
CS 489 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module 3: Operating System Security
access control and capabilities

Spring 2023



Intro Matrix Model seL4

Outline

1 Introduction to access control

2 Implementing the access control matrix

3 Models for security policies

4 Case study: seL4 microkernel

2 / 35



Intro Matrix Model seL4

Why this topic?

Q: Recap: what does an operating system do?

A: Resource sharing — An operating system (OS) allows different
“entities” to access different resources in a shared way.

OS makes resources available to entities if required by them and
when permitted by some policy (and availability).

- What is a resource?
- What is an entity?
- How does an entity request for a resource?
- How does a policy get specified?
- How is the policy enforced?

All based on the requirement that:

an entity can correctly identify itself AND,

the OS can correctly authenticate the entity.

3 / 35



Intro Matrix Model seL4

Why this topic?

Q: Recap: what does an operating system do?

A: Resource sharing — An operating system (OS) allows different
“entities” to access different resources in a shared way.

OS makes resources available to entities if required by them and
when permitted by some policy (and availability).

- What is a resource?
- What is an entity?
- How does an entity request for a resource?
- How does a policy get specified?
- How is the policy enforced?

All based on the requirement that:

an entity can correctly identify itself AND,

the OS can correctly authenticate the entity.
3 / 35



Intro Matrix Model seL4

Goals of access control

In general, access control has three goals:

Check on every access: else the operating system might fail to
notice that access rights have been revoked

Enforce least privilege: grant user/program access only to
smallest number of objects required to perform a task

Verify acceptable use: limit types of activity that can be
performed on an object

4 / 35



Intro Matrix Model seL4

Access control matrix

Set of protected objects: O

- E.g., files or hardware devices

Set of subjects: S

- E.g., users, processes acting on behalf of users

Set of rights: R

- E.g., read, write, execute, own

Access control matrix consists of entries a[s, o], where

- s ∈ S
- o ∈ O, and
- a[s, o] ⊆ R

5 / 35



Intro Matrix Model seL4

Access control matrix

Set of protected objects: O

- E.g., files or hardware devices

Set of subjects: S

- E.g., users, processes acting on behalf of users

Set of rights: R

- E.g., read, write, execute, own

Access control matrix consists of entries a[s, o], where

- s ∈ S
- o ∈ O, and
- a[s, o] ⊆ R

5 / 35



Intro Matrix Model seL4

Example access control matrix

File 1 File 2 File 3

Alice orw rx o

Bob r orx

Carol rx

6 / 35



Intro Matrix Model seL4

Implementing access control matrix

In practice, access control matrix is rarely implemented as a matrix.

Q: Why?

A: Too fine-grained, hard to manage (e.g., adding a new subject or
object requires the addition of an entire role or column respectively),
too sparse =⇒ waste of space.

Instead, an access control matrix is typically implemented as

a set of access control lists
- column-wise representation

a set of privilege lists
- row-wise representation

a set of capabilities
- cell-wise representation that encapsulates authentication as well

or a combination

7 / 35



Intro Matrix Model seL4

Implementing access control matrix

In practice, access control matrix is rarely implemented as a matrix.

Q: Why?

A: Too fine-grained, hard to manage (e.g., adding a new subject or
object requires the addition of an entire role or column respectively),
too sparse =⇒ waste of space.

Instead, an access control matrix is typically implemented as

a set of access control lists
- column-wise representation

a set of privilege lists
- row-wise representation

a set of capabilities
- cell-wise representation that encapsulates authentication as well

or a combination

7 / 35



Intro Matrix Model seL4

Implementing access control matrix

In practice, access control matrix is rarely implemented as a matrix.

Q: Why?

A: Too fine-grained, hard to manage (e.g., adding a new subject or
object requires the addition of an entire role or column respectively),
too sparse =⇒ waste of space.

