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Recall the “nice” properties of memory errors

They have universally accepted definitions
- Once you find a memory error or data race, you do not need to
diligently argue that this is a bug and not a feature

They often lead to a set of known consequences that are generally
considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error or data race, you do not need to
construct a working exploit to justify it

Finding them typically do not require program-specific domain
knowledge
- If you have a technique that can find memory errors or data races in
one codebase, you can scale it up to millions of codebases

In fact, very few types of vulnerabilities meet these requirements.
=⇒ Most of the bug types covered today do not meet all
requirements, but they are representative examples to show easy it
is to make a mistake in programming.
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Unsafe integer operations

Mathmetical integers are unbounded

WHILE

Machine integers are bounded by a fixed number of bits.
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Unsafe integer operations

1 mapping (address => uint256) public balanceOf;
2

3 // INSECURE

4 function transfer(address _to, uint256 _value) {
5 /* Check if sender has balance */

6 require(balanceOf[msg.sender] >= _value);
7

8 /* Add and subtract new balances */

9 balanceOf[msg.sender] -= _value;
10 balanceOf[_to] += _value;

11 }

Q: What is the bug here?

1 // SECURE

2 function transfer(address _to, uint256 _value) {
3 /* Check if sender has balance and for overflows */

4 require(balanceOf[msg.sender] >= _value &&
5 balanceOf[_to] + _value >= balanceOf[_to]);

6

7 /* Add and subtract new balances */

8 balanceOf[msg.sender] -= _value;
9 balanceOf[_to] += _value;

10 }
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Common cases for integer overflows and underflows

signed ↔ unsigned

size-decreasing cast (a.k.a., truncate)

+, -, * for both signed and unsigned integers

/ for signed integers

++ and -- for both signed and unsigned integers

+=, -=, *= for both signed and unsigned integers

/= for signed integers

Negation - for signed and unsigned integers

<< for both signed and unsigned integers
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Unsafe floating-point operations

Mathmetical real numbers are arbitrary precision

WHILE

Machine floating-point numbers are bounded by a limited precision.
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The perils of floating point (in Python)

>>> .1 + .1 + .1 == .3

Q: True or False?

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)

Q: True or False?

>>> round(.1 + .1 + .1, 10) == round(.3, 10)

Q: True or False?

Further reading: The Perils of Floating Point
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Pointer relational comparison

1 #include <stdio.h>

2

3 struct Record {
4 int a;
5 int b;
6 };

7

8 int main(void) {
9 struct Record r = { 0, 0 };

10 /* defined behavior */

11 if (&r.a < &r.b) {
12 printf("Hello\n");
13 } else {
14 printf("World\n");
15 }

16 return 0;
17 }

Q: Output?

1 #include <stdio.h>

2

3 int main(void) {
4 int a = 0;
5 int b = 0;
6 /* undefined behavior */

7 if (&a < &b) {
8 printf("Hello\n");
9 } else {

10 printf("World\n");
11 }

12 return 0;
13 }

Q: Output?
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Pointer relational comparison

In C and C++, the relational comparison of pointers to objects
(i.e., < or >) is only strictly defined if

the pointers point to members of the same object, or

the pointers point to elements of the same array.

However, most compiler will emit a comparison operation based on
the numerical value of the pointers. =⇒ This is not strictly a bug,
as undefined behavior means the compiler is free to choose whatever
action that might make sense.
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handling untrusted input can be dangerous
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SQL injection

1 public boolean login(String username, String password) {
2 String sql =

3 "SELECT * FROM Users WHERE " +

4 "username = ’" + username + "’ AND " +

5 "password = ’" + password + "’;";

6

7 ResultSet result = db.executeQuery(sql);

8 if (result.next()) {
9 /* login success */

10 return true;
11 } else {
12 /* login failure */

13 return false;
14 }

15 }

14 / 55
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Mitigating SQL injection with sanitization

1 public boolean login(String username, String password) {
2 PreparedStatement sql = db.prepareStatement(

3 "SELECT * FROM Users WHERE username = ? AND password = ?;")

4 sql.setString(1, username);

5 sql.setString(2, password);

6

7 ResultSet result = db.executeQuery(sql);

8 if (result.next()) {
9 /* login success */

10 return true;
11 } else {
12 /* login failure */

13 return false;
14 }

15 }

15 / 55



Introduction Undef Sanity Untrusted Data race Automicity Conclusion

SQL injection in the wild

Original source unknown, found on Twitter
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printf is powerful

A format string vulnerability is a bug where untrusted user input is
passed as the format argument to printf, scanf, or another
function in that family.

