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Defensive programming

Like defensive driving, defensive programming requires the developer
to anticipate what might go wrong in the software and program
defensively against these anticipated issues, potentially with the help
of compiler, runtime, or even external auditors.
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Defensive programming

Driving

Follow traffic rules
Follow local customs

Programming

Follow typing rules
Follow coding conventions

In normal paradigm: expect others to follow the rules
In defensive paradigm: expect others to ignore / by-pass the rules

Apply defensive actions at the cost of performance
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Paranoia

Defining paranoia:

a mental condition characterized by delusions of persecution,
unwarranted jealousy, or exaggerated self-importance, typically
elaborated into an organized system.
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Example: NULL-check for every pointer access

1 int foo_inner(int *ptr) {
2 return *ptr;
3 }

1 int foo_inner(int *ptr) {

2 + if (ptr == NULL) {

3 + abort("nullptr exception");

4 + }

5 return *ptr;

6 }

1 int foo_outer(int arg) {
2 // guaranteed non-null

3 return foo_inner(&arg);
4 }

5

6 int foo_inner(int *ptr) {
7 return *ptr;
8 }

1 int foo_outer(int arg) {

2 // guaranteed non-null

3 return foo_inner(&arg);

4 }

5

6 int foo_inner(int *ptr) {

7 + if (ptr == NULL) {

8 + abort("nullptr exception");

9 + }

10 return *ptr;

11 }
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Example: NULL-check for every pointer access

1 int foo_inner(int *ptr) {
2 return *ptr;
3 }

1 int foo_inner(int *ptr) {

2 + if (ptr == NULL) {

3 + abort("nullptr exception");

4 + }

5 return *ptr;

6 }

1 int foo_outer(int *ptr) {
2 *ptr = 42;

3 // guaranteed non-null

4 return foo_inner(ptr);
5 }

6

7 int foo_inner(int *ptr) {
8 return *ptr;
9 }

1 int foo_outer(int *ptr) {

2 + if (ptr == NULL) {

3 + abort("nullptr exception");

4 + }

5 *ptr = 42;

6 // guaranteed non-null

7 return foo_inner(ptr);

8 }

9

10 int foo_inner(int *ptr) {

11 + if (ptr == NULL) {

12 + abort("nullptr exception");

13 + }

14 return *ptr;

15 }
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Is this really a paranoia?

This paranoid check is actually happening in Java / Python / . . . .

- therefore, this is not a stupid idea.

It helps to guard against a very subtle and implicit assumption:
what if foo_inner() is not an internal function anymore?
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Undefined behavior sanitizer (UBSan)

NULL-pointer dereference is just one case of undefined behaviors,
there are many other cases of undefined behaviors in C-like
languages. UBSan in the LLVM compiler toolchain provides a
comprehensive list of checkers.

-fsanitize=bool

Load of a bool value which is neither true nor false.

-fsanitize=bounds

Out of bounds indexing, in cases where the bound is statically known

-fsanitize=function

Indirect call of a function through a pointer of the wrong type

-fsanitize=null

-fsanitize=integer-divide-by-zero

-fsanitize=integer-overflow

. . .
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Undefined behavior sanitizer (UBSan)

Q: What do the checks in UBSan have in common?

A: They are stateless sanity checks, i.e., the execution can be
considered as either valid or invalid by simply examining the
statement / instruction and its operand.

As a consequence, sanity checks in UBSan are independent to each
other (allows modularity), easy to instrument at compile time, and
less expensive (performance-wise) to check at runtime. Typical
runtime overhead of UBSan is 20%.
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But UBSan is far from enough

-fsanitize=bounds

Out of bounds indexing, in cases where the bound is statically known

Q: What about cases
where bounds cannot be
statically determined?

1 long* mk_array(int len) {
2 return malloc(sizeof(long) * len);
3 }

4 void set_value(long *arr, int idx, long val) {
5 arr[idx] = val;

6 }

7 long get_value(long *arr, int idx) {
8 return arr[idx];
9 }
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Recall memory safety definition

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int]), _)

Memory free: (object_id)

Violation of spatial safety:

- offset + length >= size

- offset < 0

Violation of temporal safety:

- Read: status != init

- Write: status == dead

- Free: status == dead
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On the practicality of these checks

This full-suite of memory safety check is inpractical. The
performance overhead is at least 200% if not more, making it
impossible to be deployed in production systems 1.

