CS 489 / 698: Software and Systems Security

Module 7: Bug Finding Tools and Practices static and symbolic reasoning

Meng Xu (University of Waterloo)
Winter 2024

Outline

(1) Introduction to abstraction interpretation
(2) Example and intuition about abstract domains
(3) Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution
(5) Conventional symbolic execution

Why this topic?

A significant portion of software security research is related to program analysis:

- derive properties which hold for program P (i.e., inference)
- prove that some property holds for program P (i.e., verification)
- given a program P, generate a program P^{\prime} which is
- in most ways equivalent to P
- behaves better than P w.r.t some criteria
(i.e., transformation)

Why this topic?

A significant portion of software security research is related to program analysis:

- derive properties which hold for program P (i.e., inference)
- prove that some property holds for program P (i.e., verification)
- given a program P, generate a program P^{\prime} which is
- in most ways equivalent to P
- behaves better than P w.r.t some criteria
(i.e., transformation)

Abstract interpretation provides a formal framework for developing program analysis tools.

Abstract interpretation in a nutshell

Acknowledgement: the illustrations in this section is borrowed from Prof. Patrick Cousot's webpage Abstract Interpretation in a Nutshell.

Program analysis: concrete semantics

The concrete semantics of a program is formalized by the set of all possible executions of this program under all possible inputs.

The concrete semantics of a program can be a close to infinite mathematical object / sequence which is impractical to enumerate.

Program analysis: safety properties

Forbidden zone

Safety properties of a program express that no possible execution of the program, when considering all possible execution environments, can reach an erroneous state.

Program analysis: testing

Test of a few trajectories

Testing consists in considering a subset of the possible executions.

Program analysis: bounded model checking

Bounded model-checking of trajectory prefixes

Bounded model checking consists in exploring the prefixes of the possible executions.

Program analysis: abstract interpretation

Forbidden zone

Abstract interpretation consists in considering an abstract semantics, that is a superset of the concrete program semantics.

The abstract semantics covers all possible cases
\Longrightarrow if the abstract semantics is safe (i.e. does not intersect the forbidden zone) then so is the concrete semantics.

Program analysis: abstract interpretation false alarm 1

False alarms caused by widening during execution.

Program analysis: abstract interpretation false alarm 2

Forbidden zone

False alarms caused by abstract domains.

Outline

(1) Introduction to abstraction interpretation
(2) Example and intuition about abstract domains

3 Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution
(5) Conventional symbolic execution

What is abstract interpretation?

Consider detecting that one branch will not be taken in: int $x, y, z ; \quad y:=r e a d(f i l e) ; \quad x:=y * y$;
if $x \geq 0$ then $z:=1$ else $z:=0$

What is abstract interpretation?

Consider detecting that one branch will not be taken in: int $x, y, z ; \quad y:=r e a d(f i l e) ; \quad x:=y * y$;
if $x \geq 0$ then $z:=1$ else $z:=0$

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs - uses abstractions: signs, order of magnitude, odd/even, ...

What is abstract interpretation?

Consider detecting that one branch will not be taken in: int $x, y, z ; \quad y:=r e a d(f i l e) ; \quad x:=y * y$;
if $x \geq 0$ then $z:=1$ else $z:=0$

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs - uses abstractions: signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of computational objects to make the problem of program dataflow analysis tractable.

What is abstract interpretation?

Abstract interpretation is a formalization of the above procedure:

- define a non-standard semantics which can approximate the meaning (or behaviour) of the program in a finite way
- expressions are computed over an approximate (abstract) domain rather than the concrete domain (i.e., meaning of operators has to be reconsidered w.r.t. this new domain)

Example: integer sign arithmetic

Consider the domain $D=Z$ (integers) and the multiplication operator: $*: Z^{2} \rightarrow Z$

We define an "abstract domain:" $D_{\alpha}=\{[-],[+]\}$ and abstract multiplication: $*_{\alpha}: D_{\alpha}^{2} \rightarrow D_{\alpha}$ defined by:

$*_{\alpha}$	$[-]$	$[+]$
$[-]$	$[+]$	$[-]$
$[+]$	$[-]$	$[+]$

Example: integer sign arithmetic

Consider the domain $D=Z$ (integers) and the multiplication operator: $*: Z^{2} \rightarrow Z$

We define an "abstract domain:" $D_{\alpha}=\{[-],[+]\}$ and abstract multiplication: $*_{\alpha}: D_{\alpha}^{2} \rightarrow D_{\alpha}$ defined by:

$*_{\alpha}$	$[-]$	$[+]$
$[-]$	$[+]$	$[-]$
$[+]$	$[-]$	$[+]$

This allows us to conclude, for example, that $y=x^{2}=x * x$ is never negative.

