b] where
- a can be either a constant or —oo and

- b can be either a constant or oo.

Example:

{X# = [039]7 y# = [_17 1]}
Z=X+2%y

{z# =1[0,9] +# 2 x# [-1,1] = [-2,11]}

Q: Why z# is an abstraction of z?

25/36
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Join operator

The join operator LI merges two or more abstract states into one
abstract state.
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Joining operator example

{x# =0, 10]}
if (x < 0) then
s = -1

else if (x > 0) then

s :=1
else
s :=0

27/36
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Joining operator example

{x# =0, 10]}
if (x < 0) then
{x# =0}
s = -1
{X# = ®a s = (b}
else if (x > 0) then
s :=1
else
s :=0

27/36
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Joining operator example

{x# = [0,10]}
if (x < 0) then

{x* =0}

s 1= -1

{x#* =0, s* =0}
else if (x > 0) then

{x# =[1,10]}

s :=1

{x# =[1,10], s* = [1,1]}
else

s =0
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Joining operator example

{x# = [0,10]}
if (x < 0) then

{x* =0}

s 1= -1

{x#* =0, s* =0}
else if (x > 0) then

{x# =[1,10]}

s :=1

{x# =[1,10], s* = [1,1]}
else

{X# =[0,0]}

s =0

{x# [0,0], s* = [0,0]}
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Joining operator example

{x* = [0,10]}
if (x < 0) then

{x* =0}

s 1= -1

{x#* =0, s* =0}
else if (x > 0) then

{x# = [1,10]}

s :=1

{x# =[1,10], s* = [1,1]}
else

{x* =100}

s =0

{x* =[0,0], s* = [0,0]}

{x#* =0 U[1,10] U[0,0] = [0,10], s* = @ LU [1,1] L [0,0] = [0, 1]}
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What about loops?

{x* =0}
x =0

while (x < 100) {
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What about loops?

{x* =0}
x =0

{x# = (even)}
while (x < 100) {
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What about loops?

{x# =0)

x :=0
{x# = (even)}
while (x < 100) {
{x# = (even)}1
X =X + 2
{x# = (even)};
}
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What about loops?

{x# =0)

x :=0

{x# = (even)}

while (x < 100) {
{x#* = (even)}1  {x7 = (even) U (even) = (even)},
X =X + 2
{x# = (even)};

}
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What about loops?

{x# =0)

x :=0

{x# = (even)}

while (x < 100) {
{x# = (even)};  {x7 = (even) LI (even) = (even)},
X =X + 2
{x# = (even)};

}
{x# = (even)}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).
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Collecting semantics

(ot = 0}
x =0
while (x < 100) {

X 1= X + 2
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Collecting semantics

{x# =0}

x =0

{x# = [0,0]}

while (x < 100) {
X =X + 2

t
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Collecting semantics

[t = 0}

x :=0

{X# = [070]}

while (x < 100) {
{x* =10,0}11
X =X + 2
{x* =12,2lh

t
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Collecting semantics

{x* =)
x =0
{X# = [070]}

while (x < 100) {
{X# = [070]}1 {X# - [070] U [272] - [072]}2
X 1= X + 2
{x#* =221 {x* =[2,2]U[2,4] = [2,4]}2
}
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Collecting semantics

{x* =)
x =0
{X# = [070]}

while (x < 100) {
{X# = [070]}1 {X# - [072] U [274] - [074]}3
X =X + 2
{x#* =221y  {x¥ =[2,4]U[2,6] =[2,6]}3
}

