
CS 858: Software Security
Offensive and Defensive Approaches

Meng Xu (University of Waterloo)

Attacks: memory corruption

Fall 2022

Introduction Intuition Spatial Temporal Countermeasures

Outline

1 Introduction

2 Intuition

3 Spatial safety

4 Temporal safety

5 Countermeasures

2 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: memory

Q: What is “memory” in memory corruption?

A: Three types of memory in system level:

Stack

Heap

Global (a.k.a., static)

3 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: memory

Q: What is “memory” in memory corruption?

A: Three types of memory in system level:

Stack

Heap

Global (a.k.a., static)

3 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example

1 #include <stdlib.c>

2

3 // this is in the data section

4 const char *HELLO = "hello";
5

6 // this is in the BSS section

7 long counter;
8

9 void foo() {
10 // this is in the stack memory

11 int val;
12

13 // the msg pointer is in the stack memory

14 // the msg content is in the heap memory

15 char *msg = malloc(120);
16

17 // msg content is explicitly freed here

18 free(msg);

19

20 // the val and msg pointer is implicitly freed here

21 }

22

23 // the global memory is only destroyed on program exit
4 / 33

Introduction Intuition Spatial Temporal Countermeasures

Memory layout (Linux x86-64 convention)

Environment

Stack

Heap

BSS

Data

Text
Low address

High address

Read from program binary

Initialized to zero

5 / 33

Introduction Intuition Spatial Temporal Countermeasures

Stack layout (Linux x86-64 convention)

1 long foo(
2 long a, long b, long c,
3 long d, long e, long f,
4 long g, long h)
5 {

6 long xx = a * b * c;
7 long yy = d + e + f;
8 long zz = bar(xx, yy, g + h);
9 return zz + 20;

10 }

h
g

return address

saved rbp

xx
yy

zz

High address

Low address

RBP + 24

RBP + 16

RBP + 8

RBP

RBP - 8

RBP - 16

RBP - 24

Argument a to f passed by registeres.

6 / 33

Introduction Intuition Spatial Temporal Countermeasures

Heap layout (GNU C library implementation)

Refer to the article from Azeria Labs.

7 / 33

https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/

Introduction Intuition Spatial Temporal Countermeasures

Memory layout

Q: What about stacks and heap in multi-threaded programs?

Each thread has its own stack

All threads in the same process share the heap and global data

8 / 33

Introduction Intuition Spatial Temporal Countermeasures

Memory layout

Q: What about stacks and heap in multi-threaded programs?

Each thread has its own stack

All threads in the same process share the heap and global data

8 / 33

Introduction Intuition Spatial Temporal Countermeasures

For exploitation of memory errors

Smashing The Stack For Fun And Profit

How2Heap — Educational Heap Exploitation

9 / 33

https://insecure.org/stf/smashstack.html
https://github.com/shellphish/how2heap

Introduction Intuition Spatial Temporal Countermeasures

Outline

1 Introduction

2 Intuition

3 Spatial safety

4 Temporal safety

5 Countermeasures

10 / 33

Introduction Intuition Spatial Temporal Countermeasures

A quick recap

This presentation is about memory corruption, a.k.a.,

memory errors, or

violations of memory safety properties, or

unsafe programs

11 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: safety

Q: What is “safety” in memory safety?

Observation 1: At runtime, memory is a pool of objects

Observation 2: Each object has known and limited size and lifetime

Observation 3: Once allocated, the size of an object never changes

Observation 4: A memory access is always object-oriented, i.e.

Memory read: (object_id, offset, length)

Memory write: (object_id, offset, length, value)

Wait..., in C/C++, pointers are just 32/64-bit integers. I can do:
int *p = 0xdeadbeef; int v = *p; Which object I refer to here?

12 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: safety

Q: What is “safety” in memory safety?

Observation 1: At runtime, memory is a pool of objects

Observation 2: Each object has known and limited size and lifetime

Observation 3: Once allocated, the size of an object never changes

Observation 4: A memory access is always object-oriented, i.e.

Memory read: (object_id, offset, length)

Memory write: (object_id, offset, length, value)

Wait..., in C/C++, pointers are just 32/64-bit integers. I can do:
int *p = 0xdeadbeef; int v = *p; Which object I refer to here?

12 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: safety

Q: What is “safety” in memory safety?

Observation 1: At runtime, memory is a pool of objects

Observation 2: Each object has known and limited size and lifetime

Observation 3: Once allocated, the size of an object never changes

Observation 4: A memory access is always object-oriented, i.e.

Memory read: (object_id, offset, length)

Memory write: (object_id, offset, length, value)

Wait..., in C/C++, pointers are just 32/64-bit integers. I can do:
int *p = 0xdeadbeef; int v = *p; Which object I refer to here?

12 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: safety

Q: What is “safety” in memory safety?

Observation 1: At runtime, memory is a pool of objects

Observation 2: Each object has known and limited size and lifetime

Observation 3: Once allocated, the size of an object never changes

Observation 4: A memory access is always object-oriented, i.e.