Some observations

- The basis is that whenever we have $z=x * y$ then: if $x, y \in Z$ are approximated by $x_{\alpha}, y_{\alpha} \in D_{\alpha}$ then $z \in Z$ is approximated by $z_{\alpha}=x_{\alpha} *_{\alpha} y_{\alpha}$
- Essentially, we map from an unbounded domain to a finite domain.
- It is important to formalize this notion of approximation, in order to be able to reason/prove that the analysis is correct.
- Approximate computation is generally less precise but faster (hence the tradeoff).

Example: integer sign arithmetic (refined)

Again, $D=Z$ (integers)
and: $*: Z^{2} \rightarrow Z$

We can define a more refined "abstract domain"
$D_{\alpha}^{\prime}=\{[-],[0],[+]\}$
and the corresponding abstract multiplication: $*_{\alpha}: D_{\alpha}^{\prime 2} \rightarrow D_{\alpha}^{\prime}$

$*_{\alpha}$	$[-]$	$[0]$	$[+]$
$[-]$	$[+]$	$[0]$	$[-]$
$[0]$	$[0]$	$[0]$	$[0]$
$[+]$	$[-]$	$[0]$	$[+]$

Example: integer sign arithmetic (refined)

Again, $D=Z$ (integers)
and: $*: Z^{2} \rightarrow Z$

We can define a more refined "abstract domain"
$D_{\alpha}^{\prime}=\{[-],[0],[+]\}$
and the corresponding abstract multiplication: $*_{\alpha}: D_{\alpha}^{\prime 2} \rightarrow D_{\alpha}^{\prime}$

$*_{\alpha}$	$[-]$	$[0]$	$[+]$
$[-]$	$[+]$	$[0]$	$[-]$
$[0]$	$[0]$	$[0]$	$[0]$
$[+]$	$[-]$	$[0]$	$[+]$

This allows us to conclude, for example, that $z=y *(0 * x)$ is zero.

More observations

- There is a degree of freedom in defining different abstract operators and domains.
- The minimal requirement is that they be "safe" or "correct".
- Different "safe" definitions result in different kinds of analysis.

Example: integer sign arithmetic (with addition)

Again, $D=Z$ (integers)
and now we want to define the addition operator $+: Z^{2} \rightarrow Z$

Example: integer sign arithmetic (with addition)

Again, $D=Z$ (integers) and now we want to define the addition operator $+: Z^{2} \rightarrow Z$

We cannot use $D_{\alpha}^{\prime}=\{[-],[0],[+]\}$ because we wouldn't know how to represent the result of $[+]+\alpha[-]$, (i.e., the abstract addition would not be closed).

Example: integer sign arithmetic (with addition)

Again, $D=Z$ (integers)
and now we want to define the addition operator $+: Z^{2} \rightarrow Z$

We cannot use $D_{\alpha}^{\prime}=\{[-],[0],[+]\}$ because we wouldn't know how to represent the result of $[+]+\alpha[-]$, (i.e., the abstract addition would not be closed).

Solution: introduce a new element "T" in the abstract domain as an approximation of any integer.

Example: integer sign arithmetic (with addition)

New "abstract domain": $D^{\prime}{ }_{\alpha}=\{[-],[0],[+], T\}$

Abstract $+{ }_{\alpha}: D_{\alpha}^{\prime 2} \rightarrow D^{\prime}{ }_{\alpha}$

$+_{\alpha}$	$[-]$	$[0]$	$[+]$	T
$[-]$	$[-]$	$[-]$	T	T
$[0]$	$[-]$	$[0]$	$[+]$	T
$[+]$	T	$[+]$	$[+]$	T
T	T	T	T	T

Abstract $*_{\alpha}: D_{\alpha}^{\prime 2} \rightarrow D_{\alpha}^{\prime}$

$*_{\alpha}$	$[-]$	$[0]$	$[+]$	T
$[-]$	$[+]$	$[0]$	$[-]$	T
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[+]$	$[-]$	$[0]$	$[+]$	T
T	T	$[0]$	T	T