1In fact, I am not aware of any tool that strictly follows the above definition.
Practicality aside, such a tool is extremely valuable as a debugging tool that runs
during testing time. Implementing such a tool does not seem to be very difficult
in LLVM, so let me know if you are interested in this direction.
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A typical technique in sanitizers

Credits / Trademark: World Atlas
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Case study: AddressSanitizer (ASan)

ASan is an efficient and industrial-grade implementation of memory
error detector in both LLVM and GCC.

The alleged runtime overhead of ASan is 70% on average, making it
almost suitable to run in production environment. A series of
follow-up work further improves the overhead situation.
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ASan: shadow memory

Inaccessible

Shadow

Memory

Shadow

Memory

Inaccessible

Shadow

Memory

Shadow

Memory

Fact 1: fast shadow translation
Shadow = (Mem >> 3) + 0x7fff8000;

[0x10007fff8000, 0x7fffffffffff] HighMem

[0x02008fff7000, 0x10007fff7fff] HighShadow

[0x00008fff7000, 0x02008fff6fff] ShadowGap

[0x00007fff8000, 0x00008fff6fff] LowShadow

[0x000000000000, 0x00007fff7fff] LowMem

Fact 2: compact representation
By default, ASan maps 8 bytes of the
application memory into 1 byte of the

shadow memory (1 bit per byte).
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ASan: instrumentation for shadow memory

1 void foo() {
2 char a[8];
3 ...

4 return;
5 }

1 void foo() {
2 // instrumentation around a stack object

3 char redzone1[32]; // 32-byte aligned

4 char a[8];
5 char redzone2[24]; // 32-byte aligned

6

7 // instrumentation before return address

8 char redzone3[32]; // 32-byte aligned

9 int *shadow_base = MemToShadow(redzone1);

10

11 // poison redzone1

12 shadow_base[0] = 0xffffffff;

13 // poison redzone2, unpoison ’a’

14 shadow_base[1] = 0xffffff00;

15 // poison redzone3

16 shadow_base[2] = 0xffffffff;

17

18 ...

19

20 // unpoison all

21 shadow_base[0] = shadow_base[1] = shadow_base[2] = 0;

22 return;
23 }
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ASan: instrumentation for sanity check

Before:

*address = ...; // or: ... = *address;

After:

if (*MemToShadow(address) != 0) {
ReportError(address, ...);

}
*address = ...; // or: ... = *address;
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ASan: instrumentation for temporal rules

1 void f() {
2 int *p;
3 if (b) {
4 int x[10];
5 p = x;

6 }

7 *p = 1;

8 }

1 void f() {

2 int *p;

3 if (b) {

4 + __asan_unpoison_stack_memory(x);

5 int x[10];

6 p = x;

7 + __asan_poison_stack_memory(x);

8 }

9 *p = 1;

10 + __asan_unpoison_stack_memory(frame);

11 }
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ASan: limitations

Continuous overrun detection only

Limited protection on use-after-free

Incompatible with other security schemes (e.g., UBSan)

Not suitable for library developers

- It is not possible to use an application that is not using ASan with a
library that has been compiled with ASan.

23 / 49



Intro Paranoid Shadow Refmon AOP CFI

Bonus: why Java can do it efficiently?

An example of the famous ArrayIndexOutOfBoundsException

1 String[] names = { "tom", "bob", "harry" };

2 for (int i = 0; i <= names.length; i++) {
3 System.out.println(names[i]);

4 }

But we are never told that Java has a 70% overhead sanitizer
running — how is this possible?
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Bonus: why Java can do it efficiently?

The key answer is: Java does not allow arbitrary casting.

Object

Object[]class A class B

int[]A[] B[]class A1 class B1

A1[] B1[]

Upward cast is always allowed.

