Module 2: Program Security (Defenses)
static and symbolic reasoning

Meng Xu (University of Waterloo)
Spring 2023
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
A significant portion of software security research is related to program analysis:

- derive properties which hold for program P (i.e., inference)
- prove that some property holds for program P (i.e., verification)
- given a program P, generate a program P' which is
 - in most ways equivalent to P
 - behaves better than P w.r.t some criteria

(i.e., transformation)
Why this topic?

A significant portion of software security research is related to program analysis:

- derive properties which hold for program P (i.e., inference)
- prove that some property holds for program P (i.e., verification)
- given a program P, generate a program P' which is
 - in most ways equivalent to P
 - behaves better than P w.r.t some criteria
(i.e., transformation)

Abstract interpretation provides a formal framework for developing program analysis tools.
Abstract interpretation in a nutshell

Acknowledgement: the illustrations in this section is borrowed from Prof. Patrick Cousot’s webpage Abstract Interpretation in a Nutshell.
The concrete semantics of a program is formalized by the set of all possible executions of this program under all possible inputs.

The concrete semantics of a program can be a close to infinite mathematical object / sequence which is impractical to enumerate.
Safety properties of a program express that no possible execution of the program, when considering all possible execution environments, can reach an erroneous state.
Testing consists in considering a subset of the possible executions.
Program analysis: bounded model checking

Bounded model checking consists in exploring the prefixes of the possible executions.
Program analysis: abstract interpretation

Abstract interpretation consists in considering an abstract semantics, that is a superset of the concrete program semantics.

The abstract semantics covers all possible cases

⇒ if the abstract semantics is safe (i.e. does not intersect the forbidden zone) then so is the concrete semantics.
Program analysis: abstract interpretation false alarm 1

False alarms caused by widening during execution.
Program analysis: abstract interpretation false alarm 2

Forbidden zone

Imprecise trajectory abstraction by intervals

False alarms caused by abstract domains.
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
Consider detecting that one branch will not be taken in:

```c
int x, y, z;  y := read(file);  x := y * y;
if x \geq 0 \text{ then } z := 1 \quad \text{ else } z := 0
```
What is abstract interpretation?

Consider detecting that one branch will not be taken in:

```plaintext
int x, y, z; y := read(file); x := y * y;
if x ≥ 0 then z := 1 else z := 0
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs – uses abstractions: signs, order of magnitude, odd/even, ...
What is abstract interpretation?

Consider detecting that one branch will not be taken in:

```plaintext
int x, y, z;  
y := read(file);  
x := y * y;
if x >= 0 then z := 1 else z := 0
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs — uses abstractions: signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of computational objects to make the problem of program dataflow analysis tractable.
What is abstract interpretation?

Abstract interpretation is a formalization of the above procedure:

- define a non-standard semantics which can approximate the meaning (or behaviour) of the program in a finite way
- expressions are computed over an approximate (abstract) domain rather than the concrete domain (i.e., meaning of operators has to be reconsidered w.r.t. this new domain)
Example: integer sign arithmetic

Consider the domain $D = \mathbb{Z}$ (integers) and the multiplication operator: $*: \mathbb{Z}^2 \to \mathbb{Z}$

We define an “abstract domain:” $D_\alpha = \{-, +\}$ and abstract multiplication: $*_\alpha : D_\alpha^2 \to D_\alpha$ defined by:

<table>
<thead>
<tr>
<th>$*_\alpha$</th>
<th>\neg</th>
<th>\neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>\neg</td>
<td>\neg</td>
<td>\neg</td>
</tr>
</tbody>
</table>
Example: integer sign arithmetic

Consider the domain $D = \mathbb{Z}$ (integers) and the multiplication operator: $*: \mathbb{Z}^2 \to \mathbb{Z}$

We define an “abstract domain:” $D_{\alpha} = \{[-], [+]\}$ and abstract multiplication: $*_{\alpha}: D_{\alpha}^2 \to D_{\alpha}$ defined by:

<table>
<thead>
<tr>
<th>$*_{\alpha}$</th>
<th>$[-]$</th>
<th>$[+]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-]$</td>
<td>$[+]$</td>
<td>$[-]$</td>
</tr>
<tr>
<td>$[+]$</td>
<td>$[-]$</td>
<td>$[+]$</td>
</tr>
</tbody>
</table>

This allows us to conclude, for example, that $y = x^2 = x * x$ is never negative.
Some observations

- The basis is that whenever we have \(z = x \times y \) then:
 - if \(x, y \in \mathbb{Z} \) are approximated by \(x_\alpha, y_\alpha \in D_\alpha \)
 - then \(z \in \mathbb{Z} \) is approximated by \(z_\alpha = x_\alpha \times_\alpha y_\alpha \)
 - Essentially, we map from an unbounded domain to a finite domain.