For details, see the man page of printf.
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printf is powerful
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Format string vulnerability demo

1 #include <stdio.h>

2 #include <unistd.h>

3

4 int main() {
5 int secret = 0xdeadbeef;
6

7 char name[64] = {0};
8 read(0, name, 64);

9 printf("Hello ");

10 printf(name);

11 printf(", try to get the secret!\n");
12 return 0;
13 }

To trigger the vulnerability, try something like %7$llx, although %7
can be other values depending on the OS and C compiler version.

19 / 55
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Cross-site scripting (XSS)

Cross-site scripting (XSS) enables attackers to inject client-side
scripts into web pages viewed by other users.
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Same-origin policy

This essentially states that if content from one site (such as
https://crysp.uwaterloo.ca) is granted permission to access
resources (e.g., cookies etc.) on a web browser, then content from
the same origin will share these permissions.

The same-origin property is defined as two URLs sharing the same

URI scheme (e.g. ftp, http, or https)

hostname (e.g., crysp.uwaterloo.ca) and

port number (e.g., 80)

For example, these webpages are from the same origin:

https://crysp.uwaterloo.ca/research/ and

https://crysp.uwaterloo.ca/courses/
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XSS Demo I

1 from urllib.parse import unquote as url_unquote
2 from http.server import BaseHTTPRequestHandler, HTTPServer
3

4 HOST = "localhost"

5 PORT = 8080

6

7 PAGE = """<html>

8 <form action=’/submit’ method=’POST’>

9 <input type=’text’ name=’comment’ />

10 </form>

11 </html>"""

12

13 class XSSDemoServer(BaseHTTPRequestHandler):
14 def do_GET(self):
15 self.send_response(200)

16 self.send_header("Content-type", "text/html")

17 self.end_headers()

18 self.wfile.write(bytes(PAGE, "utf-8"))

19

20 def do_POST(self):
21 size = int(self.headers.get(’Content-Length’))

22 body = url_unquote(self.rfile.read(size).decode(’utf-8’))
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XSS Demo II

23 self.send_response(200)

24 self.send_header("Content-type", "text/html")

25 self.end_headers()

26 self.wfile.write(bytes("<html>%s</html>" % body[8:], "utf-8"))
27

28

29 if __name__ == "__main__":
30 server = HTTPServer((HOST, PORT), XSSDemoServer)

31 print("Server started http://%s:%s" % (HOST, PORT))
32

33 try:
34 server.serve_forever()

35 except KeyboardInterrupt:
36 pass
37

38 server.server_close()

39 print("Server stopped.")

Q: Try <script>alert("XSS")</script>
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Calling into untrusted code is dangerous

The DAO attack on Ethereum

In 2016, an attacker exploited a vulnerability in The DAO’s
wallet smart contracts. In a couple of weeks (by Saturday, 18th
June), the attacker managed to drain more than 3.6 million
ether into an attacker-controlled account. The price of ether
dropped from over $20 to under $13.

The DAO attack was partially recovered by a hard-fork of the
Ethereum blockchain that returns all stolen ethers into a special
smart contract (which can be subsequently withdrawn). This
resulted in two chains: Ethereum classic and Ethereum.

25 / 55
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Reentrancy attack (victim contract)

1 contract EtherStore {
2 uint256 public withdrawalLimit = 1 ether;
3 mapping(address => uint256) public lastWithdrawTime;
4 mapping(address => uint256) public balances;
5

6 function depositFunds() public payable {
7 balances[msg.sender] += msg.value;
8 }

9

10 function withdrawFunds (uint256 _weiToWithdraw) public {
11 require(balances[msg.sender] >= _weiToWithdraw);
12 require(_weiToWithdraw <= withdrawalLimit);
13 require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
14 require(msg.sender.call.value(_weiToWithdraw)());
15

16 balances[msg.sender] -= _weiToWithdraw;
17 lastWithdrawTime[msg.sender] = now;
18 }

19 }

26 / 55
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Reentrancy attack (attacker’s contract)

