CS 489 / 698: Software and Systems Security

Module 2: Program Security (Defenses)
static and symbolic reasoning

Meng Xu (University of Waterloo)
Spring 2023

Intro
0000000000

Outline

@ Introduction to abstraction interpretation

2/45

Intro
0e00000000

Why this topic?

A significant portion of software security research is related to
program analysis:

@ derive properties which hold for program P (i.e., inference)

@ prove that some property holds for program P (i.e., verification)
@ given a program P, generate a program P’ which is

- in most ways equivalent to P

- behaves better than P w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing
program analysis tools.

3/45

Intro
[e]e] lelelelelele]e]

Abstract interpretation in a nutshell

Acknowledgement: the illustrations in this section is borrowed
from Prof. Patrick Cousot's webpage Abstract Interpretation in a
Nutshell.

4/45

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

Intro
[e]e]e] lelelelele]e]

Program analysis: concrete semantics

Possible
trajectories

-
-

The concrete semantics of a program is formalized by the set of all
possible executions of this program under all possible inputs.

The concrete semantics of a program can be a close to infinite
mathematical object / sequence which is impractical to enumerate.

5/45

Intro
[e]e]e]e] Telelele]e]

Program analysis: safety properties

Forbidden zone

Possible
trajectories

Safety properties of a program express that no possible execution of
the program, when considering all possible execution environments,
can reach an erroneous state.

6/45

Intro

[e]e]e]e]e] lelelele)

Program analysis: testing

Forbidden zone Error Il

Possible
trajectories

Test of a few trajectories

Testing consists in considering a subset of the possible executions.

7/45

Intro

0000008000

Program analysis: bounded model checking

Forbidden zone — Error !

e . el o MU Possible
A ¥ i \....->*... [trajectories
__/// . -~ .7;:.. \ ",)":V

=y R e i i

Bounded model-checking of trajectory prefixes

Bounded model checking consists in exploring the prefixes of the
possible executions.

8/45

Intro

0000000800

Program analysis: abstract interpretation

Forbidden zone

Possible
trajectories

Abstraction of the trajectories

Abstract interpretation consists in considering an abstract semantics,
that is a superset of the concrete program semantics.

The abstract semantics covers all possible cases
= if the abstract semantics is safe (i.e. does not intersect the
forbidden zone) then so is the concrete semantics. 9/45

Intro

0000000080

Program analysis: abstract interpretation false alarm 1

Forbidden zone False alarm
! Possible
‘ D trajectories
[

Imprecise trajectory abstraction

False alarms caused by widening during execution.

10/45

Intro

000000000 e

Program analysis: abstract interpretation false alarm 2

Forbidden zone

False alarms _ _
T Possible

y trajectories

Imprecise trajectory abstraction by intervals

False alarms caused by abstract domains.

11/45

Abstraction
00000000000

Outline

© Example and intuition about abstract domains

12/45

Abstraction
0e000000000

What is abstract interpretation?

Consider detecting that one branch will not be taken in:
int x,y,z, y:=read(file); x:=yxy;
if x > 0Othenz:=1lelsez:=0

@ Exhaustive analysis in the standard domain: non-termination

@ Human reasoning about programs — uses abstractions:
signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of
computational objects to make the problem of program dataflow
analysis tractable.

13/45

Abstraction
00800000000

What is abstract interpretation?

Abstract interpretation is a formalization of the above procedure:

@ define a non-standard semantics which can approximate the
meaning (or behaviour) of the program in a finite way

@ expressions are computed over an approximate (abstract) domain
rather than the concrete domain (i.e., meaning of operators has
to be reconsidered w.r.t. this new domain)

14 /45

Abstraction
000e0000000

Example: integer sign arithmetic

Consider the domain D = Z (integers)
and the multiplication operator: x : Z%2 — Z

We define an “abstract domain:" D, = {[-], [+]}
and abstract multiplication: *,, : D2 — D, defined by:

*o | [-] | [+]
[[+ | [-]
[H =[]

2

This allows us to conclude, for example, that y = x* = x * x is

never negative.

