CS 858: Software Security Offensive and Defensive Approaches

Detection: abstract interpretation

Meng Xu (University of Waterloo)

Fall 2022

•0000000000 Outline

Intro

- Introduction

Why this topic?

Intro

A significant portion of software security research is related to program analysis:

- derive properties which hold for program P (i.e., inference)
- prove that some property holds for program P (i.e., verification)
- \bullet given a program P, generate a program P' which is
 - in most ways equivalent to P
 - behaves better than P w.r.t some criteria
 - (i.e., transformation)

Why this topic?

Intro

A significant portion of software security research is related to program analysis:

- derive properties which hold for program P (i.e., inference)
- prove that some property holds for program P (i.e., verification)
- \bullet given a program P, generate a program P' which is
 - in most ways equivalent to P
 - behaves better than P w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing program analysis tools.

Comparision with declaration programming

Intro

0000000000

Q: Wait... how is abstraction interpretation different from Datalog (or declarative programming in general)?

Comparision with declaration programming

Q: Wait... how is abstraction interpretation different from Datalog (or declarative programming in general)?

- Abstraction is implicitly introduced in declarative rules but is explicitly defined in abstract interpretation.
- The search algorithm is customizable in abstract interpretation. but is fixed in declarative programming.

Disclaimer: I am not an expert in neither of these areas.

Abstract interpretation in a nutshell

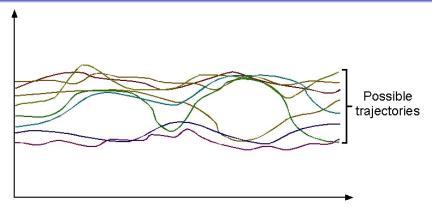
Intro

0000000000

Acknowledgement: the illustrations in this section is borrowed from Prof. Patrick Cousot's webpage Abstract Interpretation in a Nutshell.

Program analysis: concrete semantics

Intro



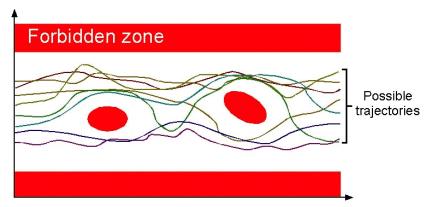
The concrete semantics of a program is formalized by the set of all possible executions of this program under all possible inputs.

The concrete semantics of a program can be a *close to infinite* mathematical object / sequence which is impractical to enumerate.

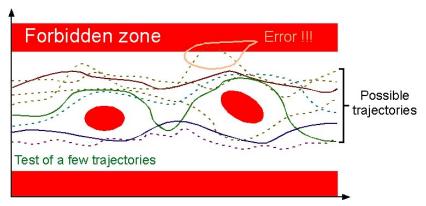
Program analysis: safety properties

Intro

00000000000



Safety properties of a program express that no possible execution of the program, when considering all possible execution environments, can reach an erroneous state.

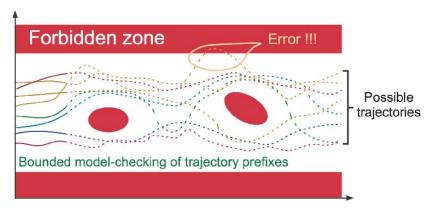


Testing consists in considering a subset of the possible executions.

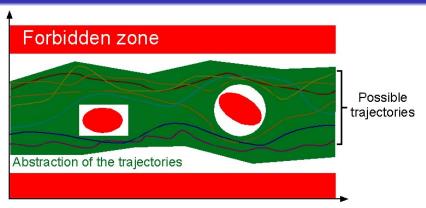
Program analysis: bounded model checking

Intro

00000000000



Bounded model checking consists in exploring the prefixes of the possible executions.

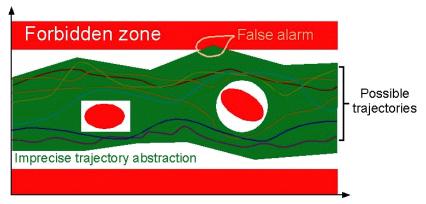


Abstract interpretation consists in considering an abstract semantics, that is a superset of the concrete program semantics.