- It is important to formalize this notion of approximation, in order to be able to reason/prove that the analysis is correct.

- Approximate computation is generally less precise but faster (hence the tradeoff).
Example: integer sign arithmetic (refined)

Again, $D = \mathbb{Z}$ (integers)
and: $*: \mathbb{Z}^2 \to \mathbb{Z}$

We can define a more refined “abstract domain”
$D'_\alpha = \{[-], [0], [+]\}$

and the corresponding abstract multiplication: $*_{\alpha}: D'^2_\alpha \to D'_\alpha$

$$
\begin{array}{c|c|c|c}
*_{\alpha} & [-] & [0] & [+] \\
\hline
[-] & [+] & [0] & [-] \\
[0] & [0] & [0] & [0] \\
[+] & [-] & [0] & [+] \\
\end{array}
$$

This allows us to conclude, for example, that $z = y \ast (0 \ast x)$ is zero.
Example: integer sign arithmetic (refined)

Again, $D = \mathbb{Z}$ (integers)
and: $*: \mathbb{Z}^2 \to \mathbb{Z}$

We can define a more refined “abstract domain”
$D'_\alpha = \{[-], [0], [+]\}$

and the corresponding abstract multiplication: $*: D'^2_\alpha \to D'_\alpha$

<table>
<thead>
<tr>
<th>$*:\alpha$</th>
<th>$[-]$</th>
<th>[0]</th>
<th>[+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[-]$</td>
<td>[+]</td>
<td>[0]</td>
<td>[-]</td>
</tr>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>[+]</td>
<td>[+]</td>
<td>[0]</td>
<td>[+]</td>
</tr>
</tbody>
</table>

This allows us to conclude, for example, that $z = y \ast (0 \ast x)$ is zero.
More observations

- There is a **degree of freedom** in defining different abstract operators and domains.

- The minimal requirement is that they be “safe” or “correct”.

- Different “safe” definitions result in different kinds of analysis.
Example: integer sign arithmetic (with addition)

Again, $D = Z$ (integers)
and now we want to define the *addition* operator $+: Z^2 \to Z$
Example: integer sign arithmetic (with addition)

Again, $D = \mathbb{Z}$ (integers) and now we want to define the *addition* operator $+: \mathbb{Z}^2 \rightarrow \mathbb{Z}$.

We cannot use $D'_\alpha = \{[-], [0], [+]\}$ because we wouldn’t know how to represent the result of $[+] +_\alpha [-]$, (i.e., the abstract addition would not be closed).
Example: integer sign arithmetic (with addition)

Again, $D = \mathbb{Z}$ (integers) and now we want to define the *addition* operator $+: \mathbb{Z}^2 \to \mathbb{Z}$.

We cannot use $D'_\alpha = \{[\neg], [0], [+]\}$ because we wouldn’t know how to represent the result of $[+] +_\alpha [\neg]$, (i.e., the abstract addition would not be closed).

Solution: introduce a new element “⊤” in the abstract domain as an approximation of any integer.
Example: integer sign arithmetic (with addition)

New “abstract domain”: \(D'_{\alpha} = \{[-], [0], [+], \top \} \)

Abstract \(+_{\alpha} : D'^{2}_{\alpha} \rightarrow D'_{\alpha} \)

<table>
<thead>
<tr>
<th>(+_{\alpha})</th>
<th>([-])</th>
<th>([0])</th>
<th>([+])</th>
<th>(\top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([-])</td>
<td>([-])</td>
<td>([-])</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>([0])</td>
<td>([-])</td>
<td>([0])</td>
<td>([+])</td>
<td>(T)</td>
</tr>
<tr>
<td>([+])</td>
<td>(T)</td>
<td>([+])</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(\top)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

Abstract \(\ast_{\alpha} : D'^{2}_{\alpha} \rightarrow D'_{\alpha} \)

<table>
<thead>
<tr>
<th>(\ast_{\alpha})</th>
<th>([-])</th>
<th>([0])</th>
<th>([+])</th>
<th>(\top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([-])</td>
<td>([+])</td>
<td>([0])</td>
<td>(\top)</td>
<td>(\top)</td>
</tr>
<tr>
<td>([0])</td>
<td>([0])</td>
<td>([0])</td>
<td>(\top)</td>
<td>(\top)</td>
</tr>
<tr>
<td>([+])</td>
<td>(\top)</td>
<td>([-])</td>
<td>([0])</td>
<td>(\top)</td>
</tr>
<tr>
<td>(\top)</td>
<td>(\top)</td>
<td>(\top)</td>
<td>(\top)</td>
<td>(\top)</td>
</tr>
</tbody>
</table>
Example: integer sign arithmetic (with addition)