Example: integer sign arithmetic (with addition)

New "abstract domain": $D^{\prime}{ }_{\alpha}=\{[-],[0],[+], T\}$

Abstract $+{ }_{\alpha}: D_{\alpha}^{\prime 2} \rightarrow D^{\prime}{ }_{\alpha}$

$+_{\alpha}$	$[-]$	$[0]$	$[+]$	T
$[-]$	$[-]$	$[-]$	T	T
$[0]$	$[-]$	$[0]$	$[+]$	T
$[+]$	T	$[+]$	$[+]$	T
T	T	T	T	T

Abstract $*_{\alpha}: D_{\alpha}^{\prime 2} \rightarrow D_{\alpha}^{\prime}$

$*_{\alpha}$	$[-]$	$[0]$	$[+]$	T
$[-]$	$[+]$	$[0]$	$[-]$	T
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[+]$	$[-]$	$[0]$	$[+]$	T
\top	\top	$[0]$	T	T

We can now reason that $z=x^{2}+y^{2}$ is never negative

More observations

- In addition to the imprecision due to the coarseness of D_{α}, the abstract versions of the operations (dependent on D_{α}) may introduce further imprecision
- Thus, the choice of abstract domain and the definition of the abstract operators are crucial.

Concerns in abstract interpretation

- Required:
- Correctness - safe approximations: the analysis should be "conservative" and errs on the "safe side"
- Termination - compilation should definitely terminate
(note: not always the case in everyday program analysis tools!)
- Desirable - "practicality":
- Efficiency - in practice finite analysis time is not enough: finite and small is the requirement.
- Accuracy - too many false alarms is harmful to the adoption of the analysis tool ("the boy who cried wolf").
- Usefulness - determines which information is worth collecting.

Outline

(1) Introduction to abstraction interpretation

(2) Example and intuition about abstract domains
(3) Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution
(5) Conventional symbolic execution

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers): $x=[a, b]$ where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞.

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers): $x=[a, b]$ where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞.

Example:

$$
\begin{aligned}
& \left\{x^{\#}=[0,9], y^{\#}=[-1,1]\right\} \\
& z=x+2 * y \\
& \left\{z^{\#}=[0,9]+\# 2 \times \#[-1,1]=[-2,11]\right\}
\end{aligned}
$$

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers): $x=[a, b]$ where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞.

Example:

$$
\begin{aligned}
& \left\{x^{\#}=[0,9], y^{\#}=[-1,1]\right\} \\
& z=x+2 * y \\
& \left\{z^{\#}=[0,9]+\# 2 \times{ }^{\#}[-1,1]=[-2,11]\right\}
\end{aligned}
$$

Q: Why $z^{\#}$ is an abstraction of z ?

Join operator

The join operator \sqcup merges two or more abstract states into one abstract state.

Joining operator example

$$
\begin{aligned}
& \left\{x^{\#}=[0,10]\right\} \\
& \text { if }(x<0) \text { then } \\
& \qquad s:=-1 \\
& \text { else if }(x>0) \text { then } \\
& \qquad s:=1 \\
& \text { else } \\
& \text { s }:=0
\end{aligned}
$$

Joining operator example

$$
\begin{aligned}
& \left\{x^{\#}=[0,10]\right\} \\
& \text { if }(x<0) \text { then } \\
& \left\{x^{\#}=\emptyset\right\} \\
& \quad \mathrm{s}:=-1 \\
& \left\{x^{\#}=\emptyset, s^{\#}=\emptyset\right\} \\
& \text { else if }(x>0) \text { then } \\
& \qquad \text { s }:=1 \\
& \text { else } \\
& \text { s }:=0
\end{aligned}
$$

Joining operator example

$$
\begin{aligned}
& \left\{x^{\#}=[0,10]\right\} \\
& \text { if }(x<0) \text { then } \\
& \quad\left\{x^{\#}=\emptyset\right\} \\
& \quad \mathrm{s}:=-1 \\
& \quad\left\{x^{\#}=\emptyset, s^{\#}=\emptyset\right\} \\
& \text { else if }(x>0) \text { then } \\
& \quad\left\{x^{\#}=[1,10]\right\} \\
& \quad s:=1 \\
& \quad\left\{x^{\#}=[1,10], s^{\#}=[1,1]\right\} \\
& \text { else } \\
& \quad \mathrm{s}:=0
\end{aligned}
$$