15/45

Abstraction
0000e000000

Some observations

@ The basis is that whenever we have z = x x y then:

if x,y € Z are approximated by xu, Vo € Dq
then z € Z is approximated by z, = X *q Ya

- Essentially, we map from an unbounded domain to a finite domain.

@ It is important to formalize this notion of approximation,
in order to be able to reason/prove that the analysis is correct.

@ Approximate computation is generally less precise but faster
(hence the tradeoff).

16 /45

Abstraction
00000800000

Example: integer sign arithmetic (refined)

Again, D = Z (integers)
and: x: 2% - Z

We can define a more refined “abstract domain”

. e 2
and the corresponding abstract multiplication: %, : D';, — D,

*o | [=]] [0] | [+]
(=1 o] [-]
[0] | [0] | [0] | [0]
(H =10] [+]

This allows us to conclude, for example, that z = y * (0 % x) is zero.

17/45

Abstraction
00000080000

More observations

@ There is a degree of freedom in defining different abstract
operators and domains.

@ The minimal requirement is that they be “safe” or “correct”.

o Different “safe” definitions result in different kinds of analysis.

18/45

Abstraction
00000008000

Example: integer sign arithmetic (with addition)

Again, D = Z (integers)
and now we want to define the addition operator + : Z? — Z

We cannot use D!, = {[—],[0],[+]} because we wouldn't know how
to represent the result of [+] +4 [—], (i-e., the abstract addition

would not be closed).

Solution: introduce a new element “T" in the abstract domain as
an approximation of any integer.

19/45

Example: integer sign arithmetic (with addition)

New “abstract domain”:

Abstract +,, : D’i — D',

D'o ={[=]. 0], [+], T}

to | [F]][0 [[+H]|T
I T T
0 | =1 [0 | [+]| T
) T [T
T T | T | T|T

We can now reason that z = x2 + y?2 is never negative
y g

Abstract *,, : D’i - D,

*o | [Z][[O] [+ | T
1o =] T
[0] | [0] | [0] | [0] | [O]
O | T
Tl Tl T|T

20/45

Abstraction
00000000080

More observations

@ In addition to the imprecision due to the coarseness of D,, the
abstract versions of the operations (dependent on D,) may
introduce further imprecision

@ Thus, the choice of abstract domain and the definition of the
abstract operators are crucial.

21/45

Abstraction
0000000000 e

Concerns in abstract interpretation

@ Required:

- Correctness — safe approximations: the analysis should be
“conservative” and errs on the “safe side”
- Termination — compilation should definitely terminate

(note: not always the case in everyday program analysis tools!)

@ Desirable — “practicality”:
- Efficiency — in practice finite analysis time is not enough: finite and
small is the requirement.
e Accuracy — too many false alarms is harmful to the adoption of the
analysis tool (“the boy who cried wolf").
o Usefulness — determines which information is worth collecting.

22/45

Fixedpoint
0000000000

Outline

© Reaching fixedpoint: joining, widening, and narrowing

23/45

Fixedpoint
0e00000000

Abstract domain example: intervals

Consider the following abstract domain for x € Z (integers):
x = [a, b] where
- a can be either a constant or —oo and

- b can be either a constant or oo.

Example:

{X# = [039]7 y# = [_17 1]}
Z=X+2%y

{z# =1[0,9] +# 2 x# [-1,1] = [-2,11]}

Q: Why z# is an abstraction of z?

24 /45

Fixedpoint
[e]e] lelelelelele]e]

Join operator

The join operator LI merges two or more abstract states into one
abstract state.