Instead, an access control matrix is typically implemented as

a set of access control lists
- column-wise representation

a set of privilege lists
- row-wise representation

a set of capabilities
- cell-wise representation that encapsulates authentication as well

or a combination
7 / 35



Intro Matrix Model seL4

Outline

1 Introduction to access control

2 Implementing the access control matrix

3 Models for security policies

4 Case study: seL4 microkernel

8 / 35



Intro Matrix Model seL4

Access control lists (ACLs)

Each object has a list of subjects and their access rights

Example:

File 1: {Alice:orw, Bob:r}
File 2: {Alice:rx, Bob:orx, Carol:rx}
File 3: {Alice:o}

Implementation on real-world operating systems:

ACLs are implemented in Windows file system (NTFS), user entry
can denote entire user group (e.g., “Students”)
Classic UNIX file system has a simpler model of ACLs.
- Each file lists its owner, a group, and a third entry representing all
other users.

- For each class, there is a separate set of rights.
- Groups are system-wide defined in /etc/group, use
chmod/chown/chgrp for setting access rights to your files

9 / 35



Intro Matrix Model seL4

Access control lists (ACLs)

Each object has a list of subjects and their access rights

Example:

File 1: {Alice:orw, Bob:r}
File 2: {Alice:rx, Bob:orx, Carol:rx}
File 3: {Alice:o}

Implementation on real-world operating systems:

ACLs are implemented in Windows file system (NTFS), user entry
can denote entire user group (e.g., “Students”)
Classic UNIX file system has a simpler model of ACLs.
- Each file lists its owner, a group, and a third entry representing all
other users.

- For each class, there is a separate set of rights.
- Groups are system-wide defined in /etc/group, use
chmod/chown/chgrp for setting access rights to your files

9 / 35



Intro Matrix Model seL4

Access control lists (ACLs)

Q: Which of the following can we do quickly for ACLs?

Determine set of allowed users per object

Determine set of objects that a user can access

Revoke a user’s access right to an object

Revoke a user’s access right to all objects

Revoke all users’ access rights to an object

A: Easy, Hard, Easy, Hard, Easy

10 / 35



Intro Matrix Model seL4

Access control lists (ACLs)

Q: Which of the following can we do quickly for ACLs?

Determine set of allowed users per object

Determine set of objects that a user can access

Revoke a user’s access right to an object

Revoke a user’s access right to all objects

Revoke all users’ access rights to an object

A: Easy, Hard, Easy, Hard, Easy

10 / 35



Intro Matrix Model seL4

Privilege lists

Each subject has a list of objects it can access with associated rights

Example:

Alice: {File 1:orw, File 2:rx, File 3:o}
Bob: {File 1:r, File 2:orx}
Carol: {File 2:rx}

Implementation on real-world operating systems:

Android / iOS permission framework

POSIX capabilities (despite its name...)

11 / 35

https://man7.org/linux/man-pages/man7/capabilities.7.html


Intro Matrix Model seL4

Privilege lists

Each subject has a list of objects it can access with associated rights

Example:

Alice: {File 1:orw, File 2:rx, File 3:o}
Bob: {File 1:r, File 2:orx}
Carol: {File 2:rx}

Implementation on real-world operating systems:

Android / iOS permission framework

POSIX capabilities (despite its name...)

11 / 35

https://man7.org/linux/man-pages/man7/capabilities.7.html


Intro Matrix Model seL4

Privilege lists

Q: Which of the following can we do quickly for privilege lists?

Determine set of allowed users per object

Determine set of objects that a user can access

Revoke a user’s access right to an object

Revoke a user’s access right to all objects

Revoke all users’ access rights to an object

A: Hard, Easy, Easy, Easy, Hard

12 / 35



Intro Matrix Model seL4

Privilege lists

Q: Which of the following can we do quickly for privilege lists?

Determine set of allowed users per object

Determine set of objects that a user can access

Revoke a user’s access right to an object

Revoke a user’s access right to all objects

Revoke all users’ access rights to an object

A: Hard, Easy, Easy, Easy, Hard

12 / 35



Intro Matrix Model seL4

Capabilities

A capability is an unforgeable token that gives its owner some
access rights to an object.