Memory read: (object_id, offset, length)

Memory write: (object_id, offset, length, value)

Wait..., in C/C++, pointers are just 32/64-bit integers. I can do:
int *p = 0xdeadbeef; int v = *p; Which object I refer to here?

12 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: safety

Q: What is “safety” in memory safety?

Observation 1: At runtime, memory is a pool of objects

Observation 2: Each object has known and limited size and lifetime

Observation 3: Once allocated, the size of an object never changes

Observation 4: A memory access is always object-oriented, i.e.

Memory read: (object_id, offset, length)

Memory write: (object_id, offset, length, value)

Wait..., in C/C++, pointers are just 32/64-bit integers. I can do:
int *p = 0xdeadbeef; int v = *p; Which object I refer to here?

12 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: safety

Q: What is “safety” in memory safety?

Observation 1: At runtime, memory is a pool of objects

Observation 2: Each object has known and limited size and lifetime

Observation 3: Once allocated, the size of an object never changes

Observation 4: A memory access is always object-oriented, i.e.

Memory read: (object_id, offset, length)

Memory write: (object_id, offset, length, value)

Wait..., in C/C++, pointers are just 32/64-bit integers. I can do:
int *p = 0xdeadbeef; int v = *p; Which object I refer to here?

12 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: safety

Q: What is “safety” in memory safety?

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

13 / 33

Introduction Intuition Spatial Temporal Countermeasures

Outline

1 Introduction

2 Intuition

3 Spatial safety

4 Temporal safety

5 Countermeasures

14 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: spatial safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a violation of spatial safety if:

offset + length >= size or

offset < 0

15 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: spatial safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a violation of spatial safety if:

offset + length >= size or

offset < 0

15 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example: spatial safety violations

1 int foo(int x) {
2 int arr[16] = {0};
3 return arr[x];
4 }

1 long foo() {
2 int a = 0;
3 return *(long *)(&a);
4 }

16 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example: spatial safety violations

1 int foo(int x) {
2 int arr[16] = {0};
3 return arr[x];
4 }

1 long foo() {
2 int a = 0;
3 return *(long *)(&a);
4 }

16 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: NULL-pointer dereference

1 int foo(int *p) {
2 // it is possible that p == NULL

3 return *p + 42;
4 }

NULL-pointer dereference is sometimes considered as undefined
behavior — meaning, its behavior is not given in the C language
specification, although most operating systems chooses to panic the
program on such behavior.

17 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: NULL-pointer dereference

1 int foo(int *p) {
2 // it is possible that p == NULL

3 return *p + 42;
4 }

NULL-pointer dereference is sometimes considered as undefined
behavior — meaning, its behavior is not given in the C language
specification, although most operating systems chooses to panic the
program on such behavior.

17 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: NULL-pointer dereference

At any point of time during the program execution,
for any object in memory, we know its
(object_id ̸= 0, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a NULL-pointer dereference if

object_id == 0

18 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: NULL-pointer dereference

At any point of time during the program execution,
for any object in memory, we know its
(object_id ̸= 0, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a NULL-pointer dereference if

object_id == 0

18 / 33

Introduction Intuition Spatial Temporal Countermeasures

Outline

1 Introduction

2 Intuition

3 Spatial safety

4 Temporal safety

5 Countermeasures

19 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: temporal safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a violation of temporal safety if:

!alive

20 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: temporal safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a violation of temporal safety if:

!alive

20 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example: temporal safety violations

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;

4 free(p);

5 return *p;
6 }

1 int *ptr;
2

3 void foo() {
4 int p = 100;
5 ptr = &p;

6 }

7 int bar() {
8 return *ptr;
9 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;

4 free(p);

5 free(p);

6 return *p;
7 }

21 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example: temporal safety violations

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;

4 free(p);

5 return *p;
6 }

1 int *ptr;
2

3 void foo() {
4 int p = 100;
5 ptr = &p;

6 }

7 int bar() {
8 return *ptr;
9 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;

4 free(p);

5 free(p);

6 return *p;
7 }

21 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example: temporal safety violations

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;

4 free(p);

5 return *p;
6 }

1 int *ptr;
2

3 void foo() {
4 int p = 100;
5 ptr = &p;

6 }

7 int bar() {
8 return *ptr;
9 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;

4 free(p);

5 free(p);

6 return *p;
7 }

21 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: temporal safety (revisited)

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a violation of temporal safety if:

Read: status != init

Write: status == dead

Free: status == dead

22 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: temporal safety (revisited)

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a violation of temporal safety if:

Read: status != init

Write: status == dead

Free: status == dead

22 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example: temporal safety violations

1 int foo() {
2 int p;
3 return p;
4 // what is the value returned?

5 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 return *p;
4 // what is the value returned?

5 }

23 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example: temporal safety violations

1 int foo() {
2 int p;
3 return p;
4 // what is the value returned?

