Module 2: Program Security (Defenses)
static and symbolic reasoning

Meng Xu (University of Waterloo)
Spring 2023
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
A significant portion of software security research is related to program analysis:

- derive properties which hold for program \(P \) (i.e., inference)
- prove that some property holds for program \(P \) (i.e., verification)
- given a program \(P \), generate a program \(P' \) which is
 - in most ways equivalent to \(P \)
 - behaves better than \(P \) w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing program analysis tools.
Acknowledgement: the illustrations in this section is borrowed from Prof. Patrick Cousot’s webpage Abstract Interpretation in a Nutshell.
The concrete semantics of a program is formalized by the set of all possible executions of this program under all possible inputs.

The concrete semantics of a program can be a close to infinite mathematical object / sequence which is impractical to enumerate.
Program analysis: safety properties

Safety properties of a program express that no possible execution of the program, when considering all possible execution environments, can reach an erroneous state.
Test of a few trajectories

Testing consists in considering a subset of the possible executions.
Program analysis: bounded model checking

Bounded model checking consists in exploring the prefixes of the possible executions.
Abstract interpretation consists in considering an abstract semantics, that is a superset of the concrete program semantics.

The abstract semantics covers all possible cases

\[\Rightarrow\] if the abstract semantics is safe (i.e. does not intersect the forbidden zone) then so is the concrete semantics.
Program analysis: abstract interpretation false alarm 1

False alarms caused by widening during execution.
Program analysis: abstract interpretation false alarm 2

False alarms caused by abstract domains.
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
What is abstract interpretation?