Example:

C1: {File 1:w}, C2: {File 2:r}, C3: {File 3: o}, C4: {File 2: x}
Alice: {C1, C2, C3, C4}, Bob: {C2, C4}, Carol: {C4}

Some properties about capabilities-based system:
Unforgeability enforced by either
- a component running at a higher privilege level (e.g., kernel)
- cryptographic mechanisms (e.g., digital signatures)

Tokens might be transferable (or non-transferable)
Tokens might be copyable (or non-copyable)
Tokens serve both authentication and access control

Some research/experimental OSs (e.g., Fuchsia, seL4) have
fine-grained support for tokens.

13 / 35



Intro Matrix Model seL4

Capabilities

A capability is an unforgeable token that gives its owner some
access rights to an object.

Example:

C1: {File 1:w}, C2: {File 2:r}, C3: {File 3: o}, C4: {File 2: x}
Alice: {C1, C2, C3, C4}, Bob: {C2, C4}, Carol: {C4}

Some properties about capabilities-based system:
Unforgeability enforced by either
- a component running at a higher privilege level (e.g., kernel)
- cryptographic mechanisms (e.g., digital signatures)

Tokens might be transferable (or non-transferable)
Tokens might be copyable (or non-copyable)
Tokens serve both authentication and access control

Some research/experimental OSs (e.g., Fuchsia, seL4) have
fine-grained support for tokens.

13 / 35



Intro Matrix Model seL4

Capabilities

A capability is an unforgeable token that gives its owner some
access rights to an object.

Example:

C1: {File 1:w}, C2: {File 2:r}, C3: {File 3: o}, C4: {File 2: x}
Alice: {C1, C2, C3, C4}, Bob: {C2, C4}, Carol: {C4}

Some properties about capabilities-based system:
Unforgeability enforced by either
- a component running at a higher privilege level (e.g., kernel)
- cryptographic mechanisms (e.g., digital signatures)

Tokens might be transferable (or non-transferable)
Tokens might be copyable (or non-copyable)
Tokens serve both authentication and access control

Some research/experimental OSs (e.g., Fuchsia, seL4) have
fine-grained support for tokens.

13 / 35



Intro Matrix Model seL4

Capabilities

Q: Which of the following can we do quickly for capabilities?

Determine set of allowed users per object

Determine set of objects that a user can access

Revoke a user’s access right to an object

Revoke a user’s access right to all objects

Revoke all users’ access rights to an object

A: Hard, Easy, Easy, Easy, Easy

14 / 35



Intro Matrix Model seL4

Capabilities

Q: Which of the following can we do quickly for capabilities?

Determine set of allowed users per object

Determine set of objects that a user can access

Revoke a user’s access right to an object

Revoke a user’s access right to all objects

Revoke all users’ access rights to an object

A: Hard, Easy, Easy, Easy, Easy

14 / 35



Intro Matrix Model seL4

Outline

1 Introduction to access control

2 Implementing the access control matrix

3 Models for security policies

4 Case study: seL4 microkernel

15 / 35



Intro Matrix Model seL4

Why do we need security models?

Q: You have implemented the access control matrix (e.g., as ACLs,
privilege lists, or capabilities), how can you be certain that the
matrix is secure?

16 / 35



Intro Matrix Model seL4

Why do we need security models?

Q: You have implemented the access control matrix (e.g., as ACLs,
privilege lists, or capabilities), how can you be certain that the
matrix is secure?

16 / 35



Intro Matrix Model seL4

Security policies

Many security policies have their roots in military scenarios

Each object/subject has a sensitivity/clearance level

- “Top Secret” >C “Secret” >C “Confidential” >C “Unclassified”
where “>C” means “more sensitive”

Each object/subject might also be assigned to one or more
compartments

- E.g., “Soviet Union”, “East Germany”
- Need-to-know rule

Subject s can access object o iff level(s) ≥ level(o) AND
compartments(s) ⊇ compartments(o)

- s dominates o, short “s ≥dom o”

17 / 35



Intro Matrix Model seL4

Security policies

Many security policies have their roots in military scenarios

Each object/subject has a sensitivity/clearance level

- “Top Secret” >C “Secret” >C “Confidential” >C “Unclassified”
where “>C” means “more sensitive”

Each object/subject might also be assigned to one or more
compartments

- E.g., “Soviet Union”, “East Germany”
- Need-to-know rule

Subject s can access object o iff level(s) ≥ level(o) AND
compartments(s) ⊇ compartments(o)

- s dominates o, short “s ≥dom o”

17 / 35



Intro Matrix Model seL4

Example

Q: Secret agent James Bond has clearance “Top Secret” and is
assigned to compartment “East Germany”.

