
CS 489 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module 8: Defenses against Common Vulnerabilities
authentication and capabilities

Winter 2024



Intro Protocol seL4

Outline

1 Introduction to authentication

2 Password — the protocol-design perspective

3 Capabilities and a case study on seL4

2 / 36



Intro Protocol seL4

Why this topic?

Q: Recap: what does an operating system do?

A: Resource sharing — An operating system (OS) allows different
“entities” to access different resources in a shared way.

OS makes resources available to entities if required by them and
when permitted by some policy (and availability).

- What is a resource?
- What is an entity?
- How does an entity request for a resource?
- How does a policy get specified?
- How is the policy enforced?

All based on the requirement that:

an entity can correctly identify itself AND,

the OS can correctly authenticate the entity.

3 / 36



Intro Protocol seL4

Why this topic?

Q: Recap: what does an operating system do?

A: Resource sharing — An operating system (OS) allows different
“entities” to access different resources in a shared way.

OS makes resources available to entities if required by them and
when permitted by some policy (and availability).

- What is a resource?
- What is an entity?
- How does an entity request for a resource?
- How does a policy get specified?
- How is the policy enforced?

All based on the requirement that:

an entity can correctly identify itself AND,

the OS can correctly authenticate the entity.
3 / 36



Intro Protocol seL4

Authentication for different entities

User authentication

- Something we all know

Program authentication

- Something you might have seen

Process authentication

- What does this even mean?

4 / 36



Intro Protocol seL4

Program authentication

Goal: prove to the operating system (or to the end user) that the
program originates from a trusted source and is unmodified.

Typically done via public key infrastructure (PKI) (covered later)

5 / 36



Intro Protocol seL4

Program authentication

Goal: prove to the operating system (or to the end user) that the
program originates from a trusted source and is unmodified.

Typically done via public key infrastructure (PKI) (covered later)

5 / 36



Intro Protocol seL4

Program authentication

Goal: prove to the operating system (or to the end user) that the
program originates from a trusted source and is unmodified.

Typically done via public key infrastructure (PKI) (covered later)

5 / 36



Intro Protocol seL4

Process authentication

Goal: prove to the operating system that the running process is
indeed originated from the program it claims to be.

For example, if a malicious program hides itself with path
“/bin/chrome.exe” and claims to be Chrome, at runtime, it needs
to attest to the operating system (once at launch or periodically
while running) that it indeed has some secret only Chrome knows.

Disclaimer: The concept just comes from my effort on
systematizing the knowledge. It is not well-defined nor generally
accepted and I haven’t seen an actual adoption.

The closest academic work I can find is Process Authentication for
High System Assurance published in IEEE TDSC 2014. At the core
is a challenge-response protocol, which will be covered later.

6 / 36

https://ieeexplore.ieee.org/document/6560050
https://ieeexplore.ieee.org/document/6560050


Intro Protocol seL4

Process authentication

Goal: prove to the operating system that the running process is
indeed originated from the program it claims to be.

For example, if a malicious program hides itself with path
“/bin/chrome.exe” and claims to be Chrome, at runtime, it needs
to attest to the operating system (once at launch or periodically
while running) that it indeed has some secret only Chrome knows.

Disclaimer: The concept just comes from my effort on
systematizing the knowledge. It is not well-defined nor generally
accepted and I haven’t seen an actual adoption.

The closest academic work I can find is Process Authentication for
High System Assurance published in IEEE TDSC 2014. At the core
is a challenge-response protocol, which will be covered later.

6 / 36

https://ieeexplore.ieee.org/document/6560050
https://ieeexplore.ieee.org/document/6560050


Intro Protocol seL4

Process authentication

Goal: prove to the operating system that the running process is
indeed originated from the program it claims to be.

For example, if a malicious program hides itself with path
“/bin/chrome.exe” and claims to be Chrome, at runtime, it needs
to attest to the operating system (once at launch or periodically
while running) that it indeed has some secret only Chrome knows.

Disclaimer: The concept just comes from my effort on
systematizing the knowledge. It is not well-defined nor generally
accepted and I haven’t seen an actual adoption.

The closest academic work I can find is Process Authentication for
High System Assurance published in IEEE TDSC 2014. At the core
is a challenge-response protocol, which will be covered later.

6 / 36

https://ieeexplore.ieee.org/document/6560050
https://ieeexplore.ieee.org/document/6560050


Intro Protocol seL4

User authentication

Goal: prove to the operating system that the user is indeed who
he/she/they claims to be.