Consider detecting that one branch will not be taken in:

```plaintext
int x, y, z; y := read(file); x := y * y;
if x ≥ 0 then z := 1 else z := 0
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs – uses abstractions: signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of computational objects to make the problem of program dataflow analysis tractable.
What is abstract interpretation?

Abstract interpretation is a formalization of the above procedure:

- define a non-standard semantics which can approximate the meaning (or behaviour) of the program in a finite way
- expressions are computed over an approximate (abstract) domain rather than the concrete domain (i.e., meaning of operators has to be reconsidered w.r.t. this new domain)
Example: integer sign arithmetic

Consider the domain $D = \mathbb{Z}$ (integers) and the multiplication operator: $*: \mathbb{Z}^2 \to \mathbb{Z}$

We define an “abstract domain:” $D_\alpha = \{[-], [+]\}$ and abstract multiplication: $*_{\alpha} : D_\alpha^2 \to D_\alpha$ defined by:

<table>
<thead>
<tr>
<th>$*_{\alpha}$</th>
<th>[-]</th>
<th>[+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-]</td>
<td>[+]</td>
<td>[-]</td>
</tr>
<tr>
<td>[+]</td>
<td>[-]</td>
<td>[+]</td>
</tr>
</tbody>
</table>

This allows us to conclude, for example, that $y = x^2 = x * x$ is never negative.
Some observations

- The basis is that whenever we have $z = x \times y$ then:
 if $x, y \in \mathbb{Z}$ are approximated by $x_\alpha, y_\alpha \in D_\alpha$
 then $z \in \mathbb{Z}$ is approximated by $z_\alpha = x_\alpha \times_\alpha y_\alpha$
 - Essentially, we map from an unbounded domain to a finite domain.

- It is important to formalize this notion of approximation, in order to be able to reason/prove that the analysis is correct.

- Approximate computation is generally less precise but faster (hence the tradeoff).
Intro

Abstraction

Fixedpoint

Intro

Convention

Example: integer sign arithmetic (refined)

Again, \(D = Z \) (integers)
and: \(* : Z^2 \to Z \)

We can define a more refined "abstract domain"
\(D'_\alpha = \{[-], [0], [+]\} \)

and the corresponding abstract multiplication: \(*_\alpha : D'_\alpha^2 \to D'_\alpha \)

\[
\begin{array}{c|c|c|c}
*\alpha & [-] & [0] & [+] \\
\hline
[-] & [+] & [0] & [+] \\
[0] & [0] & [0] & [0] \\
[+] & [+] & [0] & [+] \\
\end{array}
\]

This allows us to conclude, for example, that \(z = y * (0 * x) \) is zero.
More observations

- There is a **degree of freedom** in defining different abstract operators and domains.

- The minimal requirement is that they be “safe” or “correct”.

- Different “safe” definitions result in different kinds of analysis.
Example: integer sign arithmetic (with addition)

Again, $D = \mathbb{Z}$ (integers) and now we want to define the *addition* operator $+: \mathbb{Z}^2 \rightarrow \mathbb{Z}$.

We cannot use $D'_\alpha = \{[\neg], [0], [+]\}$ because we wouldn’t know how to represent the result of $[+] +_\alpha [\neg]$, (i.e., the abstract addition would not be closed).

Solution: introduce a new element “\top” in the abstract domain as an approximation of any integer.
Example: integer sign arithmetic (with addition)

New “abstract domain”: $D'_\alpha = \{-, [0], [+]\}$

<table>
<thead>
<tr>
<th>$+\alpha$</th>
<th>$-\alpha$</th>
<th>$[0] \alpha$</th>
<th>$[+] \alpha$</th>
<th>$\top \alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\alpha$</td>
<td>$-\alpha$</td>
<td>$-\alpha$</td>
<td>\top</td>
<td>\top</td>
</tr>
<tr>
<td>$[0] \alpha$</td>
<td>$-\alpha$</td>
<td>$[0] \alpha$</td>
<td>$[+] \alpha$</td>
<td>\top</td>
</tr>
<tr>
<td>$[+] \alpha$</td>
<td>\top</td>
<td>$[+] \alpha$</td>
<td>$[+] \alpha$</td>
<td>\top</td>
</tr>
<tr>
<td>$\top \alpha$</td>
<td>\top</td>
<td>\top</td>
<td>\top</td>
<td>\top</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$*\alpha$</th>
<th>$-\alpha$</th>
<th>$[0] \alpha$</th>
<th>$[+] \alpha$</th>
<th>$\top \alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\alpha$</td>
<td>$[+] \alpha$</td>
<td>$[0] \alpha$</td>
<td>$-\alpha$</td>
<td>\top</td>
</tr>
<tr>
<td>$[0] \alpha$</td>
<td>$[0] \alpha$</td>
<td>$[0] \alpha$</td>
<td>$[0] \alpha$</td>
<td>$[0] \alpha$</td>
</tr>
<tr>
<td>$[+] \alpha$</td>
<td>$[+] \alpha$</td>
<td>$[0] \alpha$</td>
<td>$[+] \alpha$</td>
<td>$[0] \alpha$</td>
</tr>
<tr>
<td>$\top \alpha$</td>
<td>$[0] \alpha$</td>
<td>\top</td>
<td>\top</td>
<td>\top</td>
</tr>
</tbody>
</table>

We can now reason that $z = x^2 + y^2$ is never negative
More observations

- In addition to the imprecision due to the coarseness of D_α, the abstract versions of the operations (dependent on D_α) may introduce further imprecision.

- Thus, the choice of *abstract domain* and the definition of the *abstract operators* are crucial.
Concerns in abstract interpretation

- **Required:**
 - Correctness — *safe approximations*: the analysis should be “conservative” and errs on the “safe side”
 - Termination — compilation should definitely terminate
 (note: not always the case in everyday program analysis tools!)

- **Desirable — “practicality”:**
 - Efficiency — in practice finite analysis time is not enough: finite *and* small is the requirement.
 - Accuracy — too many false alarms is harmful to the adoption of the analysis tool (“the boy who cried wolf”).
 - Usefulness — determines which information is worth collecting.
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
Abstract domain example: intervals

Consider the following abstract domain for \(x \in \mathbb{Z} \) (integers):
\[x = [a, b] \]
where
- \(a \) can be either a constant or \(-\infty\) and
- \(b \) can be either a constant or \(\infty \).

Example:

\[\{ x# = [0, 9], \ y# = [-1, 1] \} \]
\[z = x + 2 \times y \]
\[\{ z# = [0, 9] +# 2 \times# [-1, 1] = [-2, 11] \} \]

Q: Why \(z# \) is an abstraction of \(z \)?
Join operator

The join operator \sqcup merges two or more abstract states into one abstract state.
Joining operator example

\{x# = [0, 10]\}

if (x < 0) then
\{x# = \emptyset\}
s := -1
\{x# = \emptyset, s# = \emptyset\}

else if (x > 0) then
\{x# = [1, 10]\}
s := 1
\{x# = [1, 10], s# = [1, 1]\}

else
\{x# = [0, 0]\}
s := 0
\{x# = [0, 0], s# = [0, 0]\}

\{x# = \emptyset \sqcup [1, 10] \sqcup [0, 0] = [0, 10], s# = \emptyset \sqcup [1, 1] \sqcup [0, 0] = [0, 1]\}
What about loops?

\[\{x^\# = \emptyset\} \]

\[x := 0 \]
\[\{x^\# = \langle even\rangle\} \]

while (x < 100) {
\[\{x^\# = \langle even\rangle\}_1 \]
\[x := x + 2 \]
\[\{x^\# = \langle even\rangle\}_1 \]
\[\{x^\# = \langle even\rangle\}_2 \]
}
\[\{x^\# = \langle even\rangle\} \]

Two iterations to reach fixedpoint (i.e., none of the abstract states changes).
Collecting semantics

\[\{ x^\# = \emptyset \} \]

\[x := 0 \]
\[\{ x^\# = [0, 0] \} \]

while (x < 100) {
\[\{ x^\# = [0, 0] \} \quad \{ x^\# = [0, 0] \sqcup [2, 2] = [0, 2] \} \]
\[\{ x^\# = [0, 2] \sqcup [2, 4] = [0, 4] \} \quad \{ \cdots \} \]
\[\{ x^\# = [0, 96] \sqcup [2, 98] = [0, 98] \} \]
\[x := x + 2 \]
\[\{ x^\# = [2, 2] \} \quad \{ x^\# = [2, 2] \sqcup [2, 4] = [2, 4] \} \]
\[\{ x^\# = [2, 4] \sqcup [2, 6] = [2, 6] \} \quad \{ \cdots \} \]
\[\{ x^\# = [2, 98] \sqcup [2, 100] = [2, 100] \} \]
\[\{ x^\# = [100, 100] \} \]

50 iterations to reach fixedpoint (i.e., none of the abstract states change).

Q: can we reach the fixedpoint faster?
We compute the limit of the following sequence:

\[X_0 = \bot \]

\[X_{i+1} = X_i \triangledown F^\#(X_i) \]

where \(\triangledown \) denotes the widening operator.
Widening operator example

\[
\{ x\# = \emptyset \} \\
\]

\[
\begin{align*}
x & := 0 \\
\{ x\# &= [0, 0] \} \\
\text{while } (x < 100) \{ \\
\{ x\# &= [0, 0] \} & \{ x\# &= [0, 0] \uparrow [2, 2] = [0, +\infty] \} & \{ x\# &= [0, +\infty] \uparrow [2, +\infty] = [0, +\infty] \} \\
\{ x\# &= [0, +\infty] \uparrow [2, +\infty] = [0, +\infty] \} & \{ x\# &= [2, +\infty] \} & \{ x\# &= [2, +\infty] \} \\
x & := x + 2 \\
\{ x\# &= [2, 2] \} & \{ x\# &= [2, +\infty] \} & \{ x\# &= [2, +\infty] \} \\
\} \\
\{ x\# &= [100, +\infty] \} \\
\end{align*}
\]

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).
We compute the limit of the following sequence:

\[X_0 = \bot \]

\[X_{i+1} = X_i \triangle F^\#(X_i) \]

where \(\triangle \) denotes the narrowing operator.
Narrowing operator example

\[\{ x^\# = \emptyset \} \]

\(x := 0 \)
\(\{ x^\# = [0, 0] \} \)

while (\(x < 100 \)) {
 \(\{ x^\# = [0, +\infty] \} \)
 \(\{ x^\# = [2, 101] \triangle [0, 99] = [0, 99] \}_{1} \)
 \(\{ x^\# = [2, 101] \triangle [0, 99] = [0, 99] \}_{2} \)
 \(x := x + 2 \)
 \(\{ x^\# = [2, +\infty] \} \)
 \(\{ x^\# = [2, 101] \}_{1} \)
 \(\{ x^\# = [2, 101] \}_{2} \)
}
\(\{ x^\# = [100, 101] \} \)

2 iterations to reach fixedpoint (i.e., none of the abstract states changes).
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
Motivation

Q: Why research on symbolic execution when we have unit testing or even fuzzing?

A: A more complete exploration of program states.
Illustration