New “abstract domain”: \(D'_{\alpha} = \{[-], [0], [+], \top\} \)

Abstract \(+_{\alpha} : D^2_{\alpha} \rightarrow D'_{\alpha} \)

<table>
<thead>
<tr>
<th>(+_{\alpha})</th>
<th>[−]</th>
<th>[0]</th>
<th>[+]</th>
<th>(\top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[−]</td>
<td>[−]</td>
<td>[−]</td>
<td>(\top)</td>
<td>(\top)</td>
</tr>
<tr>
<td>[0]</td>
<td>[−]</td>
<td>[0]</td>
<td>[+]</td>
<td>(\top)</td>
</tr>
<tr>
<td>[+]</td>
<td>(\top)</td>
<td>[+]</td>
<td>[+]</td>
<td>(\top)</td>
</tr>
<tr>
<td>(\top)</td>
</tr>
</tbody>
</table>

Abstract \(\ast_{\alpha} : D^2_{\alpha} \rightarrow D'_{\alpha} \)

<table>
<thead>
<tr>
<th>(\ast_{\alpha})</th>
<th>[−]</th>
<th>[0]</th>
<th>[+]</th>
<th>(\top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[−]</td>
<td>[+]</td>
<td>[0]</td>
<td>[−]</td>
<td>(\top)</td>
</tr>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[+]</td>
<td>(\top)</td>
</tr>
<tr>
<td>[+]</td>
<td>(\top)</td>
<td>[−]</td>
<td>[0]</td>
<td>(\top)</td>
</tr>
<tr>
<td>(\top)</td>
</tr>
</tbody>
</table>

We can now reason that \(z = x^2 + y^2 \) is never negative
More observations

- In addition to the imprecision due to the coarseness of D_α, the abstract versions of the operations (dependent on D_α) may introduce further imprecision.

- Thus, the choice of abstract domain and the definition of the abstract operators are crucial.
Concerns in abstract interpretation

- **Required:**
 - Correctness – **safe approximations**: the analysis should be “conservative” and errs on the “safe side”
 - Termination – compilation should definitely terminate

 (note: not always the case in everyday program analysis tools!)

- **Desirable – “practicality”:**
 - Efficiency – in practice finite analysis time is not enough: finite *and* small is the requirement.
 - Accuracy – too many false alarms is harmful to the adoption of the analysis tool (“the boy who cried wolf”).
 - Usefulness – determines which information is worth collecting.
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
Consider the following abstract domain for $x \in \mathbb{Z}$ (integers):

$$x = [a, b]$$

where

1. a can be either a constant or $-\infty$ and
2. b can be either a constant or ∞.

Example:

\[
\begin{align*}
x & = [0, 9], \\
y & = [-1, 1]
\end{align*}
\]

Then,

\[
\begin{align*}
z & = x + 2 \times y \\
& = [0, 9] + 2 \times [-1, 1] \\
& = [-2, 11]
\end{align*}
\]

Q: Why is z an abstraction of z?
Abstract domain example: intervals

Consider the following abstract domain for $x \in \mathbb{Z}$ (integers):

$x = [a, b]$ where
- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞.

Example:

$$\{x^\# = [0, 9], y^\# = [-1, 1]\}$$

$$z = x + 2 \times y$$

$$\{z^\# = [0, 9] +^\# 2 \times^\# [-1, 1] = [-2, 11]\}$$
Abstract domain example: intervals

Consider the following abstract domain for $x \in \mathbb{Z}$ (integers):

$x = [a, b]$ where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞.

Example:

\[
\begin{align*}
&\{x^\# = [0, 9], y^\# = [-1, 1]\} \\
&z = x + 2 \times y \\
&\{z^\# = [0, 9] +^\# 2 \times^\# [-1, 1] = [-2, 11]\}
\end{align*}
\]

Q: Why $z^\#$ is an abstraction of z?
Join operator

The `join` operator \sqcap merges two or more abstract states into one abstract state.
Joining operator example

\{x\# = [0, 10]\}

if (x < 0) then
 s := -1

else if (x > 0) then
 s := 1

else
 s := 0
Joining operator example

\[\{ x^\# = [0, 10] \} \]

if (x < 0) then
\[\{ x^\# = \emptyset \} \]
\[s := -1 \]
\[\{ x^\# = \emptyset, s^\# = \emptyset \} \]
else if (x > 0) then
\[s := 1 \]
else
\[s := 0 \]
Joining operator example

\[
\{ x^# = [0, 10] \}
\]

if (x < 0) then
\[
\{ x^# = \emptyset \}
\]
\[s := -1 \]
\[
\{ x^# = \emptyset, s^# = \emptyset \}
\]
else if (x > 0) then
\[
\{ x^# = [1, 10] \}
\]
\[s := 1 \]
\[
\{ x^# = [1, 10], s^# = [1, 1] \}
\]
else
\[s := 0 \]
Joining operator example