Authentication is easy among people that know each other

- For your friends, you do it based on their face or voice

More difficult for computers to authenticate people sitting in
front of them

Even more difficult for computers to authenticate people
accessing them remotely

7 / 36



Intro Protocol seL4

User authentication

Goal: prove to the operating system that the user is indeed who
he/she/they claims to be.

Authentication is easy among people that know each other

- For your friends, you do it based on their face or voice

More difficult for computers to authenticate people sitting in
front of them

Even more difficult for computers to authenticate people
accessing them remotely

7 / 36



Intro Protocol seL4

Authentication factors

Something the user knows

- Password, PIN, answer to “secret question”

Something the user has

- ATM card, badge, browser cookie, physical key, uniform, smartphone

Something the user is

- Biometrics (fingerprint, voice pattern, face,. . . )
- Have been used by humans forever, but only recently by computers

Authentication should also be aware of user’s context, e.g., location,
time, devices in proximity, etc.

8 / 36



Intro Protocol seL4

Authentication factors

Something the user knows

- Password, PIN, answer to “secret question”

Something the user has

- ATM card, badge, browser cookie, physical key, uniform, smartphone

Something the user is

- Biometrics (fingerprint, voice pattern, face,. . . )
- Have been used by humans forever, but only recently by computers

Authentication should also be aware of user’s context, e.g., location,
time, devices in proximity, etc.

8 / 36



Intro Protocol seL4

Multi-factor authentication (MFA)

Different classes of authentication factors can be combined for more
secure authentication.

- bank card + PIN
- password + SMS

However, using multiple factors from the same class might not
provide better authentication.

- password + PIN

9 / 36



Intro Protocol seL4

Multi-factor authentication (MFA)

Different classes of authentication factors can be combined for more
secure authentication.

- bank card + PIN
- password + SMS

However, using multiple factors from the same class might not
provide better authentication.

- password + PIN

9 / 36



Intro Protocol seL4

SIM-based MFA

Caveat about SIM-based authentication:

SMS (or phone call) is an approximation of “something you have”,
a phone number, or more specifically, a SIM card. But if it is
implemented by checking routability of a SMS message or call, it
can be subverted by an attacker who does NOT have the phone,
e.g., via SIM-jacking or SS7 attacks.

Alternatives?

Authenticator apps

- vulnerable to malware on the phone
- vulnerable to loss of device

Separate tokens/fobs

- vulnerable to loss of device

10 / 36

https://en.wikipedia.org/wiki/Signalling_System_No._7#Protocol_security_vulnerabilities


Intro Protocol seL4

SIM-based MFA

Caveat about SIM-based authentication:

SMS (or phone call) is an approximation of “something you have”,
a phone number, or more specifically, a SIM card. But if it is
implemented by checking routability of a SMS message or call, it
can be subverted by an attacker who does NOT have the phone,
e.g., via SIM-jacking or SS7 attacks.

Alternatives?

Authenticator apps

- vulnerable to malware on the phone
- vulnerable to loss of device

Separate tokens/fobs

- vulnerable to loss of device

10 / 36

https://en.wikipedia.org/wiki/Signalling_System_No._7#Protocol_security_vulnerabilities


Intro Protocol seL4

SIM-based MFA

Caveat about SIM-based authentication:

SMS (or phone call) is an approximation of “something you have”,
a phone number, or more specifically, a SIM card. But if it is
implemented by checking routability of a SMS message or call, it
can be subverted by an attacker who does NOT have the phone,
e.g., via SIM-jacking or SS7 attacks.

Alternatives?

Authenticator apps

- vulnerable to malware on the phone
- vulnerable to loss of device

Separate tokens/fobs

- vulnerable to loss of device

10 / 36

https://en.wikipedia.org/wiki/Signalling_System_No._7#Protocol_security_vulnerabilities


Intro Protocol seL4

Outline

1 Introduction to authentication

2 Password — the protocol-design perspective

3 Capabilities and a case study on seL4

11 / 36



Intro Protocol seL4

A formal modeling of password

A formal model is useful for examining the pros and cons of several
password-based authentication protocols.

User OS

Registration: username,G (password)

User OS

Authentication: username,F (password ′)

Result: C (F (password ′),G (password))

12 / 36



Intro Protocol seL4

A formal modeling of password

A formal model is useful for examining the pros and cons of several
password-based authentication protocols.