```rust
fn foo(x: u64): u64 {
    if (x * 3 == 42) {
        some_hidden_bug();
    }
    if (x * 5 == 42) {
        some_hidden_bug();
    }
    return 2 * x;
}
```

Unit Test
foo(0);
foo(1);

Fuzzing
foo(0);
foo(1);
foo(12);
foo(78);
......
foo(9,223,372,036,854,775,808);

Symbolic execution
foo(x)
 aborts when x = 14
 returns 2x otherwise
Satisfiability Modulo Theories (SMT)

Definition: A procedure that decides whether a mathematical formula is satisfiable.

Example:
- $3x = 42 \rightarrow$ satisfiable with $x = 14$
- $2x \geq 2^{64} \rightarrow$ satisfiable with $x \geq 2^{63}$
- $5x = 42 \rightarrow$ unsatisfiable, cannot find an x

Ask two question whenever you see a symbolic execution work:
- How does it convert code into mathematical formula?
- What does it try to solve for?
Program modeling desiderata

- Control-flow graph exploration
- Loop handling
- Memory modeling
- Concurrency
Outline

1. Introduction to abstraction interpretation
2. Example and intuition about abstract domains
3. Reaching fixedpoint: joining, widening, and narrowing
4. Introduction to symbolic execution
5. Conventional symbolic execution
An example of a pure function