The abstract semantics covers all possible cases ⇒ if the abstract semantics is safe (i.e. does not intersect the forbidden zone) then so is the concrete semantics.

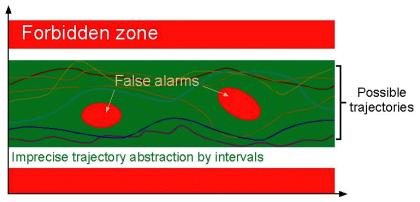
00000000000

Program analysis: abstract interpretation false alarm 1



False alarms caused by widening during execution.

Program analysis: abstract interpretation false alarm 2



False alarms caused by abstract domains.

Outline

- Introduction
- 2 Example and intuition about abstract domains
- 3 Reaching fixedpoint: joining, widening, and narrowing
- 4 Conclusion

Consider detecting that one branch will not be taken in:

int
$$x, y, z$$
; $y := read(file)$; $x := y * y$; if $x \ge 0$ then $z := 1$ else $z := 0$

Intro

Consider detecting that one branch will not be taken in:

```
int x, y, z; y := read(file); x := y * y;
if x > 0 then z := 1 else z := 0
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs uses abstractions: signs, order of magnitude, odd/even, ...

Consider detecting that one branch will not be taken in:

```
int x, y, z; y := read(file); x := y * y;
if x > 0 then z := 1 else z := 0
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs uses abstractions: signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of computational objects to make the problem of program dataflow analysis tractable.

Intro

Abstract interpretation is a formalization of the above procedure:

- define a non-standard semantics which can approximate the meaning (or behaviour) of the program in a finite way
- expressions are computed over an approximate (abstract) domain rather than the concrete domain (i.e., meaning of operators has to be reconsidered w.r.t. this new domain)

Example: integer sign arithmetic

Consider the domain D = Z (integers) and the multiplication operator: $*: Z^2 \rightarrow Z$

We define an "abstract domain:" $D_{\alpha} = \{[-], [+]\}$ and abstract multiplication: $*_{\alpha}: D_{\alpha}^2 \to D_{\alpha}$ defined by:

$*_{\alpha}$	[-]	[+]
[-]	[+]	[-]
[+]	[-]	[+]

Example: integer sign arithmetic

Consider the domain D = Z (integers) and the multiplication operator: $*: Z^2 \rightarrow Z$

We define an "abstract domain:" $D_{\alpha} = \{[-], [+]\}$ and abstract multiplication: $*_{\alpha}: D_{\alpha}^2 \to D_{\alpha}$ defined by:

$*_{\alpha}$	[-]	[+]
[-]	[+]	[-]
[+]	[-]	[+]

This allows us to conclude, for example, that $y = x^2 = x * x$ is never negative.

Some observations

Intro

- The basis is that whenever we have z = x * y then: if $x, y \in Z$ are approximated by $x_{\alpha}, y_{\alpha} \in D_{\alpha}$ then $z \in Z$ is approximated by $z_{\alpha} = x_{\alpha} *_{\alpha} y_{\alpha}$
 - Essentially, we map from an unbounded domain to a finite domain.
- It is important to formalize this notion of approximation, in order to be able to reason/prove that the analysis is correct.
- Approximate computation is generally less precise but faster (hence the tradeoff).

Example: integer sign arithmetic (refined)

Again, D = Z (integers) and: $*: Z^2 \rightarrow Z$

We can define a more refined "abstract domain" $D'_{\alpha} = \{[-], [0], [+]\}$

and the corresponding abstract multiplication: $*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]
[-]	[+]	[0]	[-]
[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]

Example: integer sign arithmetic (refined)

Again, D = Z (integers) and $*: 7^2 \rightarrow 7$

We can define a more refined "abstract domain" $D'_{\alpha} = \{[-], [0], [+]\}$

and the corresponding abstract multiplication: $*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]
[-]	[+]	[0]	[-]
[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]

This allows us to conclude, for example, that z = y * (0 * x) is zero.

More observations

- There is a degree of freedom in defining different abstract operators and domains.
- The minimal requirement is that they be "safe" or "correct".
- Different "safe" definitions result in different kinds of analysis.