\[\{ x^\# = [0, 10] \} \]

if \(x < 0 \) then

\[\{ x^\# = \emptyset \} \]

\[s := -1 \]

\[\{ x^\# = \emptyset, s^\# = \emptyset \} \]

else if \(x > 0 \) then

\[\{ x^\# = [1, 10] \} \]

\[s := 1 \]

\[\{ x^\# = [1, 10], s^\# = [1, 1] \} \]

else

\[\{ x^\# = [0, 0] \} \]

\[s := 0 \]

\[\{ x^\# = [0, 0], s^\# = [0, 0] \} \]
Joining operator example

\{x\# = [0, 10]\}

if \(x < 0\) then
 \{x\# = \emptyset\}
 s := -1
 \{x\# = \emptyset, s\# = \emptyset\}
else if \(x > 0\) then
 \{x\# = [1, 10]\}
 s := 1
 \{x\# = [1, 10], s\# = [1, 1]\}
else
 \{x\# = [0, 0]\}
 s := 0
 \{x\# = [0, 0], s\# = [0, 0]\}

\{x\# = \emptyset \sqcup [1, 10] \sqcup [0, 0] = [0, 10], s\# = \emptyset \sqcup [1, 1] \sqcup [0, 0] = [0, 1]\}
What about loops?

\{x^\# = \emptyset\}

x := 0

while (x < 100) {
 x := x + 2
}

Two iterations to reach fixedpoint (i.e., none of the abstract states changes).
What about loops?

\{x^\# = \emptyset\}

\textbf{x := 0}
\{x^\# = \langle \text{even} \rangle \}
\textbf{while (x < 100) \{} \\
\hspace{1cm} x := x + 2 \\
\textbf{\}}
What about loops?

\{x^\# = \emptyset\}

\begin{verbatim}
x := \emptyset
\{x^\# = \langle even\rangle\}
while (x < 100) {
 \{x^\# = \langle even\rangle\}_1
 x := x + 2
 \{x^\# = \langle even\rangle\}_1
}
\end{verbatim}

Two iterations to reach fixedpoint (i.e., none of the abstract states changes).
What about loops?

\[\{ x^\# = \emptyset \} \]

\[
x := 0
\{ x^\# = \langle \text{even} \rangle \}\]

\textbf{while} (x < 100) \{
\begin{align*}
\{ x^\# = \langle \text{even} \rangle \}_1 & \quad \{ x^\# = \langle \text{even} \rangle \sqcup \langle \text{even} \rangle = \langle \text{even} \rangle \}_2 \\
x := x + 2 & \\
\{ x^\# = \langle \text{even} \rangle \}_1
\end{align*}
\}

What about loops?

\[
\{ x^# = \emptyset \} \\
\]

\[
x := 0 \\
\{ x^# = \langle even \rangle \} \\
\while (x < 100) \\
\{ x^# = \langle even \rangle \}_1 \\
\quad \{ x^# = \langle even \rangle \land \langle even \rangle = \langle even \rangle \}_2 \\
\quad x := x + 2 \\
\quad \{ x^# = \langle even \rangle \}_1 \\
\}\ \\
\{ x^# = \langle even \rangle \} \\
\]

Two iterations to reach fixedpoint (i.e., none of the abstract states changes).
Collecting semantics

\{ x^\# = \emptyset \}

x := 0

while (x < 100) {

 x := x + 2

}
Collecting semantics

\[\{x^\# = \emptyset\}\]

\[x := 0\]
\[\{x^\# = [0, 0]\}\]

\[\text{while } (x < 100) \{\]
 \[x := x + 2\]
\[\}\]

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Q: Can we reach the fixedpoint faster?
Collecting semantics

\{ x^\# = \emptyset \}

\x := 0
\{ x^\# = [0, 0] \}
while (x < 100) {
\{ x^\# = [0, 0] \}_1
\x := x + 2
\{ x^\# = [2, 2] \}_1
}
Collecting semantics

\{ \mathit{x}^\# = \emptyset \} \]

\begin{verbatim}
x := 0
\{ \mathit{x}^\# = [0, 0]\}
while (x < 100) {
 \{ \mathit{x}^\# = [0, 0]\} _1
 \{ \mathit{x}^\# = [0, 0] \sqcup [2, 2] = [0, 2]\} _2
 x := x + 2
 \{ \mathit{x}^\# = [2, 2]\} _1
 \{ \mathit{x}^\# = [2, 2] \sqcup [2, 4] = [2, 4]\} _2
}\end{verbatim}