25/45

Fixedpoint
[e]e]e] lelelelele]e]

Joining operator example

{x# = [0,10]}
if (x < 0) then

{x* =0}

s = -1

{x#* =0, s* =0}
else if (x > 0) then

{x# =[1,10]}

s :=1

{x# =[1,10], s = [1,1]}
else

{x* =100}

s =0

{x* =[0,0], s* = [0,0]}

{x#* =0 U[1,10] U[0,0] = [0,10], s* = @ LU [1,1] L [0,0] = [0, 1]}

26 /45

Fixedpoint
[e]e]e]e] Telelele]e]

What about loops?

{x# =0)

x :=0

{x# = (even)}

while (x < 100) {
{x* = (even)}1 {x7 = (even) U (even) = (even)},
X =X + 2
{x# = (even)};

}
{x# = (even)}

Two iterations to reach fixedpoint (i.e., none of the abstract states
changes).

27 /45

Collecting semantics

{x# =0}
x =0
{x* =10,0]}

while (x < 100) {

{X# = [070]}1 {X# = [00] U [272] = [07 2]}2
{X#:[O,Q]U[274]:[O,4]}3 {}4{}5/
{X# = [0,96] LI [2,98] = [0, 98] }50

X =X+ 2

{X# = [272]}1 {X# - [272] U [274] - [2:4]}2
{x* =[2,4U[2,6] = [2,6]}3 {-}a {5,
{x# =[2,98] LI [2,100] = [2,100]}s0
}

{X# = [100, 100]}

50 iterations to reach fixedpoint (i.e., none of the abstract states 45

Fixedpoint
0000008000

Widening operator

We compute the limit of the following sequence:

Xo =L
Xiy1 = X;VF#(X;)

where V denotes the widening operator.

29/45

Fixedpoint
[e]e]e]ele]ele] lo]e]

Widening operator example

)
x =0
{x* =100}

while (x < 100) {

{x# =[0,0]}1 {x¥ =[0,0]¥[2,2] = [0, +oc]}2
{x# = [0, +00]V[2, +00] = [0, +-00]}3

X =X + 2

F =122 {xXF=[2,+00]}a {x¥ =[2,+o0]}3

}
{x# = [100, +o0]}

3 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

30/45

Fixedpoint
0000000080

Narrowing operator

We compute the limit of the following sequence:

Xo =L
Xit1 = XiAF# (X))

where A denotes the narrowing operator.

31/45

Fixedpoint
000000000 e

Narrowing operator example

)
x =0
{x* =100}

while (x < 100) {

{x# =1[0,+00]} {x7 = [0, +00]A[0,99] = [0,99]}1
{x# = [2,101]A[0,99] = [0,99]}>

X 1= X + 2

{x#* =[2,400]} {x* =[2,101]}; {x* =[2,101]}>
}
{x# =[100, 101]}

2 iterations to reach fixedpoint (i.e., none of the abstract states
changes).

32/45

Intro
[leJele]e]

Outline

@ Introduction to symbolic execution

33/45

Intro
(o] Jelele]

Motivation

Q: Why research on symbolic execution when we have unit testing
or even fuzzing?

A: A more complete exploration of program states.

34/45

Intro
[e]e] le]e]

[llustration

Unit Test
foo(0);
foo(l);
Fuzzing

1 fn foo(x: u64): u64d { foo(0);

2 if (x * 3 == 42) { £ 1):

3 some_hidden_bug(); oo(1);

4 i foo(12);

5 if (x * 5 == 42) { .

6 some_hidden_bug(Q) ; £0o(78);

7 }

2) return 2 * x; f00(9,223,372,036,854,775,808);

Symbolic execution
foo(x)
aborts when x = 14
returns 2x otherwise

35/45

Intro
[e]e]e] Jo]

Satisfiability Modulo Theories (SMT)

Definition: A procedure that decides whether a mathematical
formula is satisfiable.

Example:
@ 3x = 42 — satisfiable with x = 14
@ 2x > 2% 5 satisfiable with x > 293

@ bx = 42 — unsatisfiable, cannot find an x

Ask two question whenever you see a symbolic execution work:
@ How does it convert code into mathematical formula?

@ What does it try to solve for?

