
CS 489 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module 2: Program Security (Attacks)
weird machine

Spring 2023

Introduction State machine Security

Outline

1 Introduction

2 A tale of two state machines

3 Defining security

2 / 33

Introduction State machine Security

Based on paper

Weird Machines, Exploitability, and Provable Unexploitability

By Thomas Dullien published in 2017 when he was in Google
Project Zero.

3 / 33

Introduction State machine Security

Why this paper?

It attempts to formalize a concept that has been intuitively known
for quite a while in the community of security practitioners, i.e.,
both by the hackers and the researchers...

... and that concept is called “exploit”.

4 / 33

Introduction State machine Security

What is an exploit?

Magic

Access (mostly unauthorized)

Controls the instruction pointer (e.g., EIP/RIP register)

A program does something it is not supposed to do

I can recognize it when I see it

They are not technically wrong, but are clearly ill-defined for
academic research purposes.

5 / 33

Introduction State machine Security

Why do we bother to define it?

We need to make justifications in the real-world that depends on the
concept of “exploits”:

Mitigation strategies

- e.g., difficulty of exploitation vs performance
- e.g., difficulty of exploitation vs programmability
- e.g., difficulty of exploitation vs complexity

Exploitability of software/hardware defects

- e.g., does the Rowhammer bug makes a big security problem?
- e.g., can the Spectre bug be used to launch general attacks?
- e.g., if yes, how?

6 / 33

Introduction State machine Security

The MitiGator

Raising the bar on exploitation until no more exploits can be seen

Copyright: The MitiGator animation

7 / 33

https://twitter.com/halvarflake/status/845946208690585600

Introduction State machine Security

Learn principles, not examples

An important message conveyed by this paper (which is also a
message I want to share with you), is that exploitation IS NOT a
“bag of tricks”.

In security courses (including this one), we teaches

Stack smashing, buffer overflows, heap exploitations

SQL injection, XSS, etc

ASLR, CFI, sandboxing, etc.

It is important to remember that there is a more fundamental
principle behind these examples — exploitation is all about entering
and programming a weird machine.

8 / 33

Introduction State machine Security

Outline

1 Introduction

2 A tale of two state machines

3 Defining security

9 / 33

Introduction State machine Security

Behind an “exploit”

By just saying that “I exploited something”, you are conveying at
least two messages:

There exists some software running on top of some hardware

There are “defects” in either the software or hardware (or both).

10 / 33

Introduction State machine Security

What is software?

A software is an emulator for a finite-state machine (FSM) we
would like to have but we don’t.

Instead, we only have a general-purpose CPU which is designed to
model a huge spectrum of FSMs.

Hence, the reason we develop software is to confine the CPU to
follow and only follow the FSM we intend to have.

11 / 33

Introduction State machine Security

The intended finite state machine (IFSM)

The state machine we want to have is called the “intended
finite-state machine” (IFSM).

It is usually not explicitly specified

It is “perfect” by design — fully implements our intents

It cannot, by definition, have security problems.

12 / 33

Introduction State machine Security

A concrete example: a secret-keeping machine

The machine has the following functionalities:

Reads a password / secret (p, s) from a user and remembers it.

- NOTE: neither p nor s can be 0 (0 is reserved as an error code)

Given a password (p) that exists in the memory, the machine
returns a previously-stored secret (s) and forget both.

The machine will not need to store more than 5000 such pairs.

13 / 33

Introduction State machine Security

IFSM diagram

Start

Read password-secret

Store pair in memory

Remove pair from memory
Output the requested secret

Output error message

Password and secret not 0?
New password?
Fewer than 5000 stored?

Secret is 0?
Existing password?

Password is 0?
Password exists but secret is not 0?
Already 5000 stored?

14 / 33

Introduction State machine Security

IFSM diagram

Start

(p, s)← read()

Memory ← Memory ∪ (p, s)

Memory ← {(px , sx) ∈ Memory | px ̸= p}
print(s ′)

print(0)

IF condition
p ̸= 0 ∧ s ̸= 0
∀(p′, s ′) ∈ Memory : p′ ̸= p
|Memory | < 5000

IF condition
s = 0
∃(p′, s ′) ∈ Memory : p′ = p

IF condition
p = 0
∨∃(p′, s ′) ∈ Memory : p′ = p ∧ s ̸= 0
∨|Memory | = 5000

15 / 33

Introduction State machine Security

IFSM formalization

The set of all Memory , denoted asM, can be formally defined as

M =


∅
{(p1, s1)} pi , si ∈ {0, 1}32 − {0}
... pi ̸= pj
{(p1, s1), ..., (p5000, s5000)}



16 / 33

Introduction State machine Security

FSM quick recap

An FSM can be defined by a 7-tuple: (Q, i ,F ,Σ,∆, δ, σ)