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Q: Can we reach the fixedpoint faster?
Collecting semantics

\{ x^\# = \emptyset \}

\begin{align*}
x := 0 \\
\{ x^\# = [0, 0] \}
\end{align*}

while (x < 100) {
\begin{align*}
\{ x^\# = [0, 0] \}_1 & \quad \{ x^\# = [0, 2] \sqcup [2, 4] = [0, 4] \}_3 \\
x := x + 2 \\
\{ x^\# = [2, 2] \}_1 & \quad \{ x^\# = [2, 4] \sqcup [2, 6] = [2, 6] \}_3
\end{align*}
}
Collecting semantics

\{x^# = \emptyset\}

\[x := 0\]
\{x^# = [0, 0]\}

while (x < 100) {
 \{x^# = [0, 0]\}_1 \{\cdots\}_4, \{\cdots\}_5, \cdots
 x := x + 2
 \{x^# = [2, 2]\}_1 \{\cdots\}_4, \{\cdots\}_5, \cdots
}

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Q: can we reach the fixedpoint faster?
Collecting semantics

\{x^\# = \emptyset\}

\begin{align*}
x &:= 0 \\
\{x^\# = [0, 0]\} \\
\text{while } (x < 100) \{ \\
\quad \{x^\# = [0, 0]\}_1 \\
\quad x &:= x + 2 \\
\quad \{x^\# = [2, 2]\}_1 \\
\} \\
\{x^\# = [0, 96] \sqcup [2, 98] = [0, 98]\}_{50} \\
\{x^\# = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50}
\end{align*}
Collecting semantics

\{x^\# = \emptyset\}

\begin{align*}
x &:= 0 \\
\{x^\# = [0, 0]\} \\
\text{while (}x < 100) \{ \\
& \quad \{x^\# = [0, 0]\}_1 \\
& \quad x := x + 2 \\
& \quad \{x^\# = [2, 2]\}_1 \\
& \}
\end{align*}

\begin{align*}
\{x^\# = [100, 100]\}
\end{align*}

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).
Collecting semantics

\{x^\# = \emptyset\}

\begin{align*}
&\text{x := 0} \\
&\{x^\# = [0, 0]\} \\
&\text{while (x < 100) \{} \\
&\quad \{x^\# = [0, 0]\}_1 \quad \{x^\# = [0, 96] \sqcup [2, 98] = [0, 98]\}_{50} \\
&\quad \text{x := x + 2} \\
&\quad \{x^\# = [2, 2]\}_1 \quad \{x^\# = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50} \\
&\text{\}} \\
&\{x^\# = [100, 100]\}
\end{align*}

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Q: can we reach the fixedpoint faster?
We compute the limit of the following sequence:

\[X_0 = \perp \]
\[X_{i+1} = X_i \triangledown F^\#(X_i) \]

where \(\triangledown \) denotes the widening operator.
Widening operator example

\{ x^# = \emptyset \}

x := 0

while (x < 100) {
 x := x + 2
}

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).
Widening operator example

\[\{ x^\# = \emptyset \} \]

\[x := 0 \]
\[\{ x^\# = [0, 0] \} \]

while (x < 100) {

 \[x := x + 2 \]

}
Widening operator example

\{x^\# = \emptyset\}

\begin{align*}
x &:= 0 \\
\{x^\# = [0, 0]\}
\end{align*}

\begin{align*}
\text{while } (x < 100) \{ \\
\{x^\# = [0, 0]\}_1 \\
x &:= x + 2 \\
\{x^\# = [2, 2]\}_1
\end{align*}
Widening operator example

\{x^\# = \emptyset\}

\begin{align*}
\& \text{x := 0} \\
\& \{x^\# = [0, 0]\} \\
\& \text{while (x < 100) } \{ \begin{align*}
\& \{x^\# = [0, 0]\}_1 \\
\& \text{x := x + 2} \\
\& \{x^\# = [2, 2]\}_1 \\
\& \{x^\# = [0, 0] \vee [2, 2] = [0, +\infty]\}_2 \\
\& \{x^\# = [2, +\infty]\}_2
\end{align*} \}
\end{align*}

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).
Widening operator example

\[
\{ \mathbf{x}^\# = \emptyset \} \\
\]

\[
\mathbf{x} := 0 \\
\{ \mathbf{x}^\# = [0,0] \} \\
\textbf{while} (\mathbf{x} < 100) \{ \\
\quad \{ \mathbf{x}^\# = [0,0] \}_1 \\
\quad \{ \mathbf{x}^\# = [0, +\infty] \triangledown [2, +\infty] = [0, +\infty] \}_3 \\
\quad \mathbf{x} := \mathbf{x} + 2 \\
\quad \{ \mathbf{x}^\# = [2,2] \}_1 \\
\quad \{ \mathbf{x}^\# = [2, +\infty] \}_3 \\
\} \\
\]

