CS 489 / 698: Software and Systems Security

Module 2: Program Security (Attacks)
weird machine

Meng Xu (University of Waterloo)
Spring 2023



Introduction
000000

Outline

@ Introduction

2/33



Introduction
0e00000

Based on paper

Weird Machines, Exploitability, and Provable Unexploitability

By Thomas Dullien published in 2017 when he was in Google
Project Zero.

3/33



Introduction
[e]e] lelelele]

Why this paper?

It attempts to formalize a concept that has been intuitively known
for quite a while in the community of security practitioners, i.e.,
both by the hackers and the researchers...

. and that concept is called “exploit”.

4/33



Introduction
[e]e]e] lelele]

What is an exploit?

o Magic

@ Access (mostly unauthorized)

e Controls the instruction pointer (e.g., EIP/RIP register)
@ A program does something it is not supposed to do

@ | can recognize it when | see it

They are not technically wrong, but are clearly ill-defined for
academic research purposes.

5/33



Introduction
0000e00

Why do we bother to define it?

We need to make justifications in the real-world that depends on the
concept of “exploits”:

@ Mitigation strategies

- e.g., difficulty of exploitation vs performance
- e.g., difficulty of exploitation vs programmability
- e.g., difficulty of exploitation vs complexity

e Exploitability of software/hardware defects

- e.g., does the Rowhammer bug makes a big security problem?
- e.g., can the Spectre bug be used to launch general attacks?
- e.g., if yes, how?

6/33



Introduction
00000e0

The MitiGator

Raising the bar on exploitation until no more exploits can be seen

7/33


https://twitter.com/halvarflake/status/845946208690585600

Introduction
000000e

Learn principles, not examples

An important message conveyed by this paper (which is also a
message | want to share with you), is that exploitation IS NOT a
“bag of tricks".

In security courses (including this one), we teaches

@ Stack smashing, buffer overflows, heap exploitations
@ SQL injection, XSS, etc

@ ASLR, CFlI, sandboxing, etc.

It is important to remember that there is a more fundamental
principle behind these examples — exploitation is all about entering
and programming a weird machine.

8/33



State machine
0000000000000

Outline

© A tale of two state machines

9/33



State machine
0®00000000000

Behind an “exploit”

By just saying that “l exploited something”, you are conveying at
least two messages:

@ There exists some software running on top of some hardware

@ There are “defects” in either the software or hardware (or both).

10/33



State machine
00e0000000000

What is software?

A software is an emulator for a finite-state machine (FSM) we
would like to have but we don't.

Instead, we only have a general-purpose CPU which is designed to
model a huge spectrum of FSMs.

Hence, the reason we develop software is to confine the CPU to
follow and only follow the FSM we intend to have.

11/33



State machine
0000000000000

The intended finite state machine (IFSM)

The state machine we want to have is called the “intended
finite-state machine” (IFSM).

o It is usually not explicitly specified
o It is “perfect” by design — fully implements our intents

@ It cannot, by definition, have security problems.

12/33



State machine
0000@00000000

A concrete example: a secret-keeping machine

The machine has the following functionalities:

@ Reads a password / secret (p, s) from a user and remembers it.
- NOTE: neither p nor s can be 0 (0 is reserved as an error code)

@ Given a password (p) that exists in the memory, the machine
returns a previously-stored secret (s) and forget both.

@ The machine will not need to store more than 5000 such pairs.

13/33



State machine
0000080000000

IFSM diagram

Start

{ Read password-secret } l

Store pair in memory New password?
' Fewer than 5000 stored?

,,,,,,,,,,,,,,,,,,,,,

Remove pair from memory ! Secret is 07 |
Output the requested secret ' Existing password? |

' Password is 07
4{ Output error message (— Password exists but secret is not 07 ‘<-
w Already 5000 stored? |




State machine
000000@000000

IFSM diagram

Start

(p,s) « read() l

"IF condition 1
PFOANS#0 |

’ Memory < Memory U (p, s)

V(p',s") € Memory : p' # p
. |[Memory| < 5000

,,,,,,,,,,,,,,,,,,,,,

. - ' IF condition !
|| Memory < {(p*,s*) € Memory | p* # p} -0 d

. ; ‘
print(s’) 3(p',s') € Memory : p' = p

print(0) %‘ V3(p',s") € Memory . p' =pAs#0

' V|Memory| = 5000 |




State machine
0000000 e00000

IFSM formalization

The set of all Memory, denoted as M, can be formally defined as

0
M = {(p1751)} pi,Si € {07 1}32 - {O}
pi # pj
{(p1,51); .-, (P5000, S5000) }

16/33



State machine
0000000 0e0000

FSM quick recap

An FSM can be defined by a 7-tuple: (Q,i,F,X,A,0d,0)

