
CS 858: Software Security
Offensive and Defensive Approaches

Meng Xu (University of Waterloo)

Attacks: data race

Fall 2022

Introduction Intuitive Formal Other

Outline

1 Introduction

2 Intuitive definition

3 Formal reasoning

4 Other form of races

2 / 32

Introduction Intuitive Formal Other

What is data race?

global var count = 0

for(i = 0; i < x; i++) {
/* do sth critical */

......

count++;

}

Thread 1

for(i = 0; i < y; i++) {
/* do sth critical */

......

count++;

}

Thread 2

Q: What is the value of count when both threads terminate?

3 / 32

Introduction Intuitive Formal Other

What is data race?

global var count = 0

for(i = 0; i < x; i++) {
/* do sth critical */

......

count++;

}

Thread 1

for(i = 0; i < y; i++) {
/* do sth critical */

......

count++;

}

Thread 2

Q: What is the value of count when both threads terminate?

3 / 32

Introduction Intuitive Formal Other

What is data race?

global var count = 0

global var mutex = ⊥

for(i = 0; i < x; i++) {
/* do sth critical */

......

lock(mutex);

count++;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
/* do sth critical */

......

lock(mutex);

count++;

unlock(mutex);

}

Thread 2

Q: What is the value of count when both threads terminate?

3 / 32

Introduction Intuitive Formal Other

Data race combined with memory errors

p is a global pointer initialized to NULL

if (!p) {
p = malloc(128);

}

Thread 1

if (!p) {
p = malloc(256);

}

Thread 2

Q: What are the possible outcomes of this execution?

4 / 32

Introduction Intuitive Formal Other

Data race combined with memory errors

p is a global pointer initialized to NULL

if (!p) {
p = malloc(128);

}

Thread 1

if (!p) {
p = malloc(256);

}

Thread 2

Q: What are the possible outcomes of this execution?

4 / 32

Introduction Intuitive Formal Other

Data race combined with memory errors

p is a global pointer initialized to NULL

if (!p) {
p = malloc(128);

}

if (p) {
free(p);

p = NULL;

}

Thread 1

if (!p) {
p = malloc(256);

}

if (p) {
free(p);

p = NULL;

}

Thread 2

Q: What are the possible outcomes of this execution?

4 / 32

Introduction Intuitive Formal Other

Data race as heisenbug

Programs which contain data races usually demonstrate unexpected
and even non-deterministic behavior.

The outcome might depend on a specific execution order (a.k.a.
thread interleaving).

Re-running the program may not always produce the same results.

Concurrent programs are hard to debug and even harder to ensure
correctness.

5 / 32

Introduction Intuitive Formal Other

Data race as heisenbug

Programs which contain data races usually demonstrate unexpected
and even non-deterministic behavior.

The outcome might depend on a specific execution order (a.k.a.
thread interleaving).

Re-running the program may not always produce the same results.

Concurrent programs are hard to debug and even harder to ensure
correctness.

5 / 32

Introduction Intuitive Formal Other

Data race as heisenbug

Programs which contain data races usually demonstrate unexpected
and even non-deterministic behavior.

The outcome might depend on a specific execution order (a.k.a.
thread interleaving).

Re-running the program may not always produce the same results.

Concurrent programs are hard to debug and even harder to ensure
correctness.

5 / 32

Introduction Intuitive Formal Other

Data race as heisenbug

Programs which contain data races usually demonstrate unexpected
and even non-deterministic behavior.

The outcome might depend on a specific execution order (a.k.a.
thread interleaving).

Re-running the program may not always produce the same results.

Concurrent programs are hard to debug and even harder to ensure
correctness.