User OS

Registration: username,G (password)

User OS

Authentication: username,F (password ′)

Result: C (F (password ′),G (password))

12 / 36



Intro Protocol seL4

Design space

[Registration]

User OS

u,G (p)

[Authentication]

User OS

u,F (q)

C (F (q),G (p))

The design space of a
password-based authentication
protocol is around functions
G (p), F (q), and C (F (q),G (p))

Q: What is the correctness
requirement of the protocol?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒ C (F (q),G (p)) = F

Q: Can you design a protocol that
satisfies this requirement?

13 / 36



Intro Protocol seL4

Design space

[Registration]

User OS

u,G (p)

[Authentication]

User OS

u,F (q)

C (F (q),G (p))

The design space of a
password-based authentication
protocol is around functions
G (p), F (q), and C (F (q),G (p))

Q: What is the correctness
requirement of the protocol?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒ C (F (q),G (p)) = F

Q: Can you design a protocol that
satisfies this requirement?

13 / 36



Intro Protocol seL4

Design space

[Registration]

User OS

u,G (p)

[Authentication]

User OS

u,F (q)

C (F (q),G (p))

The design space of a
password-based authentication
protocol is around functions
G (p), F (q), and C (F (q),G (p))

Q: What is the correctness
requirement of the protocol?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒ C (F (q),G (p)) = F

Q: Can you design a protocol that
satisfies this requirement?

13 / 36



Intro Protocol seL4

Design space

[Registration]

User OS

u,G (p)

[Authentication]

User OS

u,F (q)

C (F (q),G (p))

The design space of a
password-based authentication
protocol is around functions
G (p), F (q), and C (F (q),G (p))

Q: What is the correctness
requirement of the protocol?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒ C (F (q),G (p)) = F

Q: Can you design a protocol that
satisfies this requirement?

13 / 36



Intro Protocol seL4

Option 1: plaintext password

[Registration]

User OS

u, p

[Authentication]

User OS

u, q

q = p

Q: What is wrong with this scheme?

A: Storing passwords in plaintext is
extremely dangerous

Password file might end up on
backup tapes

Intruder into OS might get access
to password file

System administrators have access
to the file and might use
passwords to impersonate users at
other systems

- Many people re-use passwords
across multiple systems

14 / 36



Intro Protocol seL4

Option 1: plaintext password

[Registration]

User OS

u, p

[Authentication]

User OS

u, q

q = p

Q: What is wrong with this scheme?

A: Storing passwords in plaintext is
extremely dangerous

Password file might end up on
backup tapes

Intruder into OS might get access
to password file

System administrators have access
to the file and might use
passwords to impersonate users at
other systems

- Many people re-use passwords
across multiple systems

14 / 36



Intro Protocol seL4

Option 1: plaintext password

[Registration]

User OS

u, p

[Authentication]

User OS

u, q

q = p

Q: What is wrong with this scheme?

A: Storing passwords in plaintext is
extremely dangerous

Password file might end up on
backup tapes

Intruder into OS might get access
to password file

System administrators have access
to the file and might use
passwords to impersonate users at
other systems

- Many people re-use passwords
across multiple systems

14 / 36



Intro Protocol seL4

Option 2: password fingerprint

[Registration]

User OS

u,H(p)

[Authentication]

User OS

u,H(q)

H(q) = H(p)

15 / 36



Intro Protocol seL4

Cryptographic hash function

A hash function h takes an arbitrary length string x and computes a
fixed length string y = h(x) called a message digest

- Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on), where MD5 and SHA-1 are not considered safe now.

A hash function is cryptographically secure if it has three properties
1 Preimage-resistance:

- Given y , it’s hard to find x such that h(x) = y
i.e., a “preimage” of y

2 Second preimage-resistance:

- Given x , it’s hard to find x ′ ̸= x such that h(x) = h(x ′)
i.e., a “second preimage” of h(x)

3 Collision-resistance:

- It’s hard to find any two distinct values x , x ′ such that h(x) = h(x ′)
i.e., a “collision”

16 / 36



Intro Protocol seL4

Cryptographic hash function

A hash function h takes an arbitrary length string x and computes a
fixed length string y = h(x) called a message digest

- Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on), where MD5 and SHA-1 are not considered safe now.

