
CS 489 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module 2: Program Security (Attacks)
data races

Spring 2023

Introduction Intuitive Formal Automicity Other

Outline

1 Why studying data races?

2 Intuitive definition

3 Formal reasoning

4 Data race vs atomicity

5 Other form of races

2 / 47

Introduction Intuitive Formal Automicity Other

What is data race?

global var count = 0

global var mutex = ⊥

for(i = 0; i < x; i++) {
/* do sth critical */

......

lock(mutex);

count++;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
/* do sth critical */

......

lock(mutex);

count++;

unlock(mutex);

}

Thread 2

Q: What is the value of count when both threads terminate?

3 / 47

Introduction Intuitive Formal Automicity Other

Data race in other settings

Data races are not tied to a specific programming language, instead,
they are tied to data sharing in concurrent execution

For example, in the database context:

Q: If two database clients send the following requests concurrently,
what will be the result (both try to withdraw $100 from Alice)?

Client 1
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

Client 2
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

4 / 47

Introduction Intuitive Formal Automicity Other

Data race in a database setting

One possible interleaving (that messes up the states)

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

Q: How to prevent data race in this case?

Interleavings with transactions
BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

5 / 47

Introduction Intuitive Formal Automicity Other

Recall the “nice” properties of memory error

Data race is a common attack vector and building blocks for
sophisticated exploitations... just like memory error.

Memory errors have universally accepted definitions
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

Memory errors often lead to a set of known consequences that are
generally considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding memory errors typically do not require program-specific
domain knowledge
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases

In fact, very few types of vulnerabilities meet these requirements.
=⇒ data race is one of them!

6 / 47

Introduction Intuitive Formal Automicity Other

“s/memory error/data race/g”

Data races have universally accepted definitions

- Once you find a data race, you do not need to diligently argue that
this is a bug and not a feature

Data races often lead to a set of known consequences that are
generally considered severe (e.g., data leak or denial-of-service)

- Once you find a data race, you do not need to construct a working
exploit to justify it

Finding data races typically do not require program-specific
domain knowledge

- If you have a technique that can find data races in one codebase, you
can scale it up to millions of codebases

Data races can only happen in programs with data sharing through
a concurrency model, e.g., multi-threaded or distributed programs.

7 / 47

Introduction Intuitive Formal Automicity Other

Data race may lead to memory errors

p is a global pointer initialized to NULL

if (!p) {
p = malloc(128);

}

if (p) {
free(p);

p = NULL;

}

Thread 1

if (!p) {
p = malloc(256);

}

if (p) {
free(p);

p = NULL;

}

Thread 2

Q: What are the possible outcomes of this execution?

8 / 47

Introduction Intuitive Formal Automicity Other

Data race as heisenbug

Programs which contain data races usually demonstrate unexpected
and even non-deterministic behavior.

The outcome might depend on a specific execution order (a.k.a.
thread interleaving).

Re-running the program may not always produce the same results.

Concurrent programs are hard to debug and even harder to ensure
correctness.

9 / 47

Introduction Intuitive Formal Automicity Other

Outline

1 Why studying data races?

2 Intuitive definition

3 Formal reasoning

4 Data race vs atomicity

5 Other form of races

10 / 47

Introduction Intuitive Formal Automicity Other

An intuitive definition

Intuitively, a data race happens when:

1 There are two memory acceses from different threads.

2 Both acceses target the same memory location.

3 At least one of them is a write operation.

4 Both acceses could interleave freely without restrictions such as
synchronization primitives or causality relations.

11 / 47

Introduction Intuitive Formal Automicity Other

Data race definition in C++ standard

When

an evaluation of an expression writes to a memory location and
another evaluation reads or modifies the same memory location,

the expressions are said to conflict.

A program that has two conflicting evaluations has a data race unless:

both evaluations execute on the same thread, or
both conflicting evaluations are atomic operations, or
one of the conflicting evaluations happens-before another.

Adapted from a community-backed C++ reference site. For the full
version, please refer to the related sections in C++ working draft.