1 import "EtherStore.sol";
2

3 contract Attack {
4 EtherStore public etherStore;
5

6 constructor(address _etherStoreAddress) {
7 etherStore = EtherStore(_etherStoreAddress);

8 }

9 function pwnEtherStore() public payable {
10 require(msg.value >= 1 ether);
11 etherStore.depositFunds.value(1 ether)();

12 etherStore.withdrawFunds(1 ether);

13 }

14 function collectEther() public {
15 msg.sender.transfer(this.balance);
16 }

17 function () payable {
18 if (etherStore.balance > 1 ether) {
19 etherStore.withdrawFunds(1 ether);

20 }

21 }

22 }

The attacker can drain the balance from the victim contract.

27 / 55



Introduction Undef Sanity Untrusted Data race Automicity Conclusion

Reentrancy attack (attacker’s contract)

1 import "EtherStore.sol";
2

3 contract Attack {
4 EtherStore public etherStore;
5

6 constructor(address _etherStoreAddress) {
7 etherStore = EtherStore(_etherStoreAddress);

8 }

9 function pwnEtherStore() public payable {
10 require(msg.value >= 1 ether);
11 etherStore.depositFunds.value(1 ether)();

12 etherStore.withdrawFunds(1 ether);

13 }

14 function collectEther() public {
15 msg.sender.transfer(this.balance);
16 }

17 function () payable {
18 if (etherStore.balance > 1 ether) {
19 etherStore.withdrawFunds(1 ether);

20 }

21 }

22 }

The attacker can drain the balance from the victim contract. 27 / 55



Introduction Undef Sanity Untrusted Data race Automicity Conclusion

Reentrancy attack (the fix)

1 contract EtherStore {
2 bool reentrancyMutex = false;
3 uint256 public withdrawalLimit = 1 ether;
4 mapping(address => uint256) public lastWithdrawTime;
5 mapping(address => uint256) public balances;
6

7 function depositFunds() public payable {
8 balances[msg.sender] += msg.value;
9 }

10

11 function withdrawFunds (uint256 _weiToWithdraw) public {
12 require(balances[msg.sender] >= _weiToWithdraw);
13 require(_weiToWithdraw <= withdrawalLimit);
14 require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
15

16 balances[msg.sender] -= _weiToWithdraw;
17 lastWithdrawTime[msg.sender] = now;
18 reentrancyMutex = true;
19 msg.sender.transfer(_weiToWithdraw);
20 reentrancyMutex = false;
21 }

22 }
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What is data race?

global var count = 0

for(i = 0; i < x; i++) {
/* do sth critical */

......

count++;

}

Thread 1

for(i = 0; i < y; i++) {
/* do sth critical */

......

count++;

}

Thread 2

Q: What is the value of count when both threads terminate?
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What is data race?

global var count = 0

global var mutex = ⊥

for(i = 0; i < x; i++) {
/* do sth critical */

......

lock(mutex);

count++;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
/* do sth critical */

......

lock(mutex);

count++;

unlock(mutex);

}

Thread 2

Q: What is the value of count when both threads terminate?
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Data race in other settings

Data races are not tied to a specific programming language, instead,
they are tied to data sharing in concurrent execution.

For example, in the database context:

Q: If two database clients send the following requests concurrently,
what will be the result (both try to withdraw $100 from Alice)?

Client 1
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

Client 2
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

31 / 55
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Data race in a database setting

One possible interleaving (that messes up the states)

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

Q: How to prevent the data race in this case?

Interleavings with transactions
BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";
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Data race may lead to memory errors

p is a global pointer initialized to NULL

if (!p) {
p = malloc(128);

}

Thread 1

if (!p) {
p = malloc(256);

}

Thread 2

Q: What are the possible outcomes of this execution?
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Data race as heisenbug

Programs which contain data races usually demonstrate unexpected
and even non-deterministic behavior.

The outcome might depend on a specific execution order (a.k.a.
thread interleaving).

Re-running the program may not always produce the same results.

Concurrent programs are hard to debug and even harder to ensure
correctness.
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Data race definition in C++ standard

When

an evaluation of an expression writes to a memory location and
another evaluation reads or modifies the same memory location,

the expressions are said to conflict.

A program that has two conflicting evaluations has a data race unless:

both evaluations execute on the same thread, or
both conflicting evaluations are atomic operations, or
one of the conflicting evaluations happens-before another.