A hash function is cryptographically secure if it has three properties

1 Preimage-resistance:

- Given y , it’s hard to find x such that h(x) = y
i.e., a “preimage” of y

2 Second preimage-resistance:

- Given x , it’s hard to find x ′ ̸= x such that h(x) = h(x ′)
i.e., a “second preimage” of h(x)

3 Collision-resistance:

- It’s hard to find any two distinct values x , x ′ such that h(x) = h(x ′)
i.e., a “collision”

16 / 36



Intro Protocol seL4

Cryptographic hash function

A hash function h takes an arbitrary length string x and computes a
fixed length string y = h(x) called a message digest

- Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on), where MD5 and SHA-1 are not considered safe now.

A hash function is cryptographically secure if it has three properties
1 Preimage-resistance:

- Given y , it’s hard to find x such that h(x) = y
i.e., a “preimage” of y

2 Second preimage-resistance:

- Given x , it’s hard to find x ′ ̸= x such that h(x) = h(x ′)
i.e., a “second preimage” of h(x)

3 Collision-resistance:

- It’s hard to find any two distinct values x , x ′ such that h(x) = h(x ′)
i.e., a “collision”

16 / 36



Intro Protocol seL4

Cryptographic hash function

A hash function h takes an arbitrary length string x and computes a
fixed length string y = h(x) called a message digest

- Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on), where MD5 and SHA-1 are not considered safe now.

A hash function is cryptographically secure if it has three properties
1 Preimage-resistance:

- Given y , it’s hard to find x such that h(x) = y
i.e., a “preimage” of y

2 Second preimage-resistance:

- Given x , it’s hard to find x ′ ̸= x such that h(x) = h(x ′)
i.e., a “second preimage” of h(x)

3 Collision-resistance:

- It’s hard to find any two distinct values x , x ′ such that h(x) = h(x ′)
i.e., a “collision”

16 / 36



Intro Protocol seL4

Cryptographic hash function

A hash function h takes an arbitrary length string x and computes a
fixed length string y = h(x) called a message digest

- Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on), where MD5 and SHA-1 are not considered safe now.

A hash function is cryptographically secure if it has three properties
1 Preimage-resistance:

- Given y , it’s hard to find x such that h(x) = y
i.e., a “preimage” of y

2 Second preimage-resistance:

- Given x , it’s hard to find x ′ ̸= x such that h(x) = h(x ′)
i.e., a “second preimage” of h(x)

3 Collision-resistance:

- It’s hard to find any two distinct values x , x ′ such that h(x) = h(x ′)
i.e., a “collision”

16 / 36



Intro Protocol seL4

Option 2: password fingerprint

[Registration]

User OS

u,H(p)

[Authentication]

User OS

u,H(q)

H(q) = H(p)

H is a cryptographic hash function
(e.g., SHA-2, SHA-3)

Q: Does this protocol satisfy the
correctness requirement?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒
Pr[C (F (q),G (p)) = T] < ϵ

Q: What other weaknesses this
protocol may have?

A: Same password, same fingerprint

17 / 36



Intro Protocol seL4

Option 2: password fingerprint

[Registration]

User OS

u,H(p)

[Authentication]

User OS

u,H(q)

H(q) = H(p)

H is a cryptographic hash function
(e.g., SHA-2, SHA-3)

Q: Does this protocol satisfy the
correctness requirement?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒
Pr[C (F (q),G (p)) = T] < ϵ

Q: What other weaknesses this
protocol may have?

A: Same password, same fingerprint

17 / 36



Intro Protocol seL4

Option 2: password fingerprint

[Registration]

User OS

u,H(p)

[Authentication]

User OS

u,H(q)

H(q) = H(p)

H is a cryptographic hash function
(e.g., SHA-2, SHA-3)

Q: Does this protocol satisfy the
correctness requirement?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒
Pr[C (F (q),G (p)) = T] < ϵ

Q: What other weaknesses this
protocol may have?

A: Same password, same fingerprint

17 / 36



Intro Protocol seL4

Option 2: password fingerprint

[Registration]

User OS

u,H(p)

[Authentication]

User OS

u,H(q)

H(q) = H(p)

H is a cryptographic hash function
(e.g., SHA-2, SHA-3)

Q: Does this protocol satisfy the
correctness requirement?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒
Pr[C (F (q),G (p)) = T] < ϵ

Q: What other weaknesses this
protocol may have?