29/36
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Collecting semantics

[x# =0}
x :=0
{X# = [070]}

while (x < 100) {

{x# =10,0]}1 (- Ya{ )5,

X 1= X + 2
: {x* =1[2,2]h (Y {)s, -

29/36
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Collecting semantics

{x* =)
x =0
{X# = [070]}

while (x < 100) {
{x# =1[0,0]}1 {x# =1[0,96] LI [2,98] = [0, 98]}50
X =X + 2

{x* =1[2,2]h {x# =[2,98] LI [2,100] = [2,100]}s50
}
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Collecting semantics

et = 0}
x :=0
{X# = [070]}

while (x < 100) {

{X# = [07 0]}1 {X# = [0,96] U [2,98] = [0, 98] }s0

X =X + 2

{x* =1[2,2]h {x# =[2,98] LI [2,100] = [2,100]}s50
}
{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).
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Collecting semantics

et = 0}
x :=0
{X# = [070]}

while (x < 100) {

{X# = [07 0]}1 {X# = [0,96] U [2,98] = [0, 98] }s0

X =X + 2

{x* =1[2,2]h {x# =[2,98] LI [2,100] = [2,100]}s50
}
{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?
29 /36
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Widening operator

We compute the limit of the following sequence:

Xo =L
Xiy1 = X;VF#(X;)

where V denotes the widening operator.

30/36



Fixedpoint
0O000000e00

Widening operator example

{x* =0}
x =0

while (x < 100) {
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Widening operator example

{x* =0}
x =0
{x* =[0,0]}

while (x < 100) {
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Widening operator example

{x# =0)

x =0

[x# = [0,0]}

while (x < 100) {
{x# =10,01}1
X =X+ 2
{x* =12,2lh

}
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Widening operator example

{x* =0}
x =0
{x* =[0,0]}

while (x < 100) {
{X# [0 0]}1 {X# = [070]V[272] = [Oa +OO]}2
X =X+ 2
F =122 {x* =[2,+oc]}s

}
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Widening operator example

{x* =0}
x =0
{x* =[0,0]}

while (x < 100) {
{x* =10,0]}1 {x7* = [0, +oc]V[2, +00] = [0, +-00]}3
X =X+ 2
F =220 X =24}

}
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Widening operator example

{x* =0}
x =0
{x* =[0,0]}

while (x < 100) {
{x# =[0,0]}; {x7* = [0, +oc]V[2, +00] = [0, +-00]}3
X =X+ 2
F =220 X =24}

}
{x# = [100, +oc]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).
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Narrowing operator

We compute the limit of the following sequence:

Xo =L
Xit1 = XiAF# (X))

where A denotes the narrowing operator.
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Narrowing operator example

{x# =0)

x =0

[x# = [0,0]}

while (x < 100) {
{x# = [0, +00]}
X =X+ 2

: {x# =[2,4c]}

{x# = [100,101]}
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Narrowing operator example

{x* =0}
x =0
{x* =[0,0]}

while (x < 100) {
{x# =1[0,400]} {x* =0, +00]A[0,99] = [0,99]}1
X =X + 2
{x# =2, 400} {x* = [2,101] 1

}

{x# =[100, 101]}
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Narrowing operator example

{x* =0}
x =0
{x* =[0,0]}

while (x < 100) {
{x# =[0,400]}  {x* =[2,101]A[0,99] = [0,99]}»
X =X+ 2
{x# = 2,400} {x¥ = [2,101]}

}

{x# =[100, 101]}
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Narrowing operator example

{x* =0}
x =0
{x* =[0,0]}

while (x < 100) {
{(x# =[0,400]}  {x# =[2,101]A[0,99] = [0,99]}>
X =X+ 2
{x# = 2,400} {x¥ = [2,101]}

}

{x# =[100, 101]}

2 iterations to reach fixedpoint (i.e., none of the abstract states
changes).
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Conclusion

Abstract interpretation is a powerful framework for designing correct
static analysis:

framework: reusable static analysis building blocks
powerful: all static analyses are understood in this framework

simple: only need to define a few primitives

eye-opening: any static analysis is an abstract interpretation

35/36



( End )

36/36



	abstract interpretation
	Introduction
	Example and intuition about abstract domains
	Reaching fixedpoint: joining, widening, and narrowing
	Conclusion