Q: Set of states

i : The initial state

F : The set of final states

Σ: The input alphabet

∆: The output alphabet

δ: State transition function δ : Q × Σ→ Q

σ: Output mapping function σ : Q × Σ→ ∆

17 / 33

Introduction State machine Security

IFSM formalization — what we intend to have

The IFSM of our secret-keeping program can be defined as:

Q: {AM ,M ∈M}
i : A∅

F : ∅
Σ: {(p, s) | p, s ∈ {0, 1}32}
∆: {0, 1}32

δ: AM × (p, s)→ AM |AM∪(p,s) |AM−(p,s)

σ: AM × (p, s)→ s ′ | 0

18 / 33

Introduction State machine Security

What we actually have: a realistic CPU

The Cook-and-Reckhow RAM machine

216 memory cells each holding a 32-bit value

7 CPU registers (r0 to r6)

A small set of instructions

- Constant: LOAD(C, rd)

- Register operations: ADD(rs1, rs2, rd)

- Register operations: SUB(rs1, rs2, rd)

- Memory read: ICOPY(rp, rd)

- Memory write: DCOPY(rd, rs)

- Control flow: JNZ/JZ(r, Iz)

- Environment IO: READ(rd)
- Environment IO: PRINT(rs)

Harvard architecture (program is provided and external to RAM)

19 / 33

Introduction State machine Security

CPU FSM formalization — what we actually have

The FSM of a general-purpose CPU can be defined as:

Q: (q1, ..., q216)× (r0, ..., r6)× pi where qi , ri ∈ {0, 1}32, pi ∈ P

i : qi = 0, ri = 0, pi = P0

F : ∅
Σ: CPU Instruction Set {I}
∆: {0, 1}32

δ: Q × I → Q ′

σ: Q × I → (e ∈ ∆)

20 / 33

Introduction State machine Security

From spec to execution: a series of refinement

We want to translate our IFSM Sspec into our CPU FSM Sexecution.

It is actually a multi-stage process, involving (non-exhaustively)

Sspec ⊒ Slanguage ⊒ Smachine ⊒ Sexecution

Sspec ̸⊒ Slanguage : software bug, blame the developer

Slanguage ̸⊒ Smachine : compiler bug, blame the compiler

Smachine ̸⊒ Sexecution: hardware bug, blame the machine

21 / 33

Introduction State machine Security

Outline

1 Introduction

2 A tale of two state machines

3 Defining security

22 / 33

Introduction State machine Security

Bug =⇒ exploits?

Does having a bug in the refinement chain always implies a security
issue (a.k.a., an exploit)?

23 / 33

Introduction State machine Security

What is security?

Security are properties of the IFSM that we want to hold in the
presence of an adversary with a specific attack model.

24 / 33

Introduction State machine Security

Security of our secret-keeper

Informally, we want to ensure that anyone who interact with our
program need to know (or guess) the right password in order to
obtain the stored secret.

Put in a different way, the best way to attack our program to
extract some secret is to guess the password.

25 / 33

Introduction State machine Security

Security of our secret-keeper

Formally, we want the security property to hold at our IFSM:

Pr [s ∈ OIFSM] ≤ |Iattempt |
232

As well as at the final execution stage, after the refinement chain

Pr [s ∈ Oexecution] ≤
|Iattempt |

232

Even in the presence of an attacker with the assumed power of
performing single chosen bit-flip.

26 / 33

Introduction State machine Security

The security property depends on the implementation

Naive implementation: Simulate the Memory set as a flat linear
array with sequential scanning

Clever implementation: Simulate the Memory set with two
singly-linked lists.

Conclusion: the clever implementation is actually vulnerable.

27 / 33

Introduction State machine Security

An attack on the clever implementation

1 Attacker sends (p0, s0), (p1, s1), (p2, s2)

2 Victim sends (pd , sd)

3 Attacker sends (p2, 0), (p1, 0), (p3, s3), (p4, s4)

4 Attacker gets to corrupt a single bit: flip the least significant bit
for memory cell content at b’0101 (i.e., cell 0x5)

5 Attacker sends (s4, 0)

6 Attacker sends (12, 0) and obtains sd

28 / 33

Introduction State machine Security

The naive implementation is secure

Please refer to the paper for the details of the proof.

29 / 33

http://www.dullien.net/thomas/weird-machines-exploitability.pdf

Introduction State machine Security

Programming the weird machine

30 / 33

Introduction State machine Security

An emergent insruction set

This weird machine creates an emergent instruction set that is
constrained by:

The IFSM

The program that is refined from the IFSM

The CPU FSM

31 / 33

Introduction State machine Security

Outcomes of weird machine programming

Reverted back to the IFSM Reached the target state

32 / 33

Introduction State machine Security

⟨ End ⟩

33 / 33

	weird machine
	Introduction
	A tale of two state machines
	Defining security