Again, D = Z (integers) and now we want to define the addition operator $+: Z^2 \to Z$

Again, D = Z (integers) and now we want to define the addition operator $+: \mathbb{Z}^2 \to \mathbb{Z}$

We cannot use $D'_{\alpha} = \{[-], [0], [+]\}$ because we wouldn't know how to represent the result of $[+] +_{\alpha} [-]$, (i.e., the abstract addition would not be closed).

Again, D = Z (integers) and now we want to define the addition operator $+: \mathbb{Z}^2 \to \mathbb{Z}$

We cannot use $D'_{\alpha} = \{[-], [0], [+]\}$ because we wouldn't know how to represent the result of $[+] +_{\alpha} [-]$, (i.e., the abstract addition would not be closed).

Solution: introduce a new element "T" in the abstract domain as an approximation of any integer.

New "abstract domain": $D'_{\alpha} = \{[-], [0], [+], \top\}$

Abstract
$$+_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$$

$+_{\alpha}$	[-]	[0]	[+]	Τ
[-]	[-]	[-]	Т	\top
[0]	[-]	[0]	[+]	T
[+]	Т	[+]	[+]	T
T	T	T	T	\top

Abstract
$$*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$$

$*_{\alpha}$	[-]	[0]	[+]	Т
[-]	[+]	[0]	[-]	T
[0]	[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]	T
Т	T	[0]	Т	T

New "abstract domain": $D'_{\alpha} = \{[-], [0], [+], \top\}$

Abstract
$$+_{\alpha}: D'_{\alpha}^{2} \to D'_{\alpha}$$

$+_{\alpha}$	[-]	[0]	[+]	\top
[-]	[-]	[-]	Т	Τ
[0]	[-]	[0]	[+]	T
[+]	Τ	[+]	[+]	T
Т	Τ	T	T	T

Abstract
$$*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$$

$*_{\alpha}$	[-]	[0]	[+]	Т
[-]	[+]	[0]	[-]	T
[0]	[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]	T
Т	T	[0]	Т	Т

We can now reason that $z = x^2 + y^2$ is never negative

More observations

- In addition to the imprecision due to the coarseness of D_{α} , the abstract versions of the operations (dependent on D_{α}) may introduce further imprecision
- Thus, the choice of abstract domain and the definition of the abstract operators are crucial.

Concerns in abstract interpretation

• Required:

- Correctness safe approximations: the analysis should be "conservative" and errs on the "safe side"
- Termination compilation should definitely terminate
 (note: not always the case in everyday program analysis tools!)

- Desirable "practicality":
 - Efficiency in practice finite analysis time is not enough: finite and small is the requirement.
 - Accuracy too many false alarms is harmful to the adoption of the analysis tool ("the boy who cried wolf").
 - Usefulness determines which information is worth collecting.

Outline

- Introduction
- Example and intuition about abstract domains
- 3 Reaching fixedpoint: joining, widening, and narrowing
- 4 Conclusion

Consider the following abstract domain for $x \in Z$ (integers):

Fixedpoint

- x = [a, b] where
- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers):

Fixedpoint

- x = [a, b] where
- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Example:

$$\{x^{\#} = [0, 9], y^{\#} = [-1, 1]\}$$

 $z = x + 2 * y$
 $\{z^{\#} = [0, 9] + 2 \times [-1, 1] = [-2, 11]\}$

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers):

- x = [a, b] where
- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Example:

$$\{x^{\#} = [0, 9], y^{\#} = [-1, 1]\}$$

 $z = x + 2 * y$
 $\{z^{\#} = [0, 9] + 2 \times [-1, 1] = [-2, 11]\}$

Q: Why $z^{\#}$ is an abstraction of z?