5 / 32

Introduction Intuitive Formal Other

Outline

1 Introduction

2 Intuitive definition

3 Formal reasoning

4 Other form of races

6 / 32

Introduction Intuitive Formal Other

An intuitive definition

Intuitively, a data race happens when:

1 There are two memory acceses from different threads.

2 Both acceses target the same memory location.

3 At least one of them is a write operation.

4 Both acceses could interleave freely without restrictions such as
synchronization primitives or causality relations.

7 / 32

Introduction Intuitive Formal Other

An intuitive definition

Intuitively, a data race happens when:

1 There are two memory acceses from different threads.

2 Both acceses target the same memory location.

3 At least one of them is a write operation.

4 Both acceses could interleave freely without restrictions such as
synchronization primitives or causality relations.

7 / 32

Introduction Intuitive Formal Other

Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
count++;

}

Thread 1

for(i = 0; i < y; i++) {
count++;

}

Thread 2

8 / 32

Introduction Intuitive Formal Other

Free interleavings without locking

Thread 1 Thread 2

R

R

W

W

Thread 1 Thread 2

R

R

W

W

Thread 1 Thread 2

R

W

R

W

9/ 32

Introduction Intuitive Formal Other

Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 2

10 / 32

Introduction Intuitive Formal Other

Limited interleavings with locking

Thread 1 Thread 2

lock

R

W

unlock

lock

R

W

unlock

11 / 32

Introduction Intuitive Formal Other

Common synchronization primitives

Lock / Mutex / Critical section

Read-write lock

Barrier

Semaphore

12 / 32

Introduction Intuitive Formal Other

Common synchronization primitives

Lock / Mutex / Critical section

Read-write lock

Barrier

Semaphore

12 / 32

Introduction Intuitive Formal Other

Revisiting the definition

Intuitively, a data race happens when:

1 There are two memory acceses from different threads.

2 Both acceses target the same memory location.

3 At least one of them is a write operation.

4 Both acceses could interleave freely without restrictions such as
synchronization primitives

(((((((((((hhhhhhhhhhh
or causality relations.

13 / 32

Introduction Intuitive Formal Other

Causality relations: an example

1 #include <stdio.h>

2 #include <pthread.h>

3

4 int i;
5 int retval;
6

7 void* foo(void* p){
8 printf("Value of i: %d\n", i);
9 printf("Value of j: %d\n", *(int *)p);

10 pthread_exit(&retval);

11 }

12

13 int main(void){
14 int i = 1;
15 int j = 2;
16

17 pthread_t id;

18 pthread_create(&id, NULL, foo, &j);

19 pthread_join(id, NULL);

20

21 printf("Return value from thread: %d\n", retval);
22 }

14 / 32

Introduction Intuitive Formal Other

Causality relations

Thread 1 Thread 2

Wvar i

Wvar j

pthread_create

pthread_join

Rvar retval

<thread start>

R var i

R var j

W var retval

<thread end>

15 / 32

Introduction Intuitive Formal Other

Wait..., how are synchronization primitives implemented?

Dekker’s algorithm

Atomic swap

Atomic read-modify-write

- compare-and-swap
- test-and-set
- fetch-and-add
-

16 / 32

Introduction Intuitive Formal Other

Wait..., how are synchronization primitives implemented?

Dekker’s algorithm

Atomic swap

Atomic read-modify-write

- compare-and-swap
- test-and-set
- fetch-and-add
-

16 / 32

Introduction Intuitive Formal Other

Dekker’s algorithm

1 bool wants_to_enter[2] = {false, false};
2 int turn = 0; /* or turn = 1 */

1 // lock

2 wants_to_enter[0] = true;

3 while (wants_to_enter[1]) {
4 if (turn != 0) {
5 wants_to_enter[0] = false;

6 // busy wait

7 while (turn != 0) {}
8 wants_to_enter[0] = true;

9 }

10 }

11

12 /* ... critical section ... */

13

14 // unlock

15 turn = 1;

16 wants_to_enter[0] = false;

Thread 1

1 // lock

2 wants_to_enter[1] = true;

3 while (wants_to_enter[0]) {
4 if (turn != 1) {
5 wants_to_enter[1] = false;

6 // busy wait

7 while (turn != 1) {}
8 wants_to_enter[1] = true;

9 }

10 }

11

12 /* ... critical section ... */

13

14 // unlock

15 turn = 0;

16 wants_to_enter[1] = false;

Thread 2

Q: What are the possible outcomes of this execution?