12 / 47

https://en.cppreference.com/w/cpp/language/memory_model
http://eel.is/c++draft/intro.races

Introduction Intuitive Formal Automicity Other

Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
count++;

}

Thread 1

for(i = 0; i < y; i++) {
count++;

}

Thread 2

13 / 47

Introduction Intuitive Formal Automicity Other

Free interleavings without locking

Thread 1 Thread 2

R

R

W

W

Thread 1 Thread 2

R

R

W

W

Thread 1 Thread 2

R

W

R

W

14 / 47

Introduction Intuitive Formal Automicity Other

Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 2

15 / 47

Introduction Intuitive Formal Automicity Other

Limited interleavings with locking

Thread 1 Thread 2

lock

R

W

unlock

lock

R

W

unlock

16 / 47

Introduction Intuitive Formal Automicity Other

Common synchronization primitives

Lock / Mutex / Critical section

Read-write lock

Barrier

Semaphore

17 / 47

Introduction Intuitive Formal Automicity Other

Revisiting the definition

Intuitively, a data race happens when:

1 There are two memory acceses from different threads.

2 Both acceses target the same memory location.

3 At least one of them is a write operation.

4 Both acceses could interleave freely without restrictions such as
synchronization primitives

(((((((((((hhhhhhhhhhh
or causality relations.

18 / 47

Introduction Intuitive Formal Automicity Other

Causality relations: an example

1 #include <stdio.h>

2 #include <pthread.h>

3

4 int i;
5 int retval;
6

7 void* foo(void* p){
8 printf("Value of i: %d\n", i);
9 printf("Value of j: %d\n", *(int *)p);

10 pthread_exit(&retval);

11 }

12

13 int main(void){
14 int i = 1;
15 int j = 2;
16

17 pthread_t id;

18 pthread_create(&id, NULL, foo, &j);

19 pthread_join(id, NULL);

20

21 printf("Return value from thread: %d\n", retval);
22 }

19 / 47

Introduction Intuitive Formal Automicity Other

Causality relations

Thread 1 Thread 2

Wvar i

Wvar j

pthread_create

pthread_join

Rvar retval

<thread start>

R var i

R var j

W var retval

<thread end>

20 / 47

Introduction Intuitive Formal Automicity Other

Outline

1 Why studying data races?

2 Intuitive definition

3 Formal reasoning

4 Data race vs atomicity

5 Other form of races

21 / 47

Introduction Intuitive Formal Automicity Other

Revisiting the definition

If we can find, statically or dynamically, a pair of memory access
instructions (A1,A2) such that

they originate from different threads,

both A1 and A2 target the same memory location, AND

at least one of them is a write operation,

then we conclude that (A1,A2) must be one of the following cases:

1 A1 strictly happens before A2 or vice versa due to causality, OR

2 A1 and A2 can only occur when a common lock is held, OR

3 (A1,A2) is a data race.

Q: Wait... how are locks implemented?

22 / 47

Introduction Intuitive Formal Automicity Other

How are synchronization primitives implemented?

Hardware support

- Atomic swap
- Atomic read-modify-write

* compare-and-swap
* test-and-set
* fetch-and-add
*

Software algorithms

- Dekker’s algorithm

23 / 47

Introduction Intuitive Formal Automicity Other

Spinlock with atomic swap (xchg)
1 locked: ; The lock variable. 1 = locked, 0 = unlocked.

2 dd 0

3

4 spin_lock:

5 mov eax, 1 ; Set the EAX register to 1.

6 xchg eax, [locked] ; Atomically swap the EAX register with

7 ; the lock variable.

8 ; This will always store 1 to the lock, leaving

9 ; the previous value in the EAX register.

10 test eax, eax ; Test EAX with itself. Among other things, this

11 ; will set the processor’s Zero Flag if EAX is 0.

12 ; If EAX is 0, then the lock was unlocked and

13 ; we just locked it.

14 ; Otherwise, EAX is 1 and we didn’t acquire the lock.

15 jnz spin_lock ; Jump back to the MOV instruction if the Zero Flag is

16 ; not set; the lock was previously locked, and so

17 ; we need to spin until it becomes unlocked.

18 ret ; The lock has been acquired, return to the caller.

19

20 spin_unlock:

21 xor eax, eax ; Set the EAX register to 0.

22 xchg eax, [locked] ; Atomically swap the EAX register with

23 ; the lock variable.