Joining operator example

$$
\begin{aligned}
& \left\{x^{\#}=[0,10]\right\} \\
& \text { if }(x<0) \text { then } \\
& \left\{x^{\#}=\emptyset\right\} \\
& s:=-1 \\
& \left\{x^{\#}=\emptyset, s^{\#}=\emptyset\right\} \\
& \text { else if }(x>0) \text { then } \\
& \left\{x^{\#}=[1,10]\right\} \\
& s:=1 \\
& \left\{x^{\#}=[1,10], s^{\#}=[1,1]\right\} \\
& \text { else } \\
& \left\{x^{\#}=[0,0]\right\} \\
& s:=0 \\
& \left\{x^{\#}=[0,0], s^{\#}=[0,0]\right\}
\end{aligned}
$$

Joining operator example

$$
\begin{aligned}
& \left\{x^{\#}=[0,10]\right\} \\
& \text { if }(x<0) \text { then } \\
& \left\{x^{\#}=\emptyset\right\} \\
& s:=-1 \\
& \left\{x^{\#}=\emptyset, s^{\#}=\emptyset\right\} \\
& \text { else if }(x>0) \text { then } \\
& \left\{x^{\#}=[1,10]\right\} \\
& s:=1 \\
& \left\{x^{\#}=[1,10], s^{\#}=[1,1]\right\} \\
& \text { else } \\
& \left\{x^{\#}=[0,0]\right\} \\
& \mathrm{s}:=0 \\
& \left\{x^{\#}=[0,0], s^{\#}=[0,0]\right\} \\
& \left\{x^{\#}=\emptyset \sqcup[1,10] \sqcup[0,0]=[0,10], s^{\#}=\emptyset \sqcup[1,1] \sqcup[0,0]=[0,1]\right\}
\end{aligned}
$$

What about loops?

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \text { while }(x<100)\{ \\
& x:=x+2 \\
& \}
\end{aligned}
$$

What about loops?

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=\langle\text { even }\rangle\right\} \\
& \text { while }(x<100)\{ \\
& x:=x+2 \\
& \}
\end{aligned}
$$

What about loops?

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=\langle\text { even }\rangle\right\} \\
& \text { while }(x<100)\{ \\
& \quad\left\{x^{\#}=\langle\text { even }\rangle\right\}_{1} \\
& x:=x+2 \\
& \quad\left\{x^{\#}=\langle\text { even }\rangle\right\}_{1} \\
& \}
\end{aligned}
$$

What about loops?

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& \mathrm{x}:=0 \\
& \left\{x^{\#}=\langle\text { even }\rangle\right\} \\
& \text { while }(\mathrm{x}<100)\{ \\
& \quad\left\{x^{\#}=\langle\text { even }\rangle\right\}_{1} \quad\left\{x^{\#}=\langle\text { even }\rangle \sqcup\langle\text { even }\rangle=\langle\text { even }\rangle\right\}_{2} \\
& x:=x+2 \\
& \quad\left\{x^{\#}=\langle\text { even }\rangle\right\}_{1} \\
& \}
\end{aligned}
$$

What about loops?

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=\langle\text { even }\rangle\right\} \\
& \text { while }(x<100)\{ \\
& \quad\left\{x^{\#}=\langle\text { even }\rangle\right\}_{1} \quad\left\{x^{\#}=\langle\text { even }\rangle \sqcup\langle\text { even }\rangle=\langle\text { even }\rangle\right\}_{2} \\
& \quad \mathrm{x}:=\mathrm{x}+2 \\
& \quad\left\{x^{\#}=\langle\text { even }\rangle\right\}_{1} \\
& \} \\
& \left\{x^{\#}=\langle\text { even }\rangle\right\}
\end{aligned}
$$

Two iterations to reach fixedpoint (i.e., none of the abstract states changes).