Q: Set of states

i: The initial state

F: The set of final states

> : The input alphabet

A: The output alphabet

§: State transition function § : Q@ x X —

o: Output mapping function 0 : @ x ¥ — A

17/33



State machine
0000000008000

IFSM formalization — what we intend to have

The IFSM of our secret-keeping program can be defined as:

o Q: {Am, M e M}

e i Ay

o F: ()

o % {(p,s)|p,s € {0,1}%%}

o A: {0,1}%

° 5: Ay X (p,s) = Am | Amu(p,s) | AM—(p,s)
e 0. Ay x(p,s)— |0

18/33



State machine
0000000000800

What we actually have: a realistic CPU

The Cook-and-Reckhow RAM machine

@ 2'® memory cells each holding a 32-bit value
e 7 CPU registers (rp to rp)
@ A small set of instructions
- Constant: LOAD(C, ry)
- Register operations: ADD(rs1, rs2, r4)
- Register operations: SUB(rs1, rs2, ra)
- Memory read: ICOPY(r,, rq)
- Memory write: DCOPY(ry, rs)
- Control flow: INZ/3Z(r, 1)
- Environment 10: READ(ry)
- Environment 10: PRINT(r)

@ Harvard architecture (program is provided and external to RAM)

19/33



State machine
0000000000080

CPU FSM formalization — what we actually have

The FSM of a general-purpose CPU can be defined as:

Q: (q1,..., goi6) X (ro, ..., 1) X pi where g;, r; € {0,1}32, p; € P
irqi=0,rr=0,pi = Po

F: 0

Y. CPU Instruction Set {/}

A: {0,1}%

0 QxIl—=Q

0o @xIl—(ecA)

20/33



State machine
00000000000 0e

From spec to execution: a series of refinement

We want to translate our IFSM Sg,ec into our CPU FSM Seyecution-
It is actually a multi-stage process, involving (non-exhaustively)

Sspec - Slanguage . Smachine - Sexecution
® Sopec 2 Sianguage: software bug, blame the developer

® Sianguage £ Smachine: compiler bug, blame the compiler

@ Sphachine 2 Sexecution: hardware bug, blame the machine

21/33



Securit
000000000000

Outline

© Defining security

22/33



Securit
000000000000

Bug — exploits?

Does having a bug in the refinement chain always implies a security
issue (a.k.a., an exploit)?

23/33



Securit
00@000000000

What is security?

Security are properties of the IFSM that we want to hold in the
presence of an adversary with a specific attack model.

24 /33



Securit
000000000000

Security of our secret-keeper

Informally, we want to ensure that anyone who interact with our
program need to know (or guess) the right password in order to
obtain the stored secret.

Put in a different way, the best way to attack our program to
extract some secret is to guess the password.

25/33



Securit
0000e0000000

Security of our secret-keeper

Formally, we want the security property to hold at our IFSM:

‘ Iattempt|

Pr[s € Osm] < 232

As well as at the final execution stage, after the refinement chain

| Iattempt|

Pr[s S Oexecution] < 232

Even in the presence of an attacker with the assumed power of
performing single chosen bit-flip.

26/33



Securit
000008000000

The security property depends on the implementation

@ Naive implementation: Simulate the Memory set as a flat linear
array with sequential scanning

@ Clever implementation: Simulate the Memory set with two
singly-linked lists.

Conclusion: the clever implementation is actually vulnerable.

27/33



Securit
[e]e]e]ele]e] lelelele]e)

An attack on the clever implementation

© Attacker sends (po, o), (p1,51), (P2, %2)
@ Victim sends (pg, 54)
@ Attacker sends (p2,0), (p1,0), (p3,s3), (pa,sa)

@ Attacker gets to corrupt a single bit: flip the least significant bit
for memory cell content at b’0101 (i.e., cell 0x5)

@ Attacker sends (ss,0)
@ Attacker sends (12,0) and obtains sy

28/33



Securit
0000000 e0000

The naive implementation is secure

Please refer to the paper for the details of the proof.

29/33


http://www.dullien.net/thomas/weird-machines-exploitability.pdf

Securit
00000000e000

Programming the weird machine

30/33



Securit
000000000800

An emergent insruction set

This weird machine creates an emergent instruction set that is
constrained by:

@ The IFSM

@ The program that is refined from the IFSM
e The CPU FSM

31/33



Securit
000000000080

Outcomes of weird machine programming

Reverted back to the IFSM Reached the target state

32/33



Security
00000000000 e

( End )

33/33



	weird machine
	Introduction
	A tale of two state machines
	Defining security