5 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 return *p;
4 // what is the value returned?

5 }

23 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: memory leak

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a memory leak if exists one object_id whose:

status != dead

24 / 33

Introduction Intuition Spatial Temporal Countermeasures

Definition: memory leak

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a memory leak if exists one object_id whose:

status != dead

24 / 33

Introduction Intuition Spatial Temporal Countermeasures

Example: memory leak

1 int foo() {
2 int *p = malloc(sizeof(int));
3 int *q = malloc(sizeof(int));
4 *p = 42;

5 free(q);

6 return *p;
7 }

25 / 33

Introduction Intuition Spatial Temporal Countermeasures

Outline

1 Introduction

2 Intuition

3 Spatial safety

4 Temporal safety

5 Countermeasures

26 / 33

Introduction Intuition Spatial Temporal Countermeasures

Detecting memory errors

Static analysis

Dynamic analysis

27 / 33

Introduction Intuition Spatial Temporal Countermeasures

What is so hard about static analysis?

1 void foo(bool cond) {
2 char *p = malloc(sizeof(char) * 16);
3 char[4] q;
4

5 char *r;
6 if (cond) {
7 r = p;

8 } else {
9 r = q;

10 }

11 memcpy(r, "HELLO", 6);

12

13 free(p);

14 }

It is possible that one pointer may points to multiple locations.

28 / 33

Introduction Intuition Spatial Temporal Countermeasures

What is so hard about static analysis?

1 void foo(bool cond) {
2 char *p = malloc(sizeof(char) * 16);
3 char[4] q;
4

5 char *r;
6 if (cond) {
7 r = p;

8 } else {
9 r = q;

10 }

11 memcpy(r, "HELLO", 6);

12

13 free(p);

14 }

It is possible that one pointer may points to multiple locations.

28 / 33

Introduction Intuition Spatial Temporal Countermeasures

What is so hard about static analysis?

1 struct S {
2 char *field;
3 }

4

5 void foo() {
6 char *p = malloc(sizeof(char) * 16);
7 struct *s = malloc(sizeof(struct S));
8 s->field = p;

9 free(s);

10 free(p);

11 }

12

13 void bar(struct S* s) {
14 free(s->field);

15 }

It is possible that one location may have two aliased pointers.

29 / 33

Introduction Intuition Spatial Temporal Countermeasures

Preventing memory errors

(Selective) hardening

Use a safer language (Java / Rust / Modern C++)

30 / 33

Introduction Intuition Spatial Temporal Countermeasures

Why not harden everything?

There is actually a very simple way of preventing memory errors
completely!

At any point of time during the program execution,
for any object in memory, we track its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we check:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

This is essentially what is implemented in AddressSanitizer and
MemorySanitizer. The result? Over 100% performance overhead...

31 / 33

Introduction Intuition Spatial Temporal Countermeasures

Why not harden everything?

There is actually a very simple way of preventing memory errors
completely!

At any point of time during the program execution,
for any object in memory, we track its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we check:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

This is essentially what is implemented in AddressSanitizer and
MemorySanitizer. The result? Over 100% performance overhead...

31 / 33

Introduction Intuition Spatial Temporal Countermeasures

Zero-cost abstraction

1 int foo(int *arr, size_t len) {
2 int sum = 0;
3 for(size_t i = 0; i < len; i++) {
4 // memory access check at each access

5 sum += arr[i];

6 }

7 return sum;
8 }

1 fn foo(arr: &Vec<i32>) -> i32 {
2 let mut sum = 0;
3 arr.iter().map(

4 // no need to check memory access here

5 |e| sum += e

6);

7 return sum;
8 }

32 / 33

Introduction Intuition Spatial Temporal Countermeasures

Zero-cost abstraction

1 int foo(int *arr, size_t len) {
2 int sum = 0;
3 for(size_t i = 0; i < len; i++) {
4 // memory access check at each access

5 sum += arr[i];

6 }

7 return sum;
8 }

1 fn foo(arr: &Vec<i32>) -> i32 {
2 let mut sum = 0;
3 arr.iter().map(

4 // no need to check memory access here

5 |e| sum += e

6);

7 return sum;
8 }

32 / 33

Introduction Intuition Spatial Temporal Countermeasures

Zero-cost abstraction

1 int foo(int *arr, size_t len) {
2 int sum = 0;
3 for(size_t i = 0; i < len; i++) {
4 // memory access check at each access

5 sum += arr[i];

6 }

7 return sum;
8 }

1 fn foo(arr: &Vec<i32>) -> i32 {
2 let mut sum = 0;
3 arr.iter().map(

4 // no need to check memory access here

5 |e| sum += e

6);

7 return sum;
8 }

32 / 33

Introduction Intuition Spatial Temporal Countermeasures

⟨ End ⟩

33 / 33

	memory corruption
	Introduction
	Intuition
	Spatial safety
	Temporal safety
	Countermeasures