17 / 32

Introduction Intuitive Formal Other

Bonus: Spinlock with atomic swap (xchg)
1 locked: ; The lock variable. 1 = locked, 0 = unlocked.

2 dd 0

3

4 spin_lock:

5 mov eax, 1 ; Set the EAX register to 1.

6 xchg eax, [locked] ; Atomically swap the EAX register with

7 ; the lock variable.

8 ; This will always store 1 to the lock, leaving

9 ; the previous value in the EAX register.

10 test eax, eax ; Test EAX with itself. Among other things, this

11 ; will set the processor’s Zero Flag if EAX is 0.

12 ; If EAX is 0, then the lock was unlocked and

13 ; we just locked it.

14 ; Otherwise, EAX is 1 and we didn’t acquire the lock.

15 jnz spin_lock ; Jump back to the MOV instruction if the Zero Flag is

16 ; not set; the lock was previously locked, and so

17 ; we need to spin until it becomes unlocked.

18 ret ; The lock has been acquired, return to the caller.

19

20 spin_unlock:

21 xor eax, eax ; Set the EAX register to 0.

22 xchg eax, [locked] ; Atomically swap the EAX register with

23 ; the lock variable.

24 ret ; The lock has been released. 18 / 32

Introduction Intuitive Formal Other

Revisiting the definition (again)

If we can find, statically or dynamically, a pair of memory acceses
(A1,A2) such that

they originate from different threads,

both A1 and A2 target the same memory location, AND

at least one of them is a write operation,

then we conclude that (A1,A2) must be one of the following cases:

(A1,A2) is part if a synchronization primitive, OR

(A1,A2) is a data race.

Q: Is this definition good enough?

19 / 32

Introduction Intuitive Formal Other

Revisiting the definition (again)

If we can find, statically or dynamically, a pair of memory acceses
(A1,A2) such that

they originate from different threads,

both A1 and A2 target the same memory location, AND

at least one of them is a write operation,

then we conclude that (A1,A2) must be one of the following cases:

(A1,A2) is part if a synchronization primitive, OR

(A1,A2) is a data race.

Q: Is this definition good enough?

19 / 32

Introduction Intuitive Formal Other

Is this a data race?

1 int x = 0;
2 bool flag = false;
3 lock mutex = unlocked;

1 x++;

2 lock(mutex);

3 flag = true;

4 unlock(mutex);

Thread 1

1 while(true) {
2 lock(mutex);

3 if (flag) {
4 break;
5 }

6 unlock(mutex);

7 }

8 x--;

Thread 2

20 / 32

Introduction Intuitive Formal Other

Is this a (bad) data race?

1 int x = 0;
2 bool flag = false;

1 x++;

2 flag = true;

Thread 1

1 while (!flag) {};
2 x--;

Thread 2

21 / 32

Introduction Intuitive Formal Other

Outline

1 Introduction

2 Intuitive definition

3 Formal reasoning

4 Other form of races

22 / 32

Introduction Intuitive Formal Other

How to model concurrency mathematically?

Lamport clock

Vector clock

23 / 32

Introduction Intuitive Formal Other

How to model concurrency mathematically?

Lamport clock

Vector clock

23 / 32

Introduction Intuitive Formal Other

Lamport clock algorithm

Each thread has its own clock variable t

On initialization:

- t ← 0

On write to shared memory *ptr = val:

- t ← t + 1
- store t alongside val at memory location ptr

On read from shared memory val = *ptr:

- retrieve the stored clock t ′ at memory location ptr
- t ← max(t, t ′) + 1

Properties of Lamport clock:

a→ b =⇒ L(a) < L(b)

L(a) < L(b) ≠⇒ a→ b

24 / 32

Introduction Intuitive Formal Other

Lamport clock algorithm

Each thread has its own clock variable t

On initialization:

- t ← 0

On write to shared memory *ptr = val:

- t ← t + 1
- store t alongside val at memory location ptr

On read from shared memory val = *ptr:

