
CS 489 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module 2: Program Security (Defenses)
static and symbolic reasoning

Spring 2023



Intro Abstraction Fixedpoint Intro Convention

Outline

1 Introduction to abstraction interpretation

2 Example and intuition about abstract domains

3 Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution

5 Conventional symbolic execution

2 / 45



Intro Abstraction Fixedpoint Intro Convention

Why this topic?

A significant portion of software security research is related to
program analysis:

derive properties which hold for program P (i.e., inference)

prove that some property holds for program P (i.e., verification)

given a program P, generate a program P ′ which is

- in most ways equivalent to P
- behaves better than P w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing
program analysis tools.

3 / 45



Intro Abstraction Fixedpoint Intro Convention

Abstract interpretation in a nutshell

Acknowledgement: the illustrations in this section is borrowed
from Prof. Patrick Cousot’s webpage Abstract Interpretation in a
Nutshell.

4 / 45

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html


Intro Abstraction Fixedpoint Intro Convention

Program analysis: concrete semantics

The concrete semantics of a program is formalized by the set of all
possible executions of this program under all possible inputs.

The concrete semantics of a program can be a close to infinite
mathematical object / sequence which is impractical to enumerate.

5 / 45



Intro Abstraction Fixedpoint Intro Convention

Program analysis: safety properties

Safety properties of a program express that no possible execution of
the program, when considering all possible execution environments,
can reach an erroneous state.

6 / 45



Intro Abstraction Fixedpoint Intro Convention

Program analysis: testing

Testing consists in considering a subset of the possible executions.

7 / 45



Intro Abstraction Fixedpoint Intro Convention

Program analysis: bounded model checking

Bounded model checking consists in exploring the prefixes of the
possible executions.

8 / 45



Intro Abstraction Fixedpoint Intro Convention

Program analysis: abstract interpretation

Abstract interpretation consists in considering an abstract semantics,
that is a superset of the concrete program semantics.

The abstract semantics covers all possible cases
=⇒ if the abstract semantics is safe (i.e. does not intersect the
forbidden zone) then so is the concrete semantics. 9 / 45



Intro Abstraction Fixedpoint Intro Convention

Program analysis: abstract interpretation false alarm 1

False alarms caused by widening during execution.

10 / 45



Intro Abstraction Fixedpoint Intro Convention

Program analysis: abstract interpretation false alarm 2

False alarms caused by abstract domains.

11 / 45



Intro Abstraction Fixedpoint Intro Convention

Outline

1 Introduction to abstraction interpretation

2 Example and intuition about abstract domains

3 Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution

5 Conventional symbolic execution

12 / 45



Intro Abstraction Fixedpoint Intro Convention

What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x , y , z ; y := read(file); x := y ∗ y ;
if x ≥ 0 then z := 1 else z := 0

Exhaustive analysis in the standard domain: non-termination

Human reasoning about programs – uses abstractions:
signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of
computational objects to make the problem of program dataflow
analysis tractable.

13 / 45



Intro Abstraction Fixedpoint Intro Convention

What is abstract interpretation?

Abstract interpretation is a formalization of the above procedure:

define a non-standard semantics which can approximate the
meaning (or behaviour) of the program in a finite way

expressions are computed over an approximate (abstract) domain
rather than the concrete domain (i.e., meaning of operators has
to be reconsidered w.r.t. this new domain)

14 / 45



Intro Abstraction Fixedpoint Intro Convention

Example: integer sign arithmetic

Consider the domain D = Z (integers)
and the multiplication operator: ∗ : Z 2 → Z

We define an “abstract domain:” Dα = {[−], [+]}
and abstract multiplication: ∗α : D2

α → Dα defined by:

∗α [−] [+]

[−] [+] [−]
[+] [−] [+]

This allows us to conclude, for example, that y = x2 = x ∗ x is
never negative.

15 / 45



Intro Abstraction Fixedpoint Intro Convention

Some observations

The basis is that whenever we have z = x ∗ y then:
if x , y ∈ Z are approximated by xα, yα ∈ Dα

then z ∈ Z is approximated by zα = xα ∗α yα
- Essentially, we map from an unbounded domain to a finite domain.

It is important to formalize this notion of approximation,
in order to be able to reason/prove that the analysis is correct.

Approximate computation is generally less precise but faster
(hence the tradeoff).