Collecting semantics

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \text { while }(x<100)\{ \\
& x:=x+2 \\
& \}
\end{aligned}
$$

Collecting semantics

```
\(\left\{x^{\#}=\emptyset\right\}\)
x := 0
\(\left\{x^{\#}=[0,0]\right\}\)
while (x < 100) \{
x := x + 2
\}
```


Collecting semantics

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(\mathrm{x}<100)\{ \\
& \quad\left\{x^{\#}=[0,0]\right\}_{1} \\
& x:=x+2 \\
& \quad\left\{x^{\#}=[2,2]\right\}_{1} \\
& \}
\end{aligned}
$$

Collecting semantics

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& \mathrm{x}:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(\mathrm{x}<100) \\
& \\
& \quad\left\{x^{\#}=[0,0]\right\}_{1} \\
& \\
& \quad \mathrm{x}:=\mathrm{x}+2 \\
& \\
& \begin{cases} & \left\{x^{\#}=[2,2]=[0,0] \sqcup[2,2]=[0,2]\right\}_{1}\end{cases} \\
& \}
\end{aligned}
$$

Collecting semantics

$$
\left.\left.\begin{array}{l}
\left\{x^{\#}=\emptyset\right\} \\
\mathrm{x}:=0 \\
\left\{x^{\#}=[0,0]\right\} \\
\text { while }(\mathrm{x}<100)\{ \\
\\
\quad\left\{x^{\#}=[0,0]\right\}_{1} \\
\\
\quad \mathrm{x}:=\mathrm{x}+2 \\
\\
\left\{x^{\#}=[2,2]\right\}_{1}
\end{array} \quad\left\{x^{\#}=[0,2] \sqcup[2,4]=[0,4]\right\}_{3}=[2,4] \sqcup[2,6]=[2,6]\right\}_{3}\right\}
$$

Collecting semantics

```
\(\left\{x^{\#}=\emptyset\right\}\)
x := 0
\(\left\{x^{\#}=[0,0]\right\}\)
while ( \(\mathrm{x}<100\) ) \{
    \(\left\{x^{\#}=[0,0]\right\}_{1} \quad\{\cdots\}_{4},\{\cdots\}_{5}, \cdots\)
    \(\mathrm{x}:=\mathrm{x}+2\)
    \(\left\{x^{\#}=[2,2]\right\}_{1} \quad\{\cdots\}_{4},\{\cdots\}_{5}, \cdots\)
\}
```


Collecting semantics

```
\(\left\{x^{\#}=\emptyset\right\}\)
\(\mathrm{x}:=0\)
\(\left\{x^{\#}=[0,0]\right\}\)
while ( \(\mathrm{x}<100\) ) \{
    \(\left\{x^{\#}=[0,0]\right\}_{1} \quad\left\{x^{\#}=[0,96] \sqcup[2,98]=[0,98]\right\}_{50}\)
    \(\mathrm{x}:=\mathrm{x}+2\)
    \(\left\{x^{\#}=[2,2]\right\}_{1} \quad\left\{x^{\#}=[2,98] \sqcup[2,100]=[2,100]\right\}_{50}\)
\}
```


Collecting semantics

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& \mathrm{x} \text { := } 0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while (} \mathrm{x}<100 \text {) \{ } \\
& \left\{x^{\#}=[0,0]\right\}_{1} \\
& \mathrm{x}:=\mathrm{x}+2 \\
& \left\{x^{\#}=[2,2]\right\}_{1} \quad\left\{x^{\#}=[2,98] \sqcup[2,100]=[2,100]\right\}_{50} \\
& \text { \} } \\
& \left\{x^{\#}=[100,100]\right\}
\end{aligned}
$$

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Collecting semantics

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& \mathrm{x} \text { := } 0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while (} \mathrm{x}<100 \text {) \{ } \\
& \left\{x^{\#}=[0,0]\right\}_{1} \\
& \mathrm{x}:=\mathrm{x}+2 \\
& \left\{x^{\#}=[2,2]\right\}_{1} \quad\left\{x^{\#}=[2,98] \sqcup[2,100]=[2,100]\right\}_{50} \\
& \text { \} } \\
& \left\{x^{\#}=[100,100]\right\}
\end{aligned}
$$

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Q: can we reach the fixedpoint faster?

Widening operator

We compute the limit of the following sequence:

$$
\begin{gathered}
X_{0}=\perp \\
X_{i+1}=X_{i} \nabla F^{\#}\left(X_{i}\right)
\end{gathered}
$$

where ∇ denotes the widening operator.