24 ret ; The lock has been released. 24 / 47

Introduction Intuitive Formal Automicity Other

Dekker’s algorithm

1 bool wants_to_enter[2] = {false, false};
2 int turn = 0; /* or turn = 1 */

1 // lock

2 wants_to_enter[0] = true;

3 while (wants_to_enter[1]) {
4 if (turn != 0) {
5 wants_to_enter[0] = false;

6 // busy wait

7 while (turn != 0) {}
8 wants_to_enter[0] = true;

9 }

10 }

11

12 /* ... critical section ... */

13

14 // unlock

15 turn = 1;

16 wants_to_enter[0] = false;

Thread 1

1 // lock

2 wants_to_enter[1] = true;

3 while (wants_to_enter[0]) {
4 if (turn != 1) {
5 wants_to_enter[1] = false;

6 // busy wait

7 while (turn != 1) {}
8 wants_to_enter[1] = true;

9 }

10 }

11

12 /* ... critical section ... */

13

14 // unlock

15 turn = 0;

16 wants_to_enter[1] = false;

Thread 2
25 / 47

Introduction Intuitive Formal Automicity Other

Dekker’s algorithm

Q: Suppose that you are not aware that Dekker’s algorithm is
implementing a lock, are there data races in Dekker’s algorithm?

A: By looking at the code, yes...
However, this is often called a benign data race.

26 / 47

Introduction Intuitive Formal Automicity Other

Is this a data race?

1 int x = 0;
2 bool flag = false;
3 lock mutex = unlocked;

1 x++;

2 lock(mutex);

3 flag = true;

4 unlock(mutex);

Thread 1

1 while(true) {
2 lock(mutex);

3 if (flag) {
4 break;
5 }

6 unlock(mutex);

7 }

8 x--;

Thread 2

27 / 47

Introduction Intuitive Formal Automicity Other

Is this a data race?

1 int x = 0;
2 bool flag = false;

1 x++;

2 flag = true;

Thread 1

1 while (!flag) {};
2 x--;

Thread 2

28 / 47

Introduction Intuitive Formal Automicity Other

How to model concurrency mathematically?

Lamport clock

Vector clock

29 / 47

Introduction Intuitive Formal Automicity Other

Lamport clock algorithm

Each thread has its own clock variable t

On initialization:

- t ← 0

On write to shared memory *ptr = val:

- t ← t + 1
- store t alongside val at memory location ptr

On read from shared memory val = *ptr:

- retrieve the stored clock t ′ at memory location ptr
- t ← max(t, t ′) + 1

Properties of Lamport clock:

a→ b =⇒ L(a) < L(b)

L(a) < L(b) ≠⇒ a→ b

30 / 47

Introduction Intuitive Formal Automicity Other

Vector clock algorithm

Each thread i has its own clock vector t

On initialization:

- T ← ⟨0, 0, . . . , 0⟩N , assuming N threads

On write to shared memory *ptr = val:

- T [i]← T [i] + 1
- store T alongside val at memory location ptr

On read from shared memory val = *ptr:

- retrieve the stored clock T ′ at memory location ptr
- ∀k ∈ [0,N) : T [k] = max(T [k],T ′[k])
- T [i]← T [i] + 1

31 / 47

Introduction Intuitive Formal Automicity Other

Properties of the vector clock algorithm

With the following definition on the timestamp ordering:

T = T ′ ⇐⇒ ∀i ∈ [0,N) : T [i] = T ′[i]

T ≤ T ′ ⇐⇒ ∀i ∈ [0,N) : T [i] ≤ T ′[i]

T < T ′ ⇐⇒ T ≤ T ′ ∧ T ̸= T ′

T ∥ T ′ ⇐⇒ T ̸≤ T ′ ∧ T ′ ̸≤ T

We have:

a→ b ⇐⇒ V (a) < V (b)

a = b ⇐⇒ V (a) = V (b)

a ∥ b ⇐⇒ V (a) ∥ V (b)

32 / 47

Introduction Intuitive Formal Automicity Other

Practice exercise (vector clock)

1 int x = 0;
2 bool flag = false;

1 x++;

2 flag = true;

Thread 1

1 while (!flag) {};
2 x--;

Thread 2

Prove: the write of x at x-- in thread 2 can never happen before
the read of x in x++ in thread 1.

33 / 47

Introduction Intuitive Formal Automicity Other

Practice exercise (vector clock)

1 int x = 0;
2 bool r = false;

1 v = load(&x);

2 store(&x, v + 1);

3 store(&r, true);

Thread 1

1 loop:

2 c = load(&r);

3 jump_if_false(c, loop);

4 v = load(&x);

5 store(&x, v - 1);

Thread 2

Prove: line 5 at thread 2 can never happen before line 1 at thread 1.