Adapted from a community-backed C++ reference site. For the full
version, please refer to the related sections in C++ working draft.
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
count++;

}

Thread 1

for(i = 0; i < y; i++) {
count++;

}

Thread 2
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Free interleavings without locking

Thread 1 Thread 2
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R

W
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Thread 1 Thread 2
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W
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 2
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Limited interleavings with locking

Thread 1 Thread 2

lock

R

W

unlock
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R

W

unlock
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Common synchronization primitives

Lock / Mutex / Critical section

Read-write lock

Barrier

Semaphore
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Causality relations: an example

1 #include <stdio.h>

2 #include <pthread.h>

3

4 int i;
5 int retval;
6

7 void* foo(void* p){
8 printf("Value of i: %d\n", i);
9 printf("Value of j: %d\n", *(int *)p);

10 pthread_exit(&retval);

11 }

12

13 int main(void){
14 int i = 1;
15 int j = 2;
16

17 pthread_t id;

18 pthread_create(&id, NULL, foo, &j);

19 pthread_join(id, NULL);

20

21 printf("Return value from thread: %d\n", retval);
22 }
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Causality relations

Thread 1 Thread 2

Wvar i

Wvar j

pthread_create

pthread_join

Rvar retval

<thread start>

R var i

R var j

W var retval

<thread end>
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Outline

1 Introduction: why study these bug types?

2 Undefined / counterintuitive behaviors

3 Insufficient sanitization on untrusted input

4 Invocation of / by untrusted logic

5 Data race

6 Data race vs atomicity

7 Concluding remarks
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Is this a data race?

1 int x = 0;
2 bool flag = false;
3 lock mutex = unlocked;

1 x++;

2 lock(mutex);

3 flag = true;

4 unlock(mutex);

Thread 1

1 while(true) {
2 lock(mutex);

3 if (flag) {
4 unlock(mutex);

5 break;
6 }

7 unlock(mutex);

8 }

9 x--;

Thread 2
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Is this a data race?

1 int x = 0;
2 bool flag = false;

1 x++;

2 flag = true;

Thread 1

1 while (!flag) {};
2 x--;

Thread 2
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

t = count;

unlock(mutex);

t++;

lock(mutex);

count = t;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

t = count;

unlock(mutex);

t++;

lock(mutex);

count = t;

unlock(mutex);

}

Thread 2
46 / 55
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Revisit the example

Q: In this modified example, is there a data race?

A: No

Q: But the results are the same with all locks removed?

global var count = 0

for(i = 0; i < x; i++) {
t = count;

t++;

count = t;

}

for(i = 0; i < y; i++) {
t = count;

t++;

count = t;

}

A: No, depending on how hardware works (e.g., per-bit conflict)
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Extract the commonalities of the two variants

Q: What is common in developers’ expectations in the two variants?

A: States do not change for a critical section during execution.

A: Generalization: states remain integral for a critical section
during execution. No change of states is just one way of remaining
integral (assuming state is integral before the critical section).
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State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

1 int add_x(v: int) {
2 g.x += v;

3 g.y -= v;

4 }

Thread 1

1 int add_y(v: int) {
2 g.y += v;

3 g.x -= v;

4 }

Thread 2
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State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

3 lock mutex = unlocked;

1 int add_x(v: int) {
2 lock(mutex);

3 g.x += v;

4 unlock(mutex);

5 lock(mutex);

6 g.y -= v;

7 unlock(mutex);

8 }

Thread 1

1 int add_y(v: int) {
2 lock(mutex);

3 g.y += v;

4 unlock(mutex);

5 lock(mutex);

6 g.x -= v;

7 unlock(mutex);

8 }

Thread 2

Q: Is this the right way of adding locks?

A: No, as the invariant is not guaranteed
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State integrity is hard to capture

However, in practice, the invariant often exists in

some architectural design documents (which no one reads)

code comments in a different file (which no one notices)

forklore knowledge among the dev team

the mind of the developer who has resigned a few years ago...
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Outline

1 Introduction: why study these bug types?

2 Undefined / counterintuitive behaviors

3 Insufficient sanitization on untrusted input

4 Invocation of / by untrusted logic

5 Data race
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Conclusion

All these bugs are violations of developers’ expectations.
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⟨ End ⟩
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