A: Same password, same fingerprint

17 / 36



Intro Protocol seL4

Option 2: password fingerprint

[Registration]

User OS

u,H(p)

[Authentication]

User OS

u,H(q)

H(q) = H(p)

H is a cryptographic hash function
(e.g., SHA-2, SHA-3)

Q: Does this protocol satisfy the
correctness requirement?

A: Two properties:

p = q =⇒ C (F (q),G (p)) = T

p ̸= q =⇒
Pr[C (F (q),G (p)) = T] < ϵ

Q: What other weaknesses this
protocol may have?

A: Same password, same fingerprint

17 / 36



Intro Protocol seL4

Option 3a: salted password fingerprint

[Registration]

User OS

u,H(p, s)

[Authentication]

User OS

u,H(q, s ′)

H(q, s ′) = H(p, s)

In this scheme, the user (or the client
program) is responsible for
remembering and managing the salt.

Despite the fact that the salt doesn’t
have to be secretive, managing it can
still be inconvenient.

18 / 36



Intro Protocol seL4

Option 3a: salted password fingerprint

[Registration]

User OS

u,H(p, s)

[Authentication]

User OS

u,H(q, s ′)

H(q, s ′) = H(p, s)

In this scheme, the user (or the client
program) is responsible for
remembering and managing the salt.

Despite the fact that the salt doesn’t
have to be secretive, managing it can
still be inconvenient.

18 / 36



Intro Protocol seL4

Option 3b: salted password fingerprint

[Registration]

User OS

u, s,H(p, s)

[Authentication]

User OS
u

s

u,H(q, s)

H(q, s) = H(p, s)

In this scheme, the OS (or the server
program) is responsible for
remembering and managing the salt.

The downside is that it adds an extra
roundtrip in the protocol and may
enable user-probing attacks.

19 / 36



Intro Protocol seL4

Option 3b: salted password fingerprint

[Registration]

User OS

u, s,H(p, s)

[Authentication]

User OS
u

s

u,H(q, s)

H(q, s) = H(p, s)

In this scheme, the OS (or the server
program) is responsible for
remembering and managing the salt.

The downside is that it adds an extra
roundtrip in the protocol and may
enable user-probing attacks.

19 / 36



Intro Protocol seL4

Option 3c: salted password fingerprint

[Registration]

User OS

u,H(p)

[Authentication]

User OS

u,H(q)

H ′(H(q), s)
=

H ′(H(p), s)

In this scheme, the salt is assigned by
the OS and is oblivious to the user.

It prevents offline dictionary attacks
when the password file is leaked from
the OS (e.g., via breach), but has
little protection over eavesdropping
attacks over the network.

20 / 36



Intro Protocol seL4

Option 3c: salted password fingerprint

[Registration]

User OS

u,H(p)

[Authentication]

User OS

u,H(q)

H ′(H(q), s)
=

H ′(H(p), s)

In this scheme, the salt is assigned by
the OS and is oblivious to the user.

It prevents offline dictionary attacks
when the password file is leaked from
the OS (e.g., via breach), but has
little protection over eavesdropping
attacks over the network.

20 / 36



Intro Protocol seL4

Further protections against offline guessing attacks

Use expensive iterated hash functions to compute the fingerprint.

- Standard cryptographic hash (e.g., SHA-2, SHA-3) is relatively cheap
to compute (microseconds).

- Iterated hash functions (e.g., bcrypt, scrypt) can take hundreds of
milliseconds and even use a lot memory.

- This slows down a guessing attack significantly, but is barely noticed
in the entire authentication protocol.

21 / 36



Intro Protocol seL4

Further protections against offline guessing attacks

Use message authentication code (MAC) to calculate a tag.

User OS

u,H(q)

MACK (H(q), s) = MACK (H(p), s)

- Protect the secret key by embedding it in tamper-resistant hardware.
- If the key does leak, the scheme remains as secure as a scheme based
on a cryptographic hash.

22 / 36



Intro Protocol seL4

Further protections against offline guessing attacks

Use message authentication code (MAC) to calculate a tag.

User OS

u,H(q)

MACK (H(q), s) = MACK (H(p), s)

- Protect the secret key by embedding it in tamper-resistant hardware.
- If the key does leak, the scheme remains as secure as a scheme based
on a cryptographic hash.

22 / 36



Intro Protocol seL4

Option 4: challenge-response protocol

[Registration]

User OS

u, s,H(p, s)

[Authentication]

User OS
u

s,R
u,E[H(q,s)]→K (R)

E[H(q,s)]→K (R)
=

E[H(p,s)]→K (R)

Goal: even if the eavesdropper
captures all message exchanges over
the entire authentication process, it
cannot re-compute p (other than
brute-forcing).