Join operator

The join operator \sqcup merges two or more abstract states into one abstract state.

$${x^{\#} = [0, 10]}$$

if (x < 0) then

$$s := -1$$

else if (x > 0) then

$$s := 1$$

else

```
{x^{\#} = [0, 10]}
if (x < 0) then
   \{x^{\#} = \emptyset\}
   s := -1
   \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   s := 1
else
   s := 0
```

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^{\#} = \emptyset\}
   s := -1
   \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   \{x^{\#} = [1, 10]\}
   s := 1
   \{x^{\#} = [1, 10], s^{\#} = [1, 1]\}
else
   s := 0
```

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^{\#} = \emptyset\}
   s := -1
   \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   \{x^{\#} = [1, 10]\}
   s := 1
   {x^{\#} = [1, 10], s^{\#} = [1, 1]}
else
   \{x^{\#} = [0,0]\}
   s := 0
   \{x^{\#} = [0,0], s^{\#} = [0,0]\}
```

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^{\#} = \emptyset\}
   s := -1
   \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   \{x^{\#} = [1, 10]\}
   s := 1
   {x^{\#} = [1, 10], s^{\#} = [1, 1]}
else
   \{x^{\#} = [0,0]\}
   s := 0
   {x^{\#} = [0,0], s^{\#} = [0,0]}
\{x^{\#} = \emptyset \sqcup [1,10] \sqcup [0,0] = [0,10], s^{\#} = \emptyset \sqcup [1,1] \sqcup [0,0] = [0,1]\}
```

```
\{x^\# = \emptyset\}
x := 0
while (x < 100) {
   x := x + 2
```

```
\{x^{\#} = \emptyset\}

x := 0
\{x^{\#} = \langle even \rangle\}
while (x < 100) {

x := x + 2
```

```
\{x^{\#} = \emptyset\}
x := 0
\{x^{\#} = \langle even \rangle\}
while (x < 100) {
     \{x^{\#} = \langle even \rangle\}_1 \{x^{\#} = \langle even \rangle \sqcup \langle even \rangle = \langle even \rangle\}_2
     x := x + 2
     \{x^{\#} = \langle even \rangle\}_1
```

What about loops?

Two iterations to reach fixedpoint (i.e., none of the abstract states changes).

```
\{x^\# = \emptyset\}
x := 0
while (x < 100) {
   x := x + 2
```

```
\{x^\# = \emptyset\}
x := 0
{x^{\#} = [0,0]}
while (x < 100) {
   x := x + 2
```

```
\{x^{\#} = \emptyset\}
x := 0
{x^{\#} = [0, 0]}
while (x < 100) {
   \{x^\# = [0,0]\}_1
   x := x + 2
   {x^{\#} = [2,2]}_{1}
```

```
\{x^{\#} = \emptyset\}
x := 0
\{x^{\#} = [0,0]\}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,0] \sqcup [2,2] = [0,2]\}_2
   x := x + 2
   \{x^{\#} = [2,2]\}_1 \{x^{\#} = [2,2] \sqcup [2,4] = [2,4]\}_2
```

```
\{x^{\#} = \emptyset\}
x := 0
\{x^{\#} = [0,0]\}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,2] \sqcup [2,4] = [0,4]\}_3
   x := x + 2
   \{x^{\#} = [2,2]\}_1 \{x^{\#} = [2,4] \sqcup [2,6] = [2,6]\}_3
```

```
\{x^{\#} = \emptyset\}
x := 0
{x^{\#} = [0,0]}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{\cdots\}_4, \{\cdots\}_5, \cdots
   x := x + 2
   \{x^{\#} = [2,2]\}_1 \{\cdots\}_4, \{\cdots\}_5, \cdots
```

```
\{x^{\#} = \emptyset\}
x := 0
{x^{\#} = [0,0]}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,96] \sqcup [2,98] = [0,98]\}_{50}
   x := x + 2
   {x^{\#} = [2,2]}_{1}
                            \{x^{\#} = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50}
```

Collecting semantics

```
\{x^{\#} = \emptyset\}
x := 0
\{x^{\#} = [0,0]\}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,96] \sqcup [2,98] = [0,98]\}_{50}
   x := x + 2
   \{x^{\#} = [2,2]\}_1 \{x^{\#} = [2,98] \sqcup [2,100] = [2,100]\}_{50}
\{x^{\#} = [100, 100]\}
```

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Collecting semantics

```
\{x^{\#} = \emptyset\}
x := 0
\{x^{\#} = [0,0]\}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,96] \sqcup [2,98] = [0,98]\}_{50}
   x := x + 2
   \{x^{\#} = [2, 2]\}_1 \{x^{\#} = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50}
\{x^{\#} = [100, 100]\}
```

Fixedpoint

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Q: can we reach the fixedpoint faster?

Widening operator

We compute the limit of the following sequence:

$$X_0 = \perp$$
$$X_{i+1} = X_i \nabla F^{\#}(X_i)$$

where ∇ denotes the widening operator.