Downward cast may be allowed.

Re-interpret cast is never allowed.
25 / 49
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A simple example

Compute the value of A20 given the following definition2.

A0 =
11

2

A1 =
61

11

An+2 = 111−
1130− 3000

An

An+1

2Example taken from Jose Ignacio Requeno’s slides at TAROT 2022 summer
school which further acknowledges Cesar Munoz (NASA, Langley) for the code.
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Java implementation

1 public class Mya {
2

3 static double A(int n) {
4 if (n == 0) {
5 return 11 / 2.0;
6 }

7 if (n == 1) {
8 return 61 / 11.0;
9 }

10

11 return 111 - (1130 - 3000 / A(n - 2)) / A(n - 1);
12 }

13

14 public static void main(String [] argv) {
15 for (int i = 0; i <= 20; i ++) {
16 System.out.println("A(" + i + ") = " + A(i));

17 }

18 }

19

20 }
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The solution (?)

1 A(0) = 5.5

2 A(1) = 5.545454545454546

3 A(2) = 5.5901639344262435

4 A(3) = 5.633431085044251

5 A(4) = 5.674648620514802

6 A(5) = 5.713329052462441

7 A(6) = 5.74912092113604

8 A(7) = 5.781810945409518

9 A(8) = 5.81131466923334

10 A(9) = 5.83766396240722

11 A(10) = 5.861078484508624

12 A(11) = 5.883542934069212

13 A(12) = 5.935956716634138

14 A(13) = 6.534421641135182

15 A(14) = 15.413043180845833

16 A(15) = 67.47239836474625

17 A(16) = 97.13715118465481

18 A(17) = 99.82469414672073

19 A(18) = 99.98953968869486

20 A(19) = 99.9993761416421

21 A(20) = 99.99996275956511
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Should we trust the solution?

In fact, mathematically, for any n ≥ 0, the value of An can be
computed as following:

An =
6n+1 + 5n+1

6n + 5n

Where

lim
n→∞

An = 6

Therefore, we expect

A20 ≈ 6
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Runtime verification (RV)

Verification technique that allow for checking whether a specific run
of a program under scrutiny satisfies or violates a given property.

The word “verification” here is really misleading. It is not the same
meaning as in formal verification. Instead, it is more like validation.

The following may help clarify the differences between validation
(i.e., runtime verification) and verification (i.e., formal verification).

Validation: “are we building the right product?”

Verification: “are we building the product right?”
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General framework

Thread 1 Thread 2

Program

Verifier

Specification

Result 32 / 49
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How to express the specification?

We are trying to specify behaviors of a program over time, i.e., over
a sequence of states S0, S1, . . . , (potentially endless).

The corresponding mathematical construct we are looking at is
called temporal logic, and in particular, concerning a single run of a
program, the logic is linear temporal logic (LTL).

start

33 / 49
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LTL specification

In LTL, the specifications are built from:

Primitive properties of individual states.

- e.g., “traffic light is green”, “lock is acquired”, “object is initialized”

Propositional connectives: ∧, ∨, ¬, →
Temporal connectives:

- Xϕ: ϕ is true in the neXt state.
- Gϕ: ϕ is true Globally, i.e., in current and all future states.
- Fϕ: ϕ is true in some Future state.
- ϕUγ: ϕ continues to hold true in future states Until reaching a state
where γ starts to be true.
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LTL examples

Temporal connectives:

- Xϕ: ϕ is true in the neXt state.
- Gϕ: ϕ is true Globally, i.e., in current and all future states.
- Fϕ: ϕ is true in some Future state.
- ϕUγ: ϕ continues to hold true in future states Until reaching a state
where γ starts to be true.