Q: What are the potential problems
with this protocol?

23 / 36



Intro Protocol seL4

Option 4: challenge-response protocol

[Registration]

User OS

u, s,H(p, s)

[Authentication]

User OS
u

s,R
u,E[H(q,s)]→K (R)

E[H(q,s)]→K (R)
=

E[H(p,s)]→K (R)

Goal: even if the eavesdropper
captures all message exchanges over
the entire authentication process, it
cannot re-compute p (other than
brute-forcing).

Q: What are the potential problems
with this protocol?

23 / 36



Intro Protocol seL4

Option 4: challenge-response protocol

For serious designs of challenge-response protocol, please refer to:

SCRAM: Salted Challenge Response Authentication Mechanism

SRP: Secure Remote Password protocol

OPAQUE: The OPAQUE Asymmetric PAKE Protocol

SPAKE2+: SPAKE2+, an Augmented PAKE

24 / 36

https://en.wikipedia.org/wiki/Salted_Challenge_Response_Authentication_Mechanism
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://datatracker.ietf.org/doc/html/draft-krawczyk-cfrg-opaque
https://datatracker.ietf.org/doc/html/draft-bar-cfrg-spake2plus


Intro Protocol seL4

Passkey

[Registration]

User OS

u, vk

[Authentication]

User OS
u

R

u, Ssk(R)

Vvk(R, Ssk(R))

This is essentially what you do with
passwordless SSH.

Q: How do you manage the signing
key (private key)?

A: Hide it in some “secret vault”
which can only be unlocked after
local authentication, e.g.,

password

biometrics

unlock patterns

hardware tokens

See the announcement and blog post
from Google on May 3rd, 2023.

25 / 36

https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/
https://security.googleblog.com/2023/05/so-long-passwords-thanks-for-all-phish.html


Intro Protocol seL4

Passkey

[Registration]

User OS

u, vk

[Authentication]

User OS
u

R

u, Ssk(R)

Vvk(R, Ssk(R))

This is essentially what you do with
passwordless SSH.

Q: How do you manage the signing
key (private key)?

A: Hide it in some “secret vault”
which can only be unlocked after
local authentication, e.g.,

password

biometrics

unlock patterns

hardware tokens

See the announcement and blog post
from Google on May 3rd, 2023.

25 / 36

https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/
https://security.googleblog.com/2023/05/so-long-passwords-thanks-for-all-phish.html


Intro Protocol seL4

Passkey

[Registration]

User OS

u, vk

[Authentication]

User OS
u

R

u, Ssk(R)

Vvk(R, Ssk(R))

This is essentially what you do with
passwordless SSH.

Q: How do you manage the signing
key (private key)?

A: Hide it in some “secret vault”
which can only be unlocked after
local authentication, e.g.,

password

biometrics

unlock patterns

hardware tokens

See the announcement and blog post
from Google on May 3rd, 2023.

25 / 36

https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/
https://security.googleblog.com/2023/05/so-long-passwords-thanks-for-all-phish.html


Intro Protocol seL4

Passkey

[Registration]

User OS

u, vk

[Authentication]

User OS
u

R

u, Ssk(R)

Vvk(R, Ssk(R))

This is essentially what you do with
passwordless SSH.

Q: How do you manage the signing
key (private key)?

A: Hide it in some “secret vault”
which can only be unlocked after
local authentication, e.g.,

password

biometrics

unlock patterns

hardware tokens

See the announcement and blog post
from Google on May 3rd, 2023.

25 / 36

https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/
https://security.googleblog.com/2023/05/so-long-passwords-thanks-for-all-phish.html


Intro Protocol seL4

Passkey

[Registration]

User OS

u, vk

[Authentication]

User OS
u

R

u, Ssk(R)

Vvk(R, Ssk(R))

This is essentially what you do with
passwordless SSH.

Q: How do you manage the signing
key (private key)?

A: Hide it in some “secret vault”
which can only be unlocked after
local authentication, e.g.,

password

biometrics

unlock patterns

hardware tokens

See the announcement and blog post
from Google on May 3rd, 2023.