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).
Widening operator example

\{ x^# = \emptyset \}

\textbf{x} := 0
\{ x^# = [0, 0] \}

\textbf{while} (x < 100) \{ \\
\{ x^# = [0, 0] \}_1 \quad \{ x^# = [0, +\infty] \lor [2, +\infty] = [0, +\infty] \}_3 \\
\textbf{x} := \textbf{x} + 2 \\
\{ x^# = [2, 2] \}_1 \quad \{ x^# = [2, +\infty] \}_3 \\
\}
\{ x^# = [100, +\infty] \}

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).
We compute the limit of the following sequence:

\[X_0 = \perp \]
\[X_{i+1} = X_i \triangle F\#(X_i) \]

where \(\triangle \) denotes the narrowing operator.
Narrowing operator example

\{ x' = \emptyset \}

`x := 0`
\{ x' = [0, 0] \}

while (x < 100) {
 \{ x' = [0, +\infty] \}
 \textcolor{red}{x := x + 2}
 \{ x' = [2, +\infty] \}
}
\{ x' = [100, 101] \}
Narrowing operator example

\{x^\# = \emptyset\}

\[x := 0\]
\{x^\# = [0, 0]\}

while \(x < 100\) {
\{x^\# = [0, +\infty]\} \quad \{x^\# = [0, +\infty] \triangle [0, 99] = [0, 99]\}_1
\[x := x + 2\]
\{x^\# = [2, +\infty]\} \quad \{x^\# = [2, 101]\}_1
\}
\{x^\# = [100, 101]\}

2 iterations to reach fixedpoint (i.e., none of the abstract states changes).
Narrowing operator example

\[
\{x^# = \emptyset\}
\]

\[
x := 0
\]

\[
\{x^# = [0, 0]\}
\]

while (x < 100) {

\[
\{x^# = [0, +\infty]\}
\]

\[
x := x + 2
\]

\[
\{x^# = [2, +\infty]\}
\]

\[
\{x^# = [2, 101]\}
\]

\[
\{x^# = [2, 101] \triangle [0, 99] = [0, 99]\}_2
\]

\[
2
\]

\[
\{x^# = [100, 101]\}
\]

2 iterations to reach fixedpoint (i.e., none of the abstract states changes).

32 / 45
Narrowing operator example

\{x^\# = \emptyset\}

\begin{align*}
 & x := 0 \\
 & \{x^\# = [0, 0]\} \\
 \text{while (x < 100) \{} & \{x^\# = [0, +\infty]\} \\
 & \quad \{x^\# = [2, 101] \triangleq [0, 99] = [0, 99]\}_2 \\
 & \quad x := x + 2 \\
 & \quad \{x^\# = [2, +\infty]\} \\
 & \quad \{x^\# = [2, 101]\}_2 \\
\end{align*}

\{x^\# = [100, 101]\}

2 iterations to reach fixedpoint (i.e., none of the abstract states changes).
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
Q: Why research on symbolic execution when we have unit testing or even fuzzing?
Motivation

Q: Why research on symbolic execution when we have unit testing or even fuzzing?

A: A more complete exploration of program states.
Illustration

1 fn foo(x: u64): u64 {
2 if (x * 3 == 42) {
3 some_hidden_bug();
4 }
5 if (x * 5 == 42) {
6 some_hidden_bug();
7 }
8 return 2 * x;
9 }
Unit Test

```rust
fn foo(x: u64): u64 {
    if (x * 3 == 42) {
        some_hidden_bug();
    }
    if (x * 5 == 42) {
        some_hidden_bug();
    }
    return 2 * x;
}
```

1. foo(0);
2. foo(1);
Illustration

```
fn foo(x: u64): u64 {
    if (x * 3 == 42) {
        some_hidden_bug();
    }
    if (x * 5 == 42) {
        some_hidden_bug();
    }
    return 2 * x;
}
```

Unit Test
foo(0);
foo(1);

Fuzzing
foo(0);
foo(1);
foo(12);
foo(78);
......
foo(9,223,372,036,854,775,808);
Illustration

```rust
fn foo(x: u64): u64 {
    if (x * 3 == 42) {
        some_hidden_bug();
    }
    if (x * 5 == 42) {
        some_hidden_bug();
    }
    return 2 * x;
}
```

Unit Test

- `foo(0);`
- `foo(1);`

Fuzzing

- `foo(0);`
- `foo(1);`
- `foo(12);`
- `foo(78);`
- `......`
- `foo(9,223,372,036,854,775,808);`

Symbolic execution

- `foo(x)`
 - aborts when `x = 14`
 - returns `2 * x` otherwise
Satisfiability Modulo Theories (SMT)

Definition: A procedure that decides whether a mathematical formula is satisfiable.