- retrieve the stored clock t ′ at memory location ptr
- t ← max(t, t ′) + 1

Properties of Lamport clock:

a→ b =⇒ L(a) < L(b)

L(a) < L(b) ≠⇒ a→ b

24 / 32

Introduction Intuitive Formal Other

Vector clock algorithm

Each thread i has its own clock vector t

On initialization:

- T ← ⟨0, 0, . . . , 0⟩N , assuming N threads

On write to shared memory *ptr = val:

- T [i]← T [i] + 1
- store T alongside val at memory location ptr

On read from shared memory val = *ptr:

- retrieve the stored clock T ′ at memory location ptr
- ∀k ∈ [0,N) : T [k] = max(T [k],T ′[k])
- T [i]← T [i] + 1

25 / 32

Introduction Intuitive Formal Other

Properties of the vector clock algorithm

With the following definition on the timestamp ordering:

T = T ′ ⇐⇒ ∀i ∈ [0,N) : T [i] = T ′[i]

T ≤ T ′ ⇐⇒ ∀i ∈ [0,N) : T [i] ≤ T ′[i]

T < T ′ ⇐⇒ T ≤ T ′ ∧ T ̸= T ′

T ∥ T ′ ⇐⇒ T ̸≤ T ′ ∧ T ′ ̸≤ T

We have:

a→ b ⇐⇒ V (a) < V (b)

a = b ⇐⇒ V (a) = V (b)

a ∥ b ⇐⇒ V (a) ∥ V (b)

26 / 32

Introduction Intuitive Formal Other

Homework exercise

1 int x = 0;
2 bool flag = false;

1 x++;

2 flag = true;

Thread 1

1 while (!flag) {};
2 x--;

Thread 2

Prove (by hand) that the write of x at x-- in thread 2 can never
happen before the read of x in x++ in thread 1.

27 / 32

Introduction Intuitive Formal Other

Outline

1 Introduction

2 Intuitive definition

3 Formal reasoning

4 Other form of races

28 / 32

Introduction Intuitive Formal Other

A more abstract view of data race

Q: Why data race can happen in the first place?

A: Because two threads in the same process share memory.

We can further generalize this concept by asking:

Q: What else do they share?
Q: What about other entities that may run concurrently?

And the answer to these questions will help define race condition.

29 / 32

Introduction Intuitive Formal Other

A more abstract view of data race

Q: Why data race can happen in the first place?

A: Because two threads in the same process share memory.

We can further generalize this concept by asking:

Q: What else do they share?
Q: What about other entities that may run concurrently?

And the answer to these questions will help define race condition.

29 / 32

Introduction Intuitive Formal Other

A more abstract view of data race

Q: Why data race can happen in the first place?

A: Because two threads in the same process share memory.

We can further generalize this concept by asking:

Q: What else do they share?
Q: What about other entities that may run concurrently?

And the answer to these questions will help define race condition.

29 / 32

Introduction Intuitive Formal Other

Example: race over the filesystem

1 #include <...>

2

3 int main(int argc, char *argv[]) {
4 FILE *fd;
5 struct stat buf;
6

7 if (stat("/some_file", &buf)) {
8 exit(1); // cannot read stat message

9 }

10

11 if (buf.st_uid != getuid()) {
12 exit(2); // permission denied

13 }

14

15 fd = fopen("/some_file", "wb+");

16 if (fd == NULL) {
17 exit(3); // unable to open the file

18 }

19

20 fprintf(f, "<some-secret-value>");

21 fclose(fd);

22 return 0;
23 }

30 / 32

Introduction Intuitive Formal Other

Example: the Dirty COW exploit

CVE-2016-5195

Allows local privilege escalation: user(1000) → root(0).

Exists in the kernel for nine years before finally patched.

Details on the Website.

31 / 32

https://dirtycow.ninja/

Introduction Intuitive Formal Other

⟨ End ⟩

32 / 32

	data race
	Introduction
	Intuitive definition
	Formal reasoning
	Other form of races