Can he read a document with sensitivity level “Secret” and
compartments “East Germany” and “Soviet Union”?

A: No

18 / 35



Intro Matrix Model seL4

Example

Q: Secret agent James Bond has clearance “Top Secret” and is
assigned to compartment “East Germany”.

Can he read a document with sensitivity level “Secret” and
compartments “East Germany” and “Soviet Union”?

A: No

18 / 35



Intro Matrix Model seL4

Lattices

Dominance relationship ≥dom defined in the security model is
transitive and antisymmetric. It defines a partial order (neither
a ≥dom b nor b ≥dom a might hold for two levels a and b).

This forms a lattice, i.e., for every a and b, there exists a

unique lowest upper bound u for which u ≥dom a ∧ u ≥dom b

unique greatest lower bound l for which a ≥dom l ∧ b ≥dom l

Transitively, there are also two elements U and L that dominates/is
dominated by all levels:

U = (“Top Secret”, {“Soviet Union”, “East Germany”})
L = (“Unclassified”, ∅)

19 / 35



Intro Matrix Model seL4

Lattices

Dominance relationship ≥dom defined in the security model is
transitive and antisymmetric. It defines a partial order (neither
a ≥dom b nor b ≥dom a might hold for two levels a and b).

This forms a lattice, i.e., for every a and b, there exists a

unique lowest upper bound u for which u ≥dom a ∧ u ≥dom b

unique greatest lower bound l for which a ≥dom l ∧ b ≥dom l

Transitively, there are also two elements U and L that dominates/is
dominated by all levels:

U = (“Top Secret”, {“Soviet Union”, “East Germany”})
L = (“Unclassified”, ∅)

19 / 35



Intro Matrix Model seL4

Example lattice

20 / 35



Intro Matrix Model seL4

The Bell-LaPadula model

Security goal: ensures that information does not flow to those not
cleared for that level.

The ss-property: s can read o iff C (s) ≥dom C (o)

- no read-up

The ∗-property: s can write o iff C (o) ≥dom C (s)

- no write-down

Q: Why having the “no write-down” policy?

A: To prevent someone reading secret document and then
summarizing it in an unclassified document

Q: How to transfer information from a high-sensitivity document to
a lower-sensitivity document (i.e., declassification)?

A: via trusted subjects

21 / 35



Intro Matrix Model seL4

The Bell-LaPadula model

Security goal: ensures that information does not flow to those not
cleared for that level.

The ss-property: s can read o iff C (s) ≥dom C (o)

- no read-up

The ∗-property: s can write o iff C (o) ≥dom C (s)

- no write-down

Q: Why having the “no write-down” policy?

A: To prevent someone reading secret document and then
summarizing it in an unclassified document

Q: How to transfer information from a high-sensitivity document to
a lower-sensitivity document (i.e., declassification)?

A: via trusted subjects

21 / 35



Intro Matrix Model seL4

The Bell-LaPadula model

Security goal: ensures that information does not flow to those not
cleared for that level.

The ss-property: s can read o iff C (s) ≥dom C (o)
- no read-up
The ∗-property: s can write o iff C (o) ≥dom C (s)
- no write-down

Q: Why having the “no write-down” policy?

A: To prevent someone reading secret document and then
summarizing it in an unclassified document

Q: How to transfer information from a high-sensitivity document to
a lower-sensitivity document (i.e., declassification)?

A: via trusted subjects

21 / 35



Intro Matrix Model seL4

The Bell-LaPadula model

Security goal: ensures that information does not flow to those not
cleared for that level.

The ss-property: s can read o iff C (s) ≥dom C (o)
- no read-up
The ∗-property: s can write o iff C (o) ≥dom C (s)
- no write-down

Q: Why having the “no write-down” policy?

A: To prevent someone reading secret document and then
summarizing it in an unclassified document

Q: How to transfer information from a high-sensitivity document to
a lower-sensitivity document (i.e., declassification)?