36/45

Intro
0000e

Program modeling desiderata

Control-flow graph exploration

Loop handling
@ Memory modeling

o Concurrency

37/45

Convention
00000000

Outline

© Conventional symbolic execution

38/45

Convention
0e000000

An example of a pure function

1 fn foo(

2 cl: bool, c2: bool,

3 X: u64 [BO]

4) > ubd {

5 letr - if (cl) { cLtrtigel

6 X + 3 ‘/ \

; } else { [B1] [B2]
8 X+ 4 r=x+3 r=x+4
9 }; \\\\‘ x////

10

11 let r = if (c2) { (631

12 r -1 c2A T Noe2

13 } else { / \

14 r -2 [B4] [B5]
15 }s r=r-1 r=r -2
16

S N

18 } [B6]

19 spec foo { assert r > x

20 ensures r > X;

21 }

39/45

Convention
[e]e] lelelee]e)

The example in SSA form

1 fn foo(

2 cl: bool, c2: bool, [BO]

3 X: u64 c1) Start|_ 1

4) > ubd {

5 let r = if (cl) { [B1] 82]
6 X + 3

7 } else { n=x+3 n=x+4
8 X + 4 /

9 }; [B3]

10

11 let r = if (c2) { rs = ¢(r1, r2)

12 r-1 ‘;i;/ \Qszi

13 } else {

14 r - 2 [B4] [B5]
1 b rp=r3—1 rs=1r3—2
16

17 r \ /
18} (B6]

19 spec foo {

20 ensures r > X; re = ¢(ra, rs)

21 } assert rg > x

40/45

Convention
[e]e]e] lelelele)

Path-based exploration

Vars: cl, c2, x, n—¢

B0 Sym. repr. 0 (B0]
Path cond. | True c1) Start|_ 1
Sym. repr. | n =x+3
Bl Path cond. | cl 81 [82]
n=x+3 n=x+4
Sym. repr. n=x+3 ! 2
B3 n=n /
Path cond. | cl [B3]
Sym. repr. | n=x+3 r3 = ¢(r1, r2)
B4 nR=n 7/ ﬁ
np=rn—1
Path cond. ci/\c [B4] [B5]
Sym. repr. n=x+3 rp=r—1 rs=r—2
rR=n \
B6 rm=r—1
re =ra [B6]
Path cond. Ao r6 = B(ra, 15)

[assert rg > x

41/45

Convention
[e]e]e]e] Telele)

Proving procedure (per path)

Vars: cl, c2, x, rn_¢

[B0]
Sym. repr. n=x+3 c1) Start|_ 1
n=n
B6 rn=r3—1 B1] 82]
rf=ry
Path cond. | c1 A e n=x+3 r=x+4
> [B3]
rn=¢(n,r
Prove that V cl1,c2,x,r_¢: 3 = ¢ln.)
((el A e2) A (
(n=x+3) (B4 [85]
(rm=n) m=r—1 rs=1r—2
(n=r-1) \\\‘
(re = ra)
)= (5 > x) /e
re = ¢(ra, rs)
assert rg > x

42/45

Convention
00000800

Proving procedure (all paths)

Prove that
Vcl,c2,x,n_e:

((c1Ac2) A (

(n=x+3)
(s =n)
(a=r—1)
(r6 = ra)

)) = (r6 > x)

[BO]
Start

((cLA=e2) A (

cl <cl
(n=x+3) b
(r3 — rl) [B1] [B2]
(r5: 3_2) n=x+3 rn=x+4

e =15
1) (j (. \)y\ 43 /45

Convention
00000080

Path explosion

22 paths

23 paths

[BGk+1)] [B(3k+2)]

[B(3k+3)]

2k paths

44 /45

Convent;
0000000

(End)

45 /45

	static and symbolic reasoning
	Introduction to abstraction interpretation
	Example and intuition about abstract domains
	Reaching fixedpoint: joining, widening, and narrowing
	Introduction to symbolic execution
	Conventional symbolic execution