Example:
- $3x = 42$
- $2x \geq 2^{64}$
- $5x = 42$
Satisfiability Modulo Theories (SMT)

Definition: A procedure that decides whether a mathematical formula is satisfiable.

Example:
- $3x = 42 \rightarrow$ satisfiable with $x = 14$
- $2x \geq 2^{64} \rightarrow$ satisfiable with $x \geq 2^{63}$
- $5x = 42 \rightarrow$ unsatisfiable, cannot find an x

Ask two question whenever you see a symbolic execution work:
- How does it convert code into mathematical formula?
- What does it try to solve for?
Program modeling desiderata

- Control-flow graph exploration
- Loop handling
- Memory modeling
- Concurrency
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
An example of a pure function

```rust
fn foo(
    c1: bool, c2: bool,
    x: u64
) -> u64 {
    let r = if (c1) {
        x + 3
    } else {
        x + 4
    };

    let r = if (c2) {
        r - 1
    } else {
        r - 2
    };

    r
}

spec foo {
    ensures r > x;
}
```
An example of a pure function

```rust
fn foo(
c1: bool, c2: bool,
x: u64
) -> u64 {
let r = if (c1) {
x + 3
} else {
x + 4
};
let r = if (c2) {
r - 1
} else {
r - 2
};
r
spec foo {
ensures r > x;
}
```
The example in SSA form

1 fn foo(
2 c1: bool, c2: bool,
3 x: u64
4) -> u64 {
5 let r = if (c1) {
6 x + 3
7 } else {
8 x + 4
9 };
10
11 let r = if (c2) {
12 r - 1
13 } else {
14 r - 2
15 };
16
17 r
18 }
19
20 spec foo {
21 ensures r > x;
22 }
Path-based exploration

Vars: c1, c2, x, r1–6

<table>
<thead>
<tr>
<th>B0</th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∅</td>
<td>True</td>
</tr>
</tbody>
</table>

```
[Start]

[B0]

[B1]
\( r_1 = x + 3 \)

[B2]
\( r_2 = x + 4 \)

[B3]
\( r_3 = \phi(r_1, r_2) \)

[B4]
\( r_4 = r_3 - 1 \)

[B5]
\( r_5 = r_3 - 2 \)

[B6]
\( r_6 = \phi(r_4, r_5) \)
assert \( r_6 > x \)
```
Path-based exploration

Vars: c_1, c_2, x, r_{1-6}

<table>
<thead>
<tr>
<th></th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>\emptyset</td>
<td>True</td>
</tr>
<tr>
<td>B1</td>
<td>$r_1 = x + 3$</td>
<td>c_1</td>
</tr>
</tbody>
</table>

```
// B0
Start

// B1
r_1 = x + 3

// B2
r_2 = x + 4

// B3
r_3 = \phi(r_1, r_2)

// B4
r_4 = r_3 - 1

// B5
r_5 = r_3 - 2

// B6
r_6 = \phi(r_4, r_5)
assert r_6 > x
```
Path-based exploration

Vars: $c_1, c_2, x, r_1, r_2, r_3, r_4, r_5, r_6$

<table>
<thead>
<tr>
<th>B0</th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\emptyset</td>
<td>True</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B1</th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_1 = x + 3$</td>
<td>c_1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B3</th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_1 = x + 3$</td>
<td>$r_3 = r_1$</td>
<td>c_1</td>
</tr>
</tbody>
</table>

- **[B0]**
 - Start
 - c_1

- **[B1]**
 - $r_1 = x + 3$
 - c_1

- **[B2]**
 - $r_2 = x + 4$
 - c_2

- **[B3]**
 - $r_3 = \phi(r_1, r_2)$
 - c_2

- **[B4]**
 - $r_4 = r_3 - 1$
 - c_1

- **[B5]**
 - $r_5 = r_3 - 2$
 - c_2

- **[B6]**
 - $r_6 = \phi(r_4, r_5)$
 - Assert $r_6 > x$
Path-based exploration

Vars: c_1, c_2, x, r_{1-6}

<table>
<thead>
<tr>
<th></th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>\emptyset</td>
<td>True</td>
</tr>
<tr>
<td>B1</td>
<td>$r_1 = x + 3$, c_1</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>$r_1 = x + 3$, $r_3 = r_1$, c_1</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>$r_1 = x + 3$, $r_3 = r_1$, $r_4 = r_3 - 1$, $c_1 \land c_2$</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **Start**
 - $r_1 = x + 3$