A: via trusted subjects

21 / 35



Intro Matrix Model seL4

The Bell-LaPadula model

Security goal: ensures that information does not flow to those not
cleared for that level.

The ss-property: s can read o iff C (s) ≥dom C (o)
- no read-up
The ∗-property: s can write o iff C (o) ≥dom C (s)
- no write-down

Q: Why having the “no write-down” policy?

A: To prevent someone reading secret document and then
summarizing it in an unclassified document

Q: How to transfer information from a high-sensitivity document to
a lower-sensitivity document (i.e., declassification)?

A: via trusted subjects

21 / 35



Intro Matrix Model seL4

The Bell-LaPadula model

Security goal: ensures that information does not flow to those not
cleared for that level.

The ss-property: s can read o iff C (s) ≥dom C (o)
- no read-up
The ∗-property: s can write o iff C (o) ≥dom C (s)
- no write-down

Q: Why having the “no write-down” policy?

A: To prevent someone reading secret document and then
summarizing it in an unclassified document

Q: How to transfer information from a high-sensitivity document to
a lower-sensitivity document (i.e., declassification)?

A: via trusted subjects
21 / 35



Intro Matrix Model seL4

Biba integrity model

Security goal: ensures that information cannot be modified by
those not cleared for that level.

Dual of Bell-La Padula model

Subjects and objects are ordered by an integrity classification
scheme, I (s) and I (o)

Should subject s have access to object o?

The ss-property: s can read o only iff I (o) ≥dom I (s)

- Unreliable information cannot “contaminate” subject

- no read-down

The ∗-property: s can modify o only iff I (s) ≥dom I (o)

- Unreliable subject cannot modify data with high integrity information

- no write-up

22 / 35



Intro Matrix Model seL4

Biba integrity model

Security goal: ensures that information cannot be modified by
those not cleared for that level.

Dual of Bell-La Padula model

Subjects and objects are ordered by an integrity classification
scheme, I (s) and I (o)

Should subject s have access to object o?

The ss-property: s can read o only iff I (o) ≥dom I (s)

- Unreliable information cannot “contaminate” subject

- no read-down

The ∗-property: s can modify o only iff I (s) ≥dom I (o)

- Unreliable subject cannot modify data with high integrity information

- no write-up

22 / 35



Intro Matrix Model seL4

Biba integrity model

Security goal: ensures that information cannot be modified by
those not cleared for that level.

Dual of Bell-La Padula model

Subjects and objects are ordered by an integrity classification
scheme, I (s) and I (o)

Should subject s have access to object o?

The ss-property: s can read o only iff I (o) ≥dom I (s)

- Unreliable information cannot “contaminate” subject
- no read-down

The ∗-property: s can modify o only iff I (s) ≥dom I (o)

- Unreliable subject cannot modify data with high integrity information
- no write-up

22 / 35



Intro Matrix Model seL4

Low Watermark Property

Biba’s access rules are very restrictive, a subject cannot ever read
lower integrity object

Can use dynamic integrity levels instead

Subject Low Watermark Property:
If subject s reads object o, then I (s) = glb(I (s), I (o)), where glb()
= greatest lower bound
Object Low Watermark Property:
If subject s modifies object o, then I (o) = glb(I (s), I (o))

Integrity of subject/object can only go down, information flows
down

23 / 35



Intro Matrix Model seL4

Review of Bell-La Padula & Biba

Very simple, which makes it possible to even prove correctness
properties about them

- E.g., can prove that if a system starts in a secure state, the system
will remain in a secure state

Probably too simple for great practical benefit

- Need declassification
- Need both confidentiality and integrity, not just one
- What about object creation?

Information leaks might still be possible through covert channels
in an implementation of the model

24 / 35



Intro Matrix Model seL4

Review of Bell-La Padula & Biba

Very simple, which makes it possible to even prove correctness
properties about them

- E.g., can prove that if a system starts in a secure state, the system
will remain in a secure state

Probably too simple for great practical benefit

- Need declassification
- Need both confidentiality and integrity, not just one
- What about object creation?