Widening operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \text { while }(x<100)\{ \\
& x:=x+2 \\
& \}
\end{aligned}
$$

Widening operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(x<100)\{ \\
& \quad x:=x+2 \\
& \}
\end{aligned}
$$

Widening operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& \mathrm{x}:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(\mathrm{x}<100)\{ \\
& \left\{x^{\#}=[0,0]\right\}_{1} \\
& \mathrm{x}:=\mathrm{x}+2 \\
& \left\{x^{\#}=[2,2]\right\}_{1} \\
& \}
\end{aligned}
$$

Widening operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& \mathrm{x}:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while (x<100) } \\
& \begin{aligned}
& \\
&\left\{x^{\#}=[0,0]\right\}_{1}
\end{aligned} \\
& \begin{array}{ll}
\mathrm{x}:=\mathrm{x}+2 & \\
& \left\{x^{\#}=[0,0] \nabla[2,2]=[0,+\infty]\right\}_{2} \\
\} &
\end{array}
\end{aligned}
$$

Widening operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(\mathrm{x}<100)\{ \\
& \\
& \quad\left\{x^{\#}=[0,0]\right\}_{1} \\
& \quad x:=x+2 \\
& \\
& \quad\left\{x^{\#}=[2,2]\right\}_{1} \\
& \}
\end{aligned}
$$

Widening operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(\mathrm{x}<100)\{ \\
& \quad\left\{x^{\#}=[0,0]\right\}_{1} \\
& \quad x:=\mathrm{x}+2 \\
& \quad\left\{x^{\#}=[0,+\infty] \nabla[2,+\infty]=[0,+\infty]\right\}_{3} \\
& \quad\left\{x^{\#}=[2,2]\right\}_{1} \\
& \} \\
& \left\{x^{\#}=[100,+\infty]\right\}
\end{aligned}
$$

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Narrowing operator

We compute the limit of the following sequence:

$$
\begin{gathered}
X_{0}=\perp \\
X_{i+1}=X_{i} \triangle F^{\#}\left(X_{i}\right)
\end{gathered}
$$

where \triangle denotes the narrowing operator.

Narrowing operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(x<100)\{ \\
& \quad\left\{x^{\#}=[0,+\infty]\right\} \\
& \quad x:=x+2 \\
& \quad\left\{x^{\#}=[2,+\infty]\right\} \\
& \} \\
& \left\{x^{\#}=[100,101]\right\}
\end{aligned}
$$

Narrowing operator example

$$
\left.\begin{array}{l}
\left\{x^{\#}=\emptyset\right\} \\
\mathrm{x}:=0 \\
\left\{x^{\#}=[0,0]\right\} \\
\text { while }(\mathrm{x}<100)\{ \\
\quad\left\{x^{\#}=[0,+\infty]\right\} \\
\quad \mathrm{x}:=\mathrm{x}+2 \\
\quad\left\{x^{\#}=[2,+\infty]\right\} \\
\} \\
\left\{x^{\#}=[100,101]\right\}
\end{array} \quad\left\{x^{\#}=[2,+\infty] \triangle[0,99]=[0,99]\right\}_{1}\right\}
$$

Narrowing operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& \mathrm{x}:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(\mathrm{x}<100)\{ \\
& \quad\left\{x^{\#}=[0,+\infty]\right\} \\
& \quad \mathrm{x}:=\mathrm{x}+2 \\
& \quad\left\{x^{\#}=[2,+\infty]\right\} \\
& \} \\
& \left\{x^{\#}=[100,101]\right\}
\end{aligned}
$$

Narrowing operator example

$$
\begin{aligned}
& \left\{x^{\#}=\emptyset\right\} \\
& x:=0 \\
& \left\{x^{\#}=[0,0]\right\} \\
& \text { while }(\mathrm{x}<100)\{ \\
& \quad\left\{x^{\#}=[0,+\infty]\right\} \\
& \quad x:=x+2 \\
& \quad\left\{x^{\#}=[2,+\infty]\right\} \\
& \} \\
& \left\{x^{\#}=[100,101]\right\}
\end{aligned}
$$

2 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Outline

(1) Introduction to abstraction interpretation
(2) Example and intuition about abstract domains
(3) Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution
(5) Conventional symbolic execution

Motivation

Q: Why research on symbolic execution when we have unit testing or even fuzzing?

Motivation

Q: Why research on symbolic execution when we have unit testing or even fuzzing?

A: A more complete exploration of program states.