34 / 47

Introduction Intuitive Formal Automicity Other

Outline

1 Why studying data races?

2 Intuitive definition

3 Formal reasoning

4 Data race vs atomicity

5 Other form of races

35 / 47

Introduction Intuitive Formal Automicity Other

Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

t = count;

unlock(mutex);

t++;

lock(mutex);

count = t;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

t = count;

unlock(mutex);

t++;

lock(mutex);

count = t;

unlock(mutex);

}

Thread 2
36 / 47

Introduction Intuitive Formal Automicity Other

Revisit the example

Q: In this modified example, is there a data race?

A: No

Q: But the results are the same with all locks removed?

global var count = 0

for(i = 0; i < x; i++) {
t = count;

t++;

count = t;

}

for(i = 0; i < y; i++) {
t = count;

t++;

count = t;

}

A: No, depending on how hardware works (e.g., per-bit conflict)

37 / 47

Introduction Intuitive Formal Automicity Other

Extract the commonalities of the two variants

Q: What is common in developers’ expectations in the two variants?

A: State do not change for a critical section during execution.

A: Generalization: state remain integral for a critical section
during execution. No change of states is just one way of remaining
integral (assuming state is integral before the critical section).

38 / 47

Introduction Intuitive Formal Automicity Other

State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

1 int add_x(v: int) {
2 g.x += v;

3 g.y -= v;

4 }

Thread 1

1 int add_y(v: int) {
2 g.y += v;

3 g.x -= v;

4 }

Thread 2

39 / 47

Introduction Intuitive Formal Automicity Other

State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

3 lock mutex = unlocked;

1 int add_x(v: int) {
2 lock(mutex);

3 g.x += v;

4 unlock(mutex);

5 lock(mutex);

6 g.y -= v;

7 unlock(mutex);

8 }

Thread 1

1 int add_y(v: int) {
2 lock(mutex);

3 g.y += v;

4 unlock(mutex);

5 lock(mutex);

6 g.x -= v;

7 unlock(mutex);

8 }

Thread 2

Q: Is this the right way of adding locks?

A: No, as the invariant is not guaranteed

40 / 47

Introduction Intuitive Formal Automicity Other

State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

3 lock mutex = unlocked;

1 int add_x(v: int) {
2 lock(mutex);

3 g.x += v;

4 g.y -= v;

5 unlock(mutex);

6 }

Thread 1

1 int add_y(v: int) {
2 lock(mutex);

3 g.y += v;

4 g.x -= v;

5 unlock(mutex);

6 }

Thread 2

Q: Is this the right way of adding locks?

A: Yes, the invariant is guaranteed at each entry and exit of the
critical section in both threads

41 / 47

Introduction Intuitive Formal Automicity Other

State integrity is hard to capture

However, in practice, the invariant often exists in

some architectural design documents (which no one reads)

code comments in a different file (which no one notices)

forklore knowledge among the dev team

the mind of the developer who has resigned a few years ago...

42 / 47

Introduction Intuitive Formal Automicity Other

Outline

1 Why studying data races?

2 Intuitive definition

3 Formal reasoning

4 Data race vs atomicity

5 Other form of races

43 / 47

Introduction Intuitive Formal Automicity Other

A more abstract view of data race

Q: Why data race can happen in the first place?

A: Because two threads in the same process share memory

We can further generalize this concept by asking:

Q: What else do they share?
Q: What about other entities that may run concurrently?

And the answer to these questions will help define race condition.

44 / 47

Introduction Intuitive Formal Automicity Other

Example: race over the filesystem

1 #include <...>

2

3 int main(int argc, char *argv[]) {
4 FILE *fd;
5 struct stat buf;
6

7 if (stat("/some_file", &buf)) {
8 exit(1); // cannot read stat message

9 }

10

11 if (buf.st_uid != getuid()) {
12 exit(2); // permission denied

13 }

14

15 fd = fopen("/some_file", "wb+");

16 if (fd == NULL) {
17 exit(3); // unable to open the file

18 }

19

20 fprintf(f, "<some-secret-value>");

21 fclose(fd);

22 return 0;
23 }

45 / 47

Introduction Intuitive Formal Automicity Other

Example: the Dirty COW exploit

CVE-2016-5195

Allows local privilege escalation: user(1000) → root(0).

Exists in the kernel for nine years before finally patched.

Details on the Website.

46 / 47

https://dirtycow.ninja/

Introduction Intuitive Formal Automicity Other

⟨ End ⟩

47 / 47

	data races
	Why studying data races?
	Intuitive definition
	Formal reasoning
	Data race vs atomicity
	Other form of races