16 / 45



Intro Abstraction Fixedpoint Intro Convention

Example: integer sign arithmetic (refined)

Again, D = Z (integers)
and: ∗ : Z 2 → Z

We can define a more refined “abstract domain”
D ′
α = {[−], [0], [+]}

and the corresponding abstract multiplication: ∗α : D ′2
α → D ′

α

∗α [−] [0] [+]

[−] [+] [0] [−]
[0] [0] [0] [0]
[+] [−] [0] [+]

This allows us to conclude, for example, that z = y ∗ (0 ∗ x) is zero.

17 / 45



Intro Abstraction Fixedpoint Intro Convention

More observations

There is a degree of freedom in defining different abstract
operators and domains.

The minimal requirement is that they be “safe” or “correct”.

Different “safe” definitions result in different kinds of analysis.

18 / 45



Intro Abstraction Fixedpoint Intro Convention

Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z 2 → Z

We cannot use D ′
α = {[−], [0], [+]} because we wouldn’t know how

to represent the result of [+] +α [−], (i.e., the abstract addition
would not be closed).

Solution: introduce a new element “⊤” in the abstract domain as
an approximation of any integer.

19 / 45



Intro Abstraction Fixedpoint Intro Convention

Example: integer sign arithmetic (with addition)

New “abstract domain”: D ′
α = {[−], [0], [+],⊤}

Abstract +α : D ′2
α → D ′

α

+α [−] [0] [+] ⊤
[−] [−] [−] ⊤ ⊤
[0] [−] [0] [+] ⊤
[+] ⊤ [+] [+] ⊤
⊤ ⊤ ⊤ ⊤ ⊤

Abstract ∗α : D ′2
α → D ′

α

∗α [−] [0] [+] ⊤
[−] [+] [0] [−] ⊤
[0] [0] [0] [0] [0]
[+] [−] [0] [+] ⊤
⊤ ⊤ [0] ⊤ ⊤

We can now reason that z = x2 + y2 is never negative

20 / 45



Intro Abstraction Fixedpoint Intro Convention

More observations

In addition to the imprecision due to the coarseness of Dα, the
abstract versions of the operations (dependent on Dα) may
introduce further imprecision

Thus, the choice of abstract domain and the definition of the
abstract operators are crucial.

21 / 45



Intro Abstraction Fixedpoint Intro Convention

Concerns in abstract interpretation

Required:

- Correctness – safe approximations: the analysis should be
“conservative” and errs on the “safe side”

- Termination – compilation should definitely terminate

(note: not always the case in everyday program analysis tools!)

Desirable – “practicality”:

- Efficiency – in practice finite analysis time is not enough: finite and
small is the requirement.
Accuracy – too many false alarms is harmful to the adoption of the
analysis tool (“the boy who cried wolf”).
Usefulness – determines which information is worth collecting.

22 / 45



Intro Abstraction Fixedpoint Intro Convention

Outline

1 Introduction to abstraction interpretation

2 Example and intuition about abstract domains

3 Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution

5 Conventional symbolic execution

23 / 45



Intro Abstraction Fixedpoint Intro Convention

Abstract domain example: intervals

Consider the following abstract domain for x ∈ Z (integers):
x = [a, b] where

- a can be either a constant or −∞ and

- b can be either a constant or ∞.

Example:

{x# = [0, 9], y# = [−1, 1]}
z = x + 2 * y

{z# = [0, 9] +# 2×# [−1, 1] = [−2, 11]}

Q: Why z# is an abstraction of z?

24 / 45



Intro Abstraction Fixedpoint Intro Convention

Join operator

The join operator ⊔ merges two or more abstract states into one
abstract state.

25 / 45



Intro Abstraction Fixedpoint Intro Convention

Joining operator example

{x# = [0, 10]}

if (x < 0) then

{x# = ∅}
s := -1

{x# = ∅, s# = ∅}
else if (x > 0) then

{x# = [1, 10]}
s := 1

{x# = [1, 10], s# = [1, 1]}
else

{x# = [0, 0]}
s := 0

{x# = [0, 0], s# = [0, 0]}

{x# = ∅ ⊔ [1, 10] ⊔ [0, 0] = [0, 10], s# = ∅ ⊔ [1, 1] ⊔ [0, 0] = [0, 1]}
26 / 45



Intro Abstraction Fixedpoint Intro Convention

What about loops?

{x# = ∅}

x := 0

{x# = ⟨even⟩}
while (x < 100) {

{x# = ⟨even⟩}1 {x# = ⟨even⟩ ⊔ ⟨even⟩ = ⟨even⟩}2
x := x + 2

{x# = ⟨even⟩}1
}
{x# = ⟨even⟩}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).

