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What is sandboxing?

Sandboxing is a security mechanism for isolating vulnerable /
untrusted code from its hosting platform, usually in an effort to
confine the potential damage.
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What damage?

Corrupt in-application data

Corrupt memory

Corrupt local filesystem

Corrupt other processes

Gain root privilege

Spread into other network-connected computers

......
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The ladder of separation

Physical separation

- e.g., Airgap, RF-shield rooms

Hardware isolation

- e.g., AWS dedicated instances

Whole-system virtualization

- e.g., Full (VMware ESXi) / Para (Xen)

Whole-system emulation

- e.g., QEMU (+ KVM) emulation, Android emulator

Partial system resources emulation

- e.g., Docker, Landlock, Jail

In-process application sandboxes

- e.g., Chrome Sandbox, capabilities, seccomp

In-thread application sandboxes

- e.g., hardware-assisted solutions like CHERI
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Airgap demonstration

Figure: Airgapped computers in the DARPA CGC event
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AWS dedicated instances

Based on AWS documentation

Dedicated Instances are Amazon EC2 instances that run in a
virtual private cloud (VPC) on hardware that’s dedicated to a
single customer. Dedicated Instances that belong to different
AWS accounts are physically isolated at a hardware level, even
if those accounts are linked to a single payer account.
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x86 privilege levels

User CodeUser CodeRing 3

Ring 2

Ring 1

OS kernelRing 0

Hardware
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Full virtualization (bare-metal)

User CodeUser CodeRing 3

Ring 2

Guest OS kernel
(unmodified)

Guest OS kernel
(unmodified)

Ring 1

VMMRing 0

Hardware

Trap accesses to hardware resources into the Virtual Machine
Manager (VMM), possibly via binary translation.
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Paravirtualization

User CodeUser CodeRing 3

Ring 2

Ring 1

Guest OS kernel
(coorporative)

Guest OS kernel
(coorporative)

Ring 0

VMM

Hardware

Instrument the guest kernel with hypercalls to interact with VMM.
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Whole-system emulation

User CodeUser CodeRing 3

Guest OS kernelGuest OS kernel

QEMUQEMU

Ring 2

Ring 1

Host OS kernelRing 0

Hardware

Whole-system emulation attempts to run the entire stack in
user-space, including the emulation of hardware devices.
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What is a container?

Figure: A cargo ship. Credits / Trademark: Tech Vision
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What does a container sees itself?

Figure: A single-container ship. Credits / Trademark: MarineTraffic
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Containerized application

User CodeUser CodeRing 3

DependenciesDependencies

Container platform

Ring 2

Ring 1

Host OS kernelRing 0

Hardware

A containerized application has a delusion that it is the only
application running on the platform (other than the dependencies).
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From the view of a containerized application

Libs Bins

Application

Container

Q: What does a containerized
application need to run?

memory

filesystem

networking

threading / scheduling

process management

inter-process communications
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Docker on Linux — control groups (cgroups)

Control groups (cgroups) is a Linux kernel feature that limits,
accounts for, and isolates the resource usage of a collection of
processes. Covered resources include

memory

CPU

block I/O

network

device drivers ...

some exotic use cases, such as

- huge pages (an efficient way of memory allocation)
- RDMA (for faster memory accesses)
- ......
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Docker on Linux — control groups (cgroups)

cgroups also allows to group processes for batch operations such as:

freezer (conceptually similar to a mass-SIGSTOP/SIGCONT)

perf_event (gather performance statistics on these processes)

cpuset (limit or pin processes to specific CPUs)

Limit number of pids (i.e., processes) in the group

When a process is created, it is placed in its parent’s cgroups
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Docker on Linux — namespaces (ns)

While cgroups limits how much a process can use, ns limits what a
process can see (and hence make use of).

These namespaces are typically available in modern Linux kernels:

pid: only “see” processes in the same PID namespace

net: networking interfaces

mnt: root fs, private mounts (/tmp), masking /proc, /sys, etc

uts: hostname

ipc: ns-specific IPC semaphores, message queues, shared memory

user: allows UID/GID mapping (e.g., UID 0→99 to 1000→1099)

time: allows slower/faster clock or an offset to the clock

Each process belongs to one namespace of each type. A new
process can re-use none / all / some of the namespaces of its parent
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Docker on Linux — namespaces (ns)

$ sudo unshare --uts

- create new uts namespace while inheriting everything else.

$ hostname

> system76-pc

$ hostname cs858

$ hostname

> cs858

In another shell, check that the hostname remains:

$ hostname

> system76-pc
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Docker on Linux — copy-on-write filesystem (OverlayFS)

While Docker generally considers it a mechanism for fast container
launch, the overlay filesystem concept itself is a very powerful
sandboxing mechanism.
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Docker on Linux — copy-on-write filesystem (OverlayFS)

Figure: An illustration of the OverlayFS. Credits / Trademark: Datalight
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Docker on Linux — copy-on-write filesystem (OverlayFS)

Figure: An illustration of the OverlayFS. Credits / Trademark: Docker
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Why would a program sandbox itself?

The most common reason is to deal with untrusted code, e.g.,

Javascript received from website

Macros carried in documents (e.g., Excel or PDF)

Language runtime running untrusted application code
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Case study: Linux capabilities

In traditional UNIX, many operations are possible when you have
UID = 0 (root):

changing file ownership, accessing all files, ...

setting up network interfaces, mounting filesystems ...

binding to a port below 1024 ...

load and unload kernel modules ...

......

But why would a web server has accesses to kernel modules or the
ability to mount / unmount filesystems?
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Case study: Linux capabilities

Capabilities are per-process flags to allow privileged operations
individually (which used to be granted to root as a package).

CAP_CHOWN: arbitrarily change file ownership and permissions.

CAP_DAC_OVERRIDE: arbitrarily bypass file ownership and
permissions.

CAP_NET_ADMIN: configure network interfaces, iptables rules, etc.

CAP_NET_BIND_SERVICE: bind a port below 1024.

CAP_SYS_MODULE: load or unload kernel modules.

...

See man capabilities for the full list and more details.
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Case study: Seccomp

Can we have more fine-grained sandboxing?

In a more verbose way, I know exactly what my sub-process should
do, can I achieve principle of least privilege?

Enter seccomp, that prevent execution of certain system calls by an
application, through a customizable filter.
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Why system calls?

The Linux kernel exposes a large number of system calls (≈400),
while most program only need a small subset to function. — The
practicality argument.

In addition, the most common way of making an impact on the host
platform is via system calls. — The effectiveness argument.
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Seccomp: strict mode

Only permit the following system calls: read(), write(), _exit(),
sigreturn(). Any other system calls leads to SIGKILL.

- NOTE: open() not included.

Designed to sandbox untrusted code that is compute-intensive.
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Seccomp: BPF filter

Allows filtering based on system call number and argument values
(pointers are not dereferenced).

Steps to use BPF filter:

1 Construct filter in BPF rules

2 Install filter using seccomp() or prctl()

3 exec() new program or invoke function in dynamically loaded
shared libraries (a.k.a., plug-ins).

Once install, every system call triggers execution of filter.
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Seccomp: from BPF to eBPF

Conventional BPF rules are stateless, i.e., the filtering decision is
solely based on the current system call being invoked and not based
on history of invocations.

eBPF, however, can be stateful. It is in fact a virtual machine in the
Linux kernel with its own instruction set and programming model.

In essence, eBPF allows arbitrarily complex checks to be performed
quickly and safely.
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⟨ End ⟩
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