Examples:

win lottery → |G |rich
¬homework ∧ party → |X |¬homework
start lecture → talk|U|end lecture
(¬passport ∨ ¬ticket) → |F |¬board flight
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Type of properties

Safety property: something bad will not happen

- e.g., |G |(green → ¬|X |red)

Liveness property: something good will eventually happen

- e.g., |G |(|F |green)
- e.g., |G |(red → |F |(green ∧ green|U|yellow))
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Recap: general framework of runtime verification

Thread 1 Thread 2

Program

Verifier

Specification

Result 38 / 49
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Information collection

While the temporal logic is a good abstraction of specification
writing in runtime verification, we still have the problem of how to
collect information at runtime, especially in cases where compiler
cannot provide any assistance.
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Aspect-oriented programming (AOP)

Aspect-oriented programming (AOP) is a programming paradigm
that aims to increase modularity by allowing the separation of
cross-cutting concerns.

It does so by adding behavior to existing code (an advice) without
modifying the code itself, instead separately specifying which code is
modified via a “pointcut” specification.

This allows behaviors that are not central to the business logic (such
as logging for runtime verification) to be added to a program
without cluttering the code core to the functionality.
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AOP example (with intrusive instrumentation)

1 void transfer(
2 Account from,

3 Account into,

4 int amount,
5 )

6 throws Exception {
7 if (from.getBalance() < amount)
8 throw new InsufficientFunds();
9

10 from.withdraw(amount);

11 from.deposit(amount);

12 }

1 void transfer(

2 Account from, Account into,

3 int amount,

4 + User user,

5 + Logger logger,

6 )

7 throws Exception {

8 + logger.info("Transferring...");

9

10 + if (!user.isAuthorised(from)) {

11 + logger.info("no permission");

12 + throw new Unauthorised();

13 + }

14

15 if (from.getBalance() < amount)

16 throw new InsufficientFunds();

17

18 from.withdraw(amount);

19 from.deposit(amount);

20

21 + logger.info("Transaction done");

22 }
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AOP example (with aspects)

1 void transfer(
2 Account from,

3 Account into,

4 int amount,
5 )

6 throws Exception {
7 if (from.getBalance() < amount)
8 throw new InsufficientFunds();
9

10 from.withdraw(amount);

11 from.deposit(amount);

12 }

1 aspect Logger {

2 Logger logger;

3

4 void Bank.transfer#entry(
5 Account from, Account into,

6 int amount,
7 ) {

8 logger.info("Transferring...");

9 }

10 void Bank.transfer#exit(
11 Account from, Account into,

12 int amount,
13 ) {

14 logger.info("Transaction done");

15 }

16 void User.isAuthorized#exit(
17 User user, Account acc,

18 boolean success,
19 ) {

20 if (!success)
21 logger.info("no permission");

22 }

23 }
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Criticism

The most basic criticism of the effect of AOP is that control flow is
obscured. The obliviousness of application means that the advices
applied are invisible, therefore,

one must, in general, have whole-program knowledge to reason
about the dynamic execution of an aspect-oriented program.

Based on Gary T. Leavens’s report.
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Introduction

Control-Flow Integrity (CFI) is a classic example of runtime
reference monitor in software security.

CFI is also sometimes referred to as program shepherding

monitoring control flow transfers during program execution to
enforce a security policy — from a paper in USENIX Security’02.
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Basic use cases of CFI

1 void f1();
2 void f2();
3 void f3();
4 void f4(int, int);
5

6 void foo(int usr) {
7 void (*func)();
8

9 if (usr == MAGIC)
10 func = f1;

11 else
12 func = f2;

13

14 // forward edge CFI check

15 CHECK_CFI_FORWARD(func);

16 func();

17

18 // backward edge CFI check

19 CHECK_CFI_BACKWARD();

20 }

Option 1: allow all functions

- f1, f2, f3, f4, foo, printf, system, ...

Option 2: allowed only functions defined
in the current module

- f1, f2, f3, f4, foo

Option 3: allow functions with type
signature void (*)()

- f1, f2, f3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, f2
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in the current module

- f1, f2, f3, f4, foo

Option 3: allow functions with type
signature void (*)()

- f1, f2, f3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, f2

46 / 49



Intro Paranoid Shadow Refmon AOP CFI

Basic use cases of CFI
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Back-edge protection: shadow stack
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Security boundaries of CFI-protected programs

Figure from a paper published in ACM CCS’20
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⟨ End ⟩
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