Information leaks might still be possible through covert channels
in an implementation of the model

24 / 35



Intro Matrix Model seL4

Review of Bell-La Padula & Biba

Very simple, which makes it possible to even prove correctness
properties about them

- E.g., can prove that if a system starts in a secure state, the system
will remain in a secure state

Probably too simple for great practical benefit

- Need declassification
- Need both confidentiality and integrity, not just one
- What about object creation?

Information leaks might still be possible through covert channels
in an implementation of the model

24 / 35



Intro Matrix Model seL4

Chinese Wall security policy

Security goal: dealing with conflicts of interests — Once you’ve
decided for a side of the wall, there is no easy way to get to the
other side.

Once you have been able to access information about a particular
kind of company, you will no longer be able to access information
about other companies of the same kind.

- Useful for consulting, legal, or accounting firms

- Need history of accessed objects

- Access rights change over time

ss-property: Subject s can access object o iff each object
previously accessed by s either belongs to the same company as o
or belongs to a different kind of company than o does

*-property: For a write access to o by s, we also need to ensure
that all objects readable by s either belong to the same company
as o or have been sanitized

25 / 35



Intro Matrix Model seL4

Chinese Wall security policy

Security goal: dealing with conflicts of interests — Once you’ve
decided for a side of the wall, there is no easy way to get to the
other side.

Once you have been able to access information about a particular
kind of company, you will no longer be able to access information
about other companies of the same kind.

- Useful for consulting, legal, or accounting firms

- Need history of accessed objects

- Access rights change over time

ss-property: Subject s can access object o iff each object
previously accessed by s either belongs to the same company as o
or belongs to a different kind of company than o does

*-property: For a write access to o by s, we also need to ensure
that all objects readable by s either belong to the same company
as o or have been sanitized

25 / 35



Intro Matrix Model seL4

Example

Fast Food Companies = {McDonalds, Wendy’s}
Book Stores = {Chapters, Amazon}
Alice has accessed information about McDonalds

Bob has accessed information about Wendy’s

ss-property prevents Alice from accessing information about
Wendy’s, but not about Chapters or Amazon

- Similar for Bob

- Suppose Alice could write information about McDonalds to
Chapters and Bob could read this information from Chapters

Indirect information flow violates Chinese Wall Policy
*-property forbids this kind of write

26 / 35



Intro Matrix Model seL4

Outline

1 Introduction to access control

2 Implementing the access control matrix

3 Models for security policies

4 Case study: seL4 microkernel

27 / 35



Intro Matrix Model seL4

What is seL4?

Overview: seL4 is an open source, high-assurance,
high-performance operating system microkernel.

Available on GitHub under GPLv2 license

Contains a comprehensive set of mathematical proofs for
correctness and security

Arguably the fastest microkernel in the world

Aims to be a piece of software that runs at the heart of any
system and controls all accesses to resources

28 / 35

https://github.com/seL4/seL4


Intro Matrix Model seL4

What is seL4?

Overview: seL4 is an open source, high-assurance,
high-performance operating system microkernel.

Available on GitHub under GPLv2 license

Contains a comprehensive set of mathematical proofs for
correctness and security

Arguably the fastest microkernel in the world

Aims to be a piece of software that runs at the heart of any
system and controls all accesses to resources

28 / 35

https://github.com/seL4/seL4


Intro Matrix Model seL4

Monolithic kernel vs microkernel

Figure illustrating the difference between

monolithic kernel (e.g., the Linux kernel) on the left and

microkernel (e.g., seL4) (on the right)

Adapted from seL4 Whitepaper.

29 / 35

https://sel4.systems/About/seL4-whitepaper.pdf


Intro Matrix Model seL4

Microkernel

All operating-system services are user-level processes:

file systems

device drivers

network stack

power management

. . .

30 / 35



Intro Matrix Model seL4

Microkernel as hypervisor

Adapted from seL4 Overview Slides on seL4 Summit 2022

31 / 35

https://sel4.systems/Foundation/Summit/2022/slides/d3_01_Overview_seL4_principles,_abstractions_and_use_Gernot_Heiser.pdf


Intro Matrix Model seL4

seL4 capability system

General principle: anything goes through seL4 needs a capability!