25 / 36

https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/
https://security.googleblog.com/2023/05/so-long-passwords-thanks-for-all-phish.html


Intro Protocol seL4

Outline

1 Introduction to authentication

2 Password — the protocol-design perspective

3 Capabilities and a case study on seL4

26 / 36



Intro Protocol seL4

Capabilities

A capability is an unforgeable token that gives its owner some
access rights to an object.

Example:

C1: {File 1:w}, C2: {File 2:r}, C3: {File 3: o}, C4: {File 2: x}
Alice: {C1, C2, C3, C4}, Bob: {C2, C4}, Carol: {C4}

Some properties about capabilities-based system:
Unforgeability enforced by either
- a component running at a higher privilege level (e.g., kernel)
- cryptographic mechanisms (e.g., digital signatures)

Tokens might be transferable (or non-transferable)
Tokens might be copyable (or non-copyable)
Tokens serve both authentication and access control

Some research/experimental OSs (e.g., Fuchsia, seL4) have
fine-grained support for tokens.

27 / 36



Intro Protocol seL4

Capabilities

A capability is an unforgeable token that gives its owner some
access rights to an object.

Example:

C1: {File 1:w}, C2: {File 2:r}, C3: {File 3: o}, C4: {File 2: x}
Alice: {C1, C2, C3, C4}, Bob: {C2, C4}, Carol: {C4}

Some properties about capabilities-based system:
Unforgeability enforced by either
- a component running at a higher privilege level (e.g., kernel)
- cryptographic mechanisms (e.g., digital signatures)

Tokens might be transferable (or non-transferable)
Tokens might be copyable (or non-copyable)
Tokens serve both authentication and access control

Some research/experimental OSs (e.g., Fuchsia, seL4) have
fine-grained support for tokens.

27 / 36



Intro Protocol seL4

Capabilities

A capability is an unforgeable token that gives its owner some
access rights to an object.

Example:

C1: {File 1:w}, C2: {File 2:r}, C3: {File 3: o}, C4: {File 2: x}
Alice: {C1, C2, C3, C4}, Bob: {C2, C4}, Carol: {C4}

Some properties about capabilities-based system:
Unforgeability enforced by either
- a component running at a higher privilege level (e.g., kernel)
- cryptographic mechanisms (e.g., digital signatures)

Tokens might be transferable (or non-transferable)
Tokens might be copyable (or non-copyable)
Tokens serve both authentication and access control

Some research/experimental OSs (e.g., Fuchsia, seL4) have
fine-grained support for tokens.

27 / 36



Intro Protocol seL4

Capabilities

Q: Which of the following can we do quickly for capabilities?

Determine set of allowed users per object

Determine set of objects that a user can access

Revoke a user’s access right to an object

Revoke a user’s access right to all objects

Revoke all users’ access rights to an object

A: Hard, Easy, Easy, Easy, Easy

28 / 36



Intro Protocol seL4

Capabilities

Q: Which of the following can we do quickly for capabilities?

Determine set of allowed users per object

Determine set of objects that a user can access

Revoke a user’s access right to an object

Revoke a user’s access right to all objects

Revoke all users’ access rights to an object

A: Hard, Easy, Easy, Easy, Easy

28 / 36



Intro Protocol seL4

What is seL4?

Overview: seL4 is an open source, high-assurance,
high-performance operating system microkernel.

Available on GitHub under GPLv2 license

Contains a comprehensive set of mathematical proofs for
correctness and security

Arguably the fastest microkernel in the world

Aims to be a piece of software that runs at the heart of any
system and controls all accesses to resources

29 / 36

https://github.com/seL4/seL4


Intro Protocol seL4

What is seL4?

Overview: seL4 is an open source, high-assurance,
high-performance operating system microkernel.

Available on GitHub under GPLv2 license

Contains a comprehensive set of mathematical proofs for
correctness and security

Arguably the fastest microkernel in the world

Aims to be a piece of software that runs at the heart of any
system and controls all accesses to resources

29 / 36

https://github.com/seL4/seL4


Intro Protocol seL4

Monolithic kernel vs microkernel

Figure illustrating the difference between

monolithic kernel (e.g., the Linux kernel) on the left and

microkernel (e.g., seL4) (on the right)

Adapted from seL4 Whitepaper.

30 / 36

https://sel4.systems/About/seL4-whitepaper.pdf


Intro Protocol seL4

Microkernel

All operating-system services are user-level processes:

file systems

device drivers

network stack

power management

. . .