27 / 45



Intro Abstraction Fixedpoint Intro Convention

Collecting semantics

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0, 0] ⊔ [2, 2] = [0, 2]}2
{x# = [0, 2] ⊔ [2, 4] = [0, 4]}3 {· · · }4, {· · · }5, · · ·
{x# = [0, 96] ⊔ [2, 98] = [0, 98]}50
x := x + 2

{x# = [2, 2]}1 {x# = [2, 2] ⊔ [2, 4] = [2, 4]}2
{x# = [2, 4] ⊔ [2, 6] = [2, 6]}3 {· · · }4, {· · · }5, · · ·
{x# = [2, 98] ⊔ [2, 100] = [2, 100]}50
}
{x# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

Q: can we reach the fixedpoint faster?

28 / 45



Intro Abstraction Fixedpoint Intro Convention

Widening operator

We compute the limit of the following sequence:

X0 =⊥

Xi+1 = Xi▽F
#(Xi )

where ▽ denotes the widening operator.

29 / 45



Intro Abstraction Fixedpoint Intro Convention

Widening operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0, 0]}1 {x# = [0, 0]▽[2, 2] = [0,+∞]}2
{x# = [0,+∞]▽[2,+∞] = [0,+∞]}3
x := x + 2

{x# = [2, 2]}1 {x# = [2,+∞]}2 {x# = [2,+∞]}3
}
{x# = [100,+∞]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

30 / 45



Intro Abstraction Fixedpoint Intro Convention

Narrowing operator

We compute the limit of the following sequence:

X0 =⊥

Xi+1 = Xi△F#(Xi )

where △ denotes the narrowing operator.

31 / 45



Intro Abstraction Fixedpoint Intro Convention

Narrowing operator example

{x# = ∅}

x := 0

{x# = [0, 0]}
while (x < 100) {

{x# = [0,+∞]} {x# = [0,+∞]△[0, 99] = [0, 99]}1
{x# = [2, 101]△[0, 99] = [0, 99]}2
x := x + 2

{x# = [2,+∞]} {x# = [2, 101]}1 {x# = [2, 101]}2
}
{x# = [100, 101]}

2 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

32 / 45



Intro Abstraction Fixedpoint Intro Convention

Outline

1 Introduction to abstraction interpretation

2 Example and intuition about abstract domains

3 Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution

5 Conventional symbolic execution

33 / 45



Intro Abstraction Fixedpoint Intro Convention

Motivation

Q: Why research on symbolic execution when we have unit testing
or even fuzzing?

A: A more complete exploration of program states.

34 / 45



Intro Abstraction Fixedpoint Intro Convention

Illustration

1 fn foo(x: u64): u64 {
2 if (x * 3 == 42) {
3 some_hidden_bug();

4 }

5 if (x * 5 == 42) {
6 some_hidden_bug();

7 }

8 return 2 * x;
9 }

Unit Test
foo(0);

foo(1);

Fuzzing
foo(0);

foo(1);

foo(12);

foo(78);

......
foo(9,223,372,036,854,775,808);

Symbolic execution
foo(x)

aborts when x = 14

returns 2x otherwise

35 / 45



Intro Abstraction Fixedpoint Intro Convention

Satisfiability Modulo Theories (SMT)

Definition: A procedure that decides whether a mathematical
formula is satisfiable.

Example:

3x = 42 −→ satisfiable with x = 14

2x ≥ 264 −→ satisfiable with x ≥ 263

5x = 42 −→ unsatisfiable, cannot find an x

Ask two question whenever you see a symbolic execution work:

How does it convert code into mathematical formula?

What does it try to solve for?

36 / 45



Intro Abstraction Fixedpoint Intro Convention

Program modeling desiderata

Control-flow graph exploration

Loop handling

Memory modeling

Concurrency

37 / 45



Intro Abstraction Fixedpoint Intro Convention

Outline

1 Introduction to abstraction interpretation

2 Example and intuition about abstract domains

3 Reaching fixedpoint: joining, widening, and narrowing

4 Introduction to symbolic execution

5 Conventional symbolic execution

38 / 45



Intro Abstraction Fixedpoint Intro Convention

An example of a pure function

1 fn foo(
2 c1: bool, c2: bool,
3 x: u64
4 ) -> u64 {
5 let r = if (c1) {
6 x + 3

7 } else {
8 x + 4

9 };

10

11 let r = if (c2) {
12 r - 1

13 } else {
14 r - 2

15 };

16

17 r

18 }

19 spec foo {

20 ensures r > x;

21 }

[B0]

Start

[B1]

r = x + 3

[B2]

r = x + 4

[B3]