A capability is an object reference that
conveys specific rights to a particular object

Capability = Access Token: prima-facie
evidence of privilege

Access rights include read, write, send,
reply, execute, . . .

Kernel object is one of ten object types

Any system call is invoking a capability: r = cap.method(args);

32 / 35



Intro Matrix Model seL4

seL4 capability system

General principle: anything goes through seL4 needs a capability!

A capability is an object reference that
conveys specific rights to a particular object

Capability = Access Token: prima-facie
evidence of privilege

Access rights include read, write, send,
reply, execute, . . .

Kernel object is one of ten object types

Any system call is invoking a capability: r = cap.method(args);

32 / 35



Intro Matrix Model seL4

seL4 capability system

General principle: anything goes through seL4 needs a capability!

A capability is an object reference that
conveys specific rights to a particular object

Capability = Access Token: prima-facie
evidence of privilege

Access rights include read, write, send,
reply, execute, . . .

Kernel object is one of ten object types

Any system call is invoking a capability: r = cap.method(args);

32 / 35



Intro Matrix Model seL4

seL4 capability system

General principle: anything goes through seL4 needs a capability!

A capability is an object reference that
conveys specific rights to a particular object

Capability = Access Token: prima-facie
evidence of privilege

Access rights include read, write, send,
reply, execute, . . .

Kernel object is one of ten object types

Any system call is invoking a capability: r = cap.method(args);

32 / 35



Intro Matrix Model seL4

seL4 protected procedure calls (IPC)

Protected procedure call
(IPC for historical reasons)
is a fundamental operation
in seL4.

Q: How would a normal open syscall be like in seL4?

A: Call(ext4fs_endpoint_cap, OPEN_FILE, <extra-args>)

- Mint reply_cap

- Send(ext4fs_endpoint_cap, reply_cap, ...)

- Recv(reply_cap, ...)

33 / 35



Intro Matrix Model seL4

seL4 protected procedure calls (IPC)

Protected procedure call
(IPC for historical reasons)
is a fundamental operation
in seL4.

Q: How would a normal open syscall be like in seL4?

A: Call(ext4fs_endpoint_cap, OPEN_FILE, <extra-args>)

- Mint reply_cap

- Send(ext4fs_endpoint_cap, reply_cap, ...)

- Recv(reply_cap, ...)

33 / 35



Intro Matrix Model seL4

seL4 protected procedure calls (IPC)

Protected procedure call
(IPC for historical reasons)
is a fundamental operation
in seL4.

Q: How would a normal open syscall be like in seL4?

A: Call(ext4fs_endpoint_cap, OPEN_FILE, <extra-args>)

- Mint reply_cap

- Send(ext4fs_endpoint_cap, reply_cap, ...)

- Recv(reply_cap, ...)

33 / 35



Intro Matrix Model seL4

seL4 protected procedure calls (IPC)

Protected procedure call
(IPC for historical reasons)
is a fundamental operation
in seL4.

Q: How would a normal open syscall be like in seL4?

A: Call(ext4fs_endpoint_cap, OPEN_FILE, <extra-args>)

- Mint reply_cap

- Send(ext4fs_endpoint_cap, reply_cap, ...)

- Recv(reply_cap, ...)
33 / 35



Intro Matrix Model seL4

seL4 kernel objects

Endpoints are used to perform protected function calls
Reply Objects represent a return path from a protected
procedure call
Address Spaces provide the sandboxes around components (thin
wrappers abstracting hardware page tables)
Cnodes store capabilities representing a component’s access
rights
Thread Control Blocks represent threads of execution
Scheduling Contexts represent the right to access a certain
fraction of execution time on a core
Notifications are synchronisation objects (similar to semaphores)
Frames represent physical memory that can be mapped into
address spaces
Interrupt Objects provide access to interrupt handling
Untypeds unused (free) physical memory that can be converted
(“retyped”) into any of the other types.

34 / 35



Intro Matrix Model seL4

⟨ End ⟩

35 / 35


	access control and capabilities
	Introduction to access control
	Implementing the access control matrix
	Models for security policies
	Case study: seL4 microkernel