Illustration

```
1 fn foo(x: u64): u64 {
2 if (x * 3 == 42) {
3 some_hidden_bug();
4 }
5 if (x * 5 == 42) {
6 some_hidden_bug();
7 }
8 return 2 * x;
9 }
```


Illustration

Unit Test
 foo(0);
 foo(1);

```
1 fn foo(x: u64): u64 {
2 if (x * 3 == 42) {
3 some_hidden_bug();
4 }
5 if (x * 5 == 42) {
6 some_hidden_bug();
7 }
8 return 2 * x;
9 }
```


Illustration

Unit Test
 foo(0) ;
 foo(1);

Fuzzing

foo(θ) ;
foo(1);
foo(12);
foo(78);
foo (9, 223, $372,036,854,775,808)$;

Illustration

Unit Test
 foo(${ }^{(\theta) \text {) ; }}$
 foo(1);

Fuzzing

foo(0) ;
foo(1);
foo(12);
foo(78);
foo($9,223,372,036,854,775,808)$;
Symbolic execution
foo(x)
aborts when $x=14$
returns $2 x$ otherwise

Satisfiability Modulo Theories (SMT)

Definition: A procedure that decides whether a mathematical formula is satisfiable.

Example:

- $3 x=42$
- $2 x \geq 2^{64}$
- $5 x=42$

Satisfiability Modulo Theories (SMT)

Definition: A procedure that decides whether a mathematical formula is satisfiable.

Example:

- $3 x=42 \longrightarrow$ satisfiable with $x=14$
- $2 x \geq 2^{64} \longrightarrow$ satisfiable with $x \geq 2^{63}$
- $5 x=42 \longrightarrow$ unsatisfiable, cannot find an x

Ask two questions whenever you see a symbolic execution work:

- How does it convert code into mathematical formula?
- What does it try to solve for?

Program modeling desiderata

- Control-flow graph exploration
- Loop handling
- Memory modeling
- Concurrency

Outline

(1) Introduction to abstraction interpretation

(2) Example and intuition about abstract domains
(3) Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution
(5) Conventional symbolic execution

An example of a pure function

```
fn foo(
    c1: bool, c2: bool,
    x: u64
    ) -> u64 \{
    let \(r=i f(c 1)\) \{
        x + 3
        \} else \{
            x + 4
    \};
        let \(r=i f(c 2)\) \{
                r - 1
    \} else \{
            r - 2
        \};
        r
\}
spec foo \{
    ensures r > x ;
\}
```


An example of a pure function

1 fn foo(
2	c1: bool, c2: bool,
3	x : u64
) -> u64 \{
5	let $\mathrm{r}=\mathrm{if}$ (c1) \{
6	$\mathrm{x}+3$
7	\} else \{
8	$\mathrm{x}+4$
9	\};
10	
11	let $\mathrm{r}=\mathrm{if}$ (c2) \{
12	r - 1
13	\} else \{
14	r - 2
15	\};
16	
17	r
18 \}	
19 spec foo \{	
20	ensures r > x ;
21 \}	

The example in SSA form

1 fn fool	
2	c1: bool, c2: bool,
x : u64	
) -> u64 \{
5	let $\mathrm{r}=\mathrm{if}$ (c 1$)$ \{
6	$\mathrm{x}+3$
7	\} else \{
8	$\mathrm{x}+4$
9	\};
10	
11	let $\mathrm{r}=\mathrm{if}$ (c 2$)$ \{
12	r - 1
13	\} else \{
14	r - 2
15	\};
16	
17	r
18 \}	
19 spec foo \{	
20	ensures r > x;
21 \}	

Path-based exploration

Vars: $c 1, c 2, x, r_{1-6}$

B0	Sym. repr. Path cond.	True

Path-based exploration

Vars: $c 1, c 2, x, r_{1-6}$

B0	Sym. repr. Path cond.	\emptyset True
$\mathbf{B 1}$	Sym. repr. Path cond.	$r_{1}=x+3$ $c 1$

Path-based exploration

Vars: $c 1, c 2, x, r_{1-6}$

B0	Sym. repr. Path cond.	\emptyset True
B1	Sym. repr. Path cond.	$r_{1}=x+3$ $c 1$
B3	Sym. repr.	$r_{1}=x+3$ $r_{3}=r_{1}$ $c 1$

Path-based exploration

Vars: $c 1, c 2, x, r_{1-6}$

B0	Sym. repr. Path cond.	\emptyset True
$\mathbf{B 1}$	Sym. repr. Path cond.	$r_{1}=x+3$ $c 1$
	Sym. repr.	$r_{1}=x+3$ $r_{3}=r_{1}$ $c 1$
	Path cond.	
	Sym. repr.	$r_{1}=x+3$ $r_{3}=r_{1}$ $r_{4}=r_{3}-1$ $c_{1} \wedge c_{2}$
B4	Path cond.	