```
{x^{\#} = \emptyset}

x := 0

while (x < 100) {

x := x + 2
```

```
\{x^\# = \emptyset\}
x := 0
{x^{\#} = [0,0]}
while (x < 100) {
   x := x + 2
```

```
\{x^{\#} = \emptyset\}
x := 0
{x^{\#} = [0,0]}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1
   x := x + 2
   \{x^\# = [2,2]\}_1
```

```
\{x^{\#} = \emptyset\}
x := 0
{x^{\#} = [0,0]}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,0] \nabla [2,2] = [0,+\infty]\}_2
   x := x + 2
   \{x^{\#} = [2,2]\}_1 \{x^{\#} = [2,+\infty]\}_2
```

```
\{x^{\#} = \emptyset\}
x := 0
{x^{\#} = [0,0]}
while (x < 100) {
   \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,+\infty] \nabla [2,+\infty] = [0,+\infty]\}_3
   x := x + 2
   \{x^{\#} = [2,2]\}_1 \{x^{\#} = [2,+\infty]\}_3
```

Widening operator example

```
\{x^{\#} = \emptyset\}
x := 0
\{x^\# = [0,0]\}
while (x < 100) {
    \{x^{\#} = [0,0]\}_1 \{x^{\#} = [0,+\infty] \nabla [2,+\infty] = [0,+\infty]\}_3
   x := x + 2
\{x^{\#} = [2, 2]\}_1 \{x^{\#} = [2, +\infty]\}_3
\{x^\# = \lceil 100, +\infty \rceil\}
```

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).

We compute the limit of the following sequence:

$$X_0 = \perp$$
$$X_{i+1} = X_i \triangle F^{\#}(X_i)$$

where \triangle denotes the narrowing operator.

Narrowing operator example

```
\{x^\# = \emptyset\}
 x := 0
 {x^\# = [0, 0]}
 while (x < 100) {
    {x^{\#} = [0, +\infty]}
    x := x + 2
    {x^{\#} = [2, +\infty]}
 \{x^{\#} = [100, 101] \}
```

Narrowing operator example

```
\{x^\# = \emptyset\}
x := 0
{x^{\#} = [0,0]}
while (x < 100) {
   \{x^{\#} = [0, +\infty]\} \{x^{\#} = [0, +\infty] \triangle [0, 99] = [0, 99]\}_1
   x := x + 2
   x := x + 2
\{x^{\#} = [2, +\infty]\} \{x^{\#} = [2, 101]\}_1
\{x^{\#} = [100, 101]\}
```

```
\{x^\# = \emptyset\}
x := 0
{x^\# = [0,0]}
while (x < 100) {
   \{x^{\#} = [0, +\infty]\} \{x^{\#} = [2, 101] \triangle [0, 99] = [0, 99]\}_2
   x := x + 2
   \{x^{\#} = [2, +\infty]\} \{x^{\#} = [2, 101]\}_2
{x^{\#} = [100, 101]}
```

Narrowing operator example

```
\{x^{\#} = \emptyset\}
x := 0
\{x^\# = [0,0]\}
while (x < 100) {
   \{x^{\#} = [0, +\infty]\} \{x^{\#} = [2, 101] \triangle [0, 99] = [0, 99]\}_2
   x := x + 2
   x := x + 2
\{x^{\#} = [2, +\infty]\} \{x^{\#} = [2, 101]\}_2
{x^{\#} = [100, 101]}
```

2 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Outline

- 4 Conclusion

Conclusion

Intro

Abstract interpretation is a powerful framework for designing correct static analysis:

- framework: reusable static analysis building blocks
- powerful: all static analyses are understood in this framework
- **simple**: only need to define a few primitives
- eye-opening: any static analysis is an abstract interpretation

 \langle End \rangle