31 / 36



Intro Protocol seL4

Microkernel as hypervisor

Adapted from seL4 Overview Slides on seL4 Summit 2022

32 / 36

https://sel4.systems/Foundation/Summit/2022/slides/d3_01_Overview_seL4_principles,_abstractions_and_use_Gernot_Heiser.pdf


Intro Protocol seL4

seL4 capability system

General principle: anything goes through seL4 needs a capability!

A capability is an object reference that
conveys specific rights to a particular object

Capability = Access Token: prima-facie
evidence of privilege

Access rights include read, write, send,
reply, execute, . . .

Kernel object is one of ten object types

Any system call is invoking a capability: r = cap.method(args);

33 / 36



Intro Protocol seL4

seL4 capability system

General principle: anything goes through seL4 needs a capability!

A capability is an object reference that
conveys specific rights to a particular object

Capability = Access Token: prima-facie
evidence of privilege

Access rights include read, write, send,
reply, execute, . . .

Kernel object is one of ten object types

Any system call is invoking a capability: r = cap.method(args);

33 / 36



Intro Protocol seL4

seL4 capability system

General principle: anything goes through seL4 needs a capability!

A capability is an object reference that
conveys specific rights to a particular object

Capability = Access Token: prima-facie
evidence of privilege

Access rights include read, write, send,
reply, execute, . . .

Kernel object is one of ten object types

Any system call is invoking a capability: r = cap.method(args);

33 / 36



Intro Protocol seL4

seL4 capability system

General principle: anything goes through seL4 needs a capability!

A capability is an object reference that
conveys specific rights to a particular object

Capability = Access Token: prima-facie
evidence of privilege

Access rights include read, write, send,
reply, execute, . . .

Kernel object is one of ten object types

Any system call is invoking a capability: r = cap.method(args);

33 / 36



Intro Protocol seL4

seL4 protected procedure calls (IPC)

Protected procedure call
(IPC for historical reasons)
is a fundamental operation
in seL4.

Q: How would a normal open syscall be like in seL4?

A: Call(ext4fs_endpoint_cap, OPEN_FILE, <extra-args>)

- Mint reply_cap

- Send(ext4fs_endpoint_cap, reply_cap, ...)

- Recv(reply_cap, ...)

34 / 36



Intro Protocol seL4

seL4 protected procedure calls (IPC)

Protected procedure call
(IPC for historical reasons)
is a fundamental operation
in seL4.

Q: How would a normal open syscall be like in seL4?

A: Call(ext4fs_endpoint_cap, OPEN_FILE, <extra-args>)

- Mint reply_cap

- Send(ext4fs_endpoint_cap, reply_cap, ...)

- Recv(reply_cap, ...)

34 / 36



Intro Protocol seL4

seL4 protected procedure calls (IPC)

Protected procedure call
(IPC for historical reasons)
is a fundamental operation
in seL4.

Q: How would a normal open syscall be like in seL4?

A: Call(ext4fs_endpoint_cap, OPEN_FILE, <extra-args>)

- Mint reply_cap

- Send(ext4fs_endpoint_cap, reply_cap, ...)

- Recv(reply_cap, ...)

34 / 36



Intro Protocol seL4

seL4 protected procedure calls (IPC)

Protected procedure call
(IPC for historical reasons)
is a fundamental operation
in seL4.

Q: How would a normal open syscall be like in seL4?

A: Call(ext4fs_endpoint_cap, OPEN_FILE, <extra-args>)

- Mint reply_cap

- Send(ext4fs_endpoint_cap, reply_cap, ...)

- Recv(reply_cap, ...)
34 / 36



Intro Protocol seL4

seL4 kernel objects

Endpoints are used to perform protected function calls
Reply Objects represent a return path from a protected
procedure call
Address Spaces provide the sandboxes around components (thin
wrappers abstracting hardware page tables)
Cnodes store capabilities representing a component’s access
rights
Thread Control Blocks represent threads of execution
Scheduling Contexts represent the right to access a certain
fraction of execution time on a core
Notifications are synchronisation objects (similar to semaphores)
Frames represent physical memory that can be mapped into
address spaces
Interrupt Objects provide access to interrupt handling
Untypeds unused (free) physical memory that can be converted
(“retyped”) into any of the other types.

35 / 36



Intro Protocol seL4

⟨ End ⟩

36 / 36


	authentication and capabilities
	Introduction to authentication
	Password — the protocol-design perspective
	Capabilities and a case study on seL4