Path-based exploration

Vars: $c 1, c 2, x, r_{1-6}$

B0	Sym. repr. Path cond.	$\begin{aligned} & \emptyset \\ & \text { True } \end{aligned}$
B1	Sym. repr. Path cond.	$\begin{aligned} & r_{1}=x+3 \\ & c 1 \end{aligned}$
B3	Sym. repr. Path cond.	$\begin{aligned} & r_{1}=x+3 \\ & r_{3}=r_{1} \\ & c 1 \end{aligned}$
B4	Sym. repr. Path cond.	$\begin{aligned} & r_{1}=x+3 \\ & r_{3}=r_{1} \\ & r_{4}=r_{3}-1 \\ & c_{1} \wedge c_{2} \end{aligned}$
B6	Sym. repr. Path cond.	$\begin{aligned} & r_{1}=x+3 \\ & r_{3}=r_{1} \\ & r_{4}=r_{3}-1 \\ & r_{6}=r_{4} \\ & c_{1} \wedge c_{2} \end{aligned}$

Proving procedure (per path)

Vars: $c 1, c 2, x, r_{1-6}$

B6	Sym. repr.	$r_{1}=x+3$ Path cond.
$c_{1} \wedge c_{2}$		

Proving procedure (per path)

Vars: $c 1, c 2, x, r_{1-6}$

	Sym. repr.	$r_{1}=x+3$ B6
	$r_{3}=r_{1}$	
	$r_{4}=r_{3}-1$	
	Path cond.	$r_{6}=r_{4}$
$c_{1} \wedge c_{2}$		

\leadsto
Prove that $\forall c 1, c 2, x, r_{1-6}$:

$$
\begin{aligned}
& ((c 1 \wedge c 2) \wedge(\\
& \left(r_{1}=x+3\right) \\
& \left(r_{3}=r_{1}\right) \\
& \left(r_{4}=r_{3}-1\right) \\
& \left(r_{6}=r_{4}\right) \\
&)) \Rightarrow\left(r_{6}>x\right)
\end{aligned}
$$

Proving procedure (all paths)

Prove that $\forall c 1, c 2, x, r_{1-6}$:

$$
\begin{aligned}
& ((c 1 \wedge c 2) \wedge(\\
& \left(r_{1}=x+3\right) \\
& \left(r_{3}=r_{1}\right) \\
& \left(r_{4}=r_{3}-1\right) \\
& \left(r_{6}=r_{4}\right) \\
&)) \Rightarrow\left(r_{6}>x\right)
\end{aligned}
$$

Proving procedure (all paths)

$$
\begin{aligned}
& \text { Prove that } \forall c 1, c 2, x, r_{1-6}: \\
& \begin{array}{l}
((c 1 \wedge \neg c 2) \wedge(\\
\left(r_{1}=x+3\right) \\
\left(r_{3}=r_{1}\right) \\
\left(r_{5}=r_{3}-2\right) \\
\left(r_{6}=r_{5}\right) \\
)) \stackrel{\left(r_{6}>x\right)}{ }
\end{array}
\end{aligned}
$$

Proving procedure (all paths)

$$
\text { Prove that } \forall c 1, c 2, x, r_{1-6}:
$$

$$
\begin{gathered}
((\neg c 1 \wedge c 2) \wedge(\\
\left(r_{2}=x+4\right) \\
\left(r_{3}=r_{2}\right) \\
\left(r_{4}=r_{3}-1\right) \\
\left(r_{6}=r_{4}\right) \\
)) \Rightarrow\left(r_{6}>x\right)
\end{gathered}
$$

Proving procedure (all paths)

Prove that $\forall c 1, c 2, x, r_{1-6}$:

$$
\begin{aligned}
& ((\neg c 1 \wedge \neg c 2) \wedge(\\
& \left(r_{2}=x+4\right) \\
& \left(r_{3}=r_{2}\right) \\
& \left(r_{5}=r_{3}-2\right) \\
& \left(r_{6}=r_{5}\right) \\
&)) \Rightarrow\left(r_{6}>x\right)
\end{aligned}
$$

Path explosion

Path explosion

2^{2} paths

Path explosion

2^{2} paths
2^{3} paths

Path explosion

2^{2} paths
2^{3} paths
2^{k} paths

\langle End \rangle