B1

- $r_2 = x + 4$

B2

- $r_3 = \phi(r_1, r_2)$

B3

- $r_4 = r_3 - 1$

B4

- $r_5 = r_3 - 2$

B5

- $r_6 = \phi(r_4, r_5)$
 - assert $r_6 > x$
Path-based exploration

Vars: $c_1, c_2, x, r_1\ldots r_6$

<table>
<thead>
<tr>
<th></th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>\emptyset</td>
<td>True</td>
</tr>
<tr>
<td>B1</td>
<td>$r_1 = x + 3$</td>
<td>c_1</td>
</tr>
<tr>
<td>B3</td>
<td>$r_1 = x + 3$</td>
<td>$r_3 = r_1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c_1</td>
</tr>
<tr>
<td>B4</td>
<td>$r_1 = x + 3$</td>
<td>$r_3 = r_1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r_4 = r_3 - 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c_1 \land c_2$</td>
</tr>
<tr>
<td>B6</td>
<td>$r_1 = x + 3$</td>
<td>$r_3 = r_1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r_4 = r_3 - 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r_6 = r_4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c_1 \land c_2$</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{[B0]} & : \text{Start} \\
\text{[B1]} & : r_1 = x + 3 \\
\text{[B2]} & : r_2 = x + 4 \\
\text{[B3]} & : r_3 = \phi(r_1, r_2) \\
\text{[B4]} & : r_4 = r_3 - 1 \\
\text{[B5]} & : r_5 = r_3 - 2 \\
\text{[B6]} & : r_6 = \phi(r_4, r_5) \\
\end{align*}
\]

assert $r_6 > x$
Proving procedure (per path)

Vars: c_1, c_2, x, r_{1-6}

| B6 | Sym. repr. | $r_1 = x + 3$
| | | $r_3 = r_1$
| | | $r_4 = r_3 - 1$
| | | $r_6 = r_4$
| Path cond. | $c_1 \land c_2$

\Rightarrow

[Start]

- [B0]: $r_1 = x + 3$
- [B1]: $r_2 = x + 4$
- [B2]: $r_3 = \phi(r_1, r_2)$
- [B3]: $r_4 = r_3 - 1$
- [B4]: $r_5 = r_3 - 2$
- [B5]: $r_6 = \phi(r_4, r_5)$

assert $r_6 > x$
Proving procedure (per path)

Vars: c_1, c_2, x, r_{1-6}

<table>
<thead>
<tr>
<th>B6</th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$r_1 = x + 3$</td>
<td>$c_1 \land c_2$</td>
</tr>
<tr>
<td></td>
<td>$r_3 = r_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$r_4 = r_3 - 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$r_6 = r_4$</td>
<td></td>
</tr>
</tbody>
</table>

$\sim\Rightarrow$

Prove that $\forall c_1, c_2, x, r_{1-6}$:

$((c_1 \land c_2) \land (r_1 = x + 3) \land (r_3 = r_1) \land (r_4 = r_3 - 1) \land (r_6 = r_4)) \Rightarrow (r_6 > x)$
Proving procedure (all paths)

Prove that
\[
\forall c_1, c_2, x, r_{1-6}:

((c_1 \land c_2) \land (r_1 = x + 3) \\
(r_3 = r_1) \\
(r_4 = r_3 - 1) \\
(r_6 = r_4)) \Rightarrow (r_6 > x)
\]
Prove that

\[\forall c_1, c_2, x, r_1 r_6 : \]

\[((c_1 \land \neg c_2) \land (r_1 = x + 3) \land (r_3 = r_1) \land (r_5 = r_3 - 2) \land (r_6 = r_5)) \Rightarrow (r_6 > x) \]
Prove that
\[\forall c_1, c_2, x, r_{1-6}: \]
\[((\neg c_1 \land c_2) \land (\]
\[(r_2 = x + 4) \]
\[(r_3 = r_2) \]
\[(r_4 = r_3 - 1) \]
\[(r_6 = r_4) \]
\[)) \Rightarrow (r_6 > x) \]
Prove that
\[\forall c_1, c_2, x, r_1 \ldots r_6 : \]
\[((\neg c_1 \land \neg c_2) \land (r_2 = x + 4) \land (r_3 = r_2) \land (r_5 = r_3 - 2) \land (r_6 = r_5)) \Rightarrow (r_6 > x) \]

```
[B0]
Start

[B1]
r_1 = x + 3

[B2]
r_2 = x + 4

[B3]
r_3 = \phi(r_1, r_2)

[B4]
r_4 = r_3 - 1

[B5]
r_5 = r_3 - 2

[B6]
r_6 = \phi(r_4, r_5)
assert r_6 > x
```
Path explosion
Path explosion

2^2 paths
Path explosion

2^2 paths

2^3 paths
Path explosion

2^2 paths

2^3 paths

\[\ldots \]

2^k paths
End