-

[B4]

r = r - 1

[B5]

r = r - 2

[B6]

assert r > x

c1 ¬c1

c2 ¬c2

39 / 45



Intro Abstraction Fixedpoint Intro Convention

The example in SSA form

1 fn foo(
2 c1: bool, c2: bool,
3 x: u64
4 ) -> u64 {
5 let r = if (c1) {
6 x + 3

7 } else {
8 x + 4

9 };

10

11 let r = if (c2) {
12 r - 1

13 } else {
14 r - 2

15 };

16

17 r

18 }

19 spec foo {

20 ensures r > x;

21 }

[B0]

Start

[B1]

r1 = x + 3

[B2]

r2 = x + 4

[B3]

r3 = ϕ(r1, r2)

[B4]

r4 = r3 − 1

[B5]

r5 = r3 − 2

[B6]

r6 = ϕ(r4, r5)
assert r6 > x

c1 ¬c1

c2 ¬c2

40 / 45



Intro Abstraction Fixedpoint Intro Convention

Path-based exploration

Vars: c1, c2, x , r1−6

B0
Sym. repr. ∅
Path cond. True

B1
Sym. repr. r1 = x + 3
Path cond. c1

B3
Sym. repr. r1 = x + 3

r3 = r1
Path cond. c1

B4

Sym. repr. r1 = x + 3
r3 = r1
r4 = r3 − 1

Path cond. c1∧c2

B6

Sym. repr. r1 = x + 3
r3 = r1
r4 = r3 − 1
r6 = r4

Path cond. c1 ∧ c2

[B0]

Start

[B1]

r1 = x + 3

[B2]

r2 = x + 4

[B3]

r3 = ϕ(r1, r2)

[B4]

r4 = r3 − 1

[B5]

r5 = r3 − 2

[B6]

r6 = ϕ(r4, r5)
assert r6 > x

c1 ¬c1

c2 ¬c2

41 / 45



Intro Abstraction Fixedpoint Intro Convention

Proving procedure (per path)

Vars: c1, c2, x , r1−6

B6

Sym. repr. r1 = x + 3
r3 = r1
r4 = r3 − 1
r6 = r4

Path cond. c1 ∧ c2

⇝

Prove that ∀ c1, c2, x , r1−6:

((c1 ∧ c2) ∧ (
(r1 = x + 3)
(r3 = r1)
(r4 = r3 − 1)
(r6 = r4)

)) ⇒ (r6 > x)

[B0]

Start

[B1]

r1 = x + 3

[B2]

r2 = x + 4

[B3]

r3 = ϕ(r1, r2)

[B4]

r4 = r3 − 1

[B5]

r5 = r3 − 2

[B6]

r6 = ϕ(r4, r5)
assert r6 > x

c1 ¬c1

c2 ¬c2

42 / 45



Intro Abstraction Fixedpoint Intro Convention

Proving procedure (all paths)

Prove that
∀ c1, c2, x , r1−6:

((c1 ∧ c2) ∧ (
(r1 = x + 3)
(r3 = r1)
(r4 = r3 − 1)
(r6 = r4)

)) ⇒ (r6 > x)

((c1 ∧ ¬c2) ∧ (
(r1 = x + 3)
(r3 = r1)
(r5 = r3 − 2)
(r6 = r5)

)) ⇒ (r6 > x)

((¬c1 ∧ c2) ∧ (
(r2 = x + 4)
(r3 = r2)
(r4 = r3 − 1)
(r6 = r4)

)) ⇒ (r6 > x)

((¬c1 ∧ ¬c2) ∧ (
(r2 = x + 4)
(r3 = r2)
(r5 = r3 − 2)
(r6 = r5)

)) ⇒ (r6 > x)

[B0]

Start

[B1]

r1 = x + 3

[B2]

r2 = x + 4

[B3]

r3 = ϕ(r1, r2)

[B4]

r4 = r3 − 1

[B5]

r5 = r3 − 2

[B6]

r6 = ϕ(r4, r5)
assert r6 > x

c1 ¬c1

c2 ¬c2

43 / 45



Intro Abstraction Fixedpoint Intro Convention

Path explosion

22 paths

23 paths

· · ·

2k paths

[B0]

[B1] [B2]

[B3]

[B4] [B5]

[B6]

[B7] [B8]

[B9]

[· · · ]

[B(3k)]

[B(3k+1)] [B(3k+2)]

[B(3k+3)]

44 / 45



Intro Abstraction Fixedpoint Intro Convention

⟨ End ⟩

45 / 45


	static and symbolic reasoning
	Introduction to abstraction interpretation
	Example and intuition about abstract domains
	Reaching fixedpoint: joining, widening, and narrowing
	Introduction to symbolic execution
	Conventional symbolic execution