```rust
fn foo(c1: bool, c2: bool, x: u64) -> u64 {
    let r = if c1 {
        x + 3
    } else {
        x + 4
    };
    let r = if c2 {
        r - 1
    } else {
        r - 2
    };
    r
}

spec foo {
    ensures r > x;
}
```

Start

- **[B0]**
 - c1
 - r = x + 3

- **[B1]**
 - r = x + 4

- **[B2]**
 - c1

- **[B3]**
 - c2

- **[B4]**
 - r = r - 1

- **[B5]**
 - r = r - 2

- **[B6]**
 - assert r > x
The example in SSA form

```rust
fn foo(
    c1: bool, c2: bool,
    x: u64
) -> u64 {
    let r = if (c1) {
        x + 3
    } else {
        x + 4
    };

    let r = if (c2) {
        r - 1
    } else {
        r - 2
    };

    r
}

spec foo {
    ensures r > x;
}
```
Path-based exploration

Vars: c_1, c_2, x, r_{1-6}

<table>
<thead>
<tr>
<th>Step</th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>\emptyset</td>
<td>True</td>
</tr>
<tr>
<td>B1</td>
<td>$r_1 = x + 3$</td>
<td>c_1</td>
</tr>
<tr>
<td>B3</td>
<td>$r_1 = x + 3$</td>
<td>$r_3 = r_1$</td>
</tr>
<tr>
<td>B4</td>
<td>$r_1 = x + 3$</td>
<td>$r_3 = r_1$</td>
</tr>
<tr>
<td>B6</td>
<td>$r_1 = x + 3$</td>
<td>$r_3 = r_1$</td>
</tr>
</tbody>
</table>

- **[B0]**
 - Start
 - $r_1 = x + 3$

- **[B1]**
 - $r_1 = x + 3$
 - c_1

- **[B2]**
 - $r_2 = x + 4$

- **[B3]**
 - $r_3 = \phi(r_1, r_2)$
 - c_1

- **[B4]**
 - $r_4 = r_3 - 1$

- **[B5]**
 - $r_5 = r_3 - 2$

- **[B6]**
 - $r_6 = \phi(r_4, r_5)$
 - Assert $r_6 > x$
Proving procedure (per path)

Vars: c_1, c_2, x, r_{1-6}

<table>
<thead>
<tr>
<th>B6</th>
<th>Sym. repr.</th>
<th>Path cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$r_1 = x + 3$</td>
<td>$c_1 \land c_2$</td>
</tr>
<tr>
<td></td>
<td>$r_3 = r_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$r_4 = r_3 - 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$r_6 = r_4$</td>
<td></td>
</tr>
</tbody>
</table>

Prove that $\forall c_1, c_2, x, r_{1-6}$:

$((c_1 \land c_2) \land (r_1 = x + 3) \\
(r_3 = r_1) \\
(r_4 = r_3 - 1) \\
(r_6 = r_4)) \Rightarrow (r_6 > x)$
Proving procedure (all paths)

Prove that
\[\forall c1, c2, x, r_{1-6}: \]

\[((c1 \land c2) \land (\]
\[(r_1 = x + 3) \]
\[(r_3 = r_1) \]
\[(r_4 = r_3 - 1) \]
\[(r_6 = r_4) \]
\[)) \Rightarrow (r_6 > x) \]

\[((c1 \land \neg c2) \land (\]
\[(r_1 = x + 3) \]
\[(r_3 = r_1) \]
\[(r_5 = r_3 - 2) \]
\[(r_6 = r_5) \]
\[)) \Rightarrow (r_6 > x) \]
Path explosion

2^2 paths

2^3 paths

\[\ldots \]

2^k paths
〈 End 〉