Module 6: Non-technical Aspects of Security
a brief introduction on blockchains

Meng Xu (University of Waterloo)
Spring 2023
Outline

1. An overview of blockchain design space
2. Consensus: Proof-of-Work
3. Consensus: Proof-of-Stake
What is a blockchain?

A blockchain is ... a chain of blocks!

- What does chaining mean here?
 - Linked list? Some cryptographic construct?

- What goes into these blocks?
 - Anything? A fixed format? What makes a block valid?

- Who can put up a block?
 - A single entity? A group of people? Anyone with Internet access?

- How to ensure a same view of the chain?
 - Centralized? Distributed? How to resolve a dispute?
A basic chaining scheme

Each block contains a **cryptographic hash** of the previous block.
A better chaining scheme

Each block is split into two parts:

- A header that contains at least two critical values:
 - A cryptographic hash of the previous block header.
 - A cryptographic hash of the current block payload.

- A payload that contains application-specific information

Q: Why this is a better chaining scheme?
What goes into the payload?

Anything! Depending on how you plan to use this blockchain.

- Bitcoin blockchain: ledger
- Ethereum blockchain: state machine
Payload example: a ledger

Block N

Header

Payload

A → 20 → C

......

A → 10 → B

......

C → 30 → B
How does the data get into the block?

Node 1

<table>
<thead>
<tr>
<th>Block N</th>
<th>A 10 → B</th>
</tr>
</thead>
</table>

Node 2

<table>
<thead>
<tr>
<th>Block N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 10 → B</td>
</tr>
</tbody>
</table>

Node 3

<table>
<thead>
<tr>
<th>Block N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 10 → D</td>
</tr>
</tbody>
</table>

Node 4

<table>
<thead>
<tr>
<th>Block N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 10 → B</td>
</tr>
</tbody>
</table>

Node 5

<table>
<thead>
<tr>
<th>Block N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 10 → B</td>
</tr>
</tbody>
</table>

Shared View

Genesis → ... → Block N-1

Transaction
Imagine Alice goes to Bob’s Pizzeria and orders a pizza, she has the following payment options:

- cash, debit card, credit card, e-transfer (e.g., Interac®)
- an entry in the blockchain-based ledger

To the best of Bob’s everyone’s knowledge:

- It is hard for Alice to produce such a chain of blocks
- There does not exist a better chain of blocks as of now
Pay attention to two aspects when you design/analyze a blockchain:

- What goes into a block?
- How to ensure consensus?

In most blockchain systems, these two aspects are **orthogonal**.
Outline

1. An overview of blockchain design space
2. Consensus: Proof-of-Work
3. Consensus: Proof-of-Stake
How hard it is to alter this chain?

This is the chain Alice shows Bob w.r.t her payment to Bob. It is not hard at all for Alice to revert the payment to Bob!
Increase the difficulty

Bob decides to make it harder for Alice to alter her payment

The first k bits of H must be 0
Mining for a valid hash

Q: What is the chance of finding a valid N assuming an m-bit hash?

A: $\frac{2^{m-k}}{2^m}$, a larger k \implies a higher difficulty of finding N

i.e., expect 2^k hash operations to find a valid N on average.
How does mining deter alteration? - Case 1

Case 1: Alice re-mines block N and finds a new nonce such that the block header hash remains unchanged.

Deterrent: This is extremely hard for a cryptographic hash function that has preimage resistance and second-preimage resistance.
How does mining deter alteration? - Case 2

Case 2: Alice re-mines the nonce for block N and stops there

Deterrent: longer chains are preferred over shorter chains.
How does mining deter alteration? - Case 3

Case 3: Alice re-mines all the nonces since block N

Deterrent: If there are l blocks between and including block N and the chain head, Alice is expected to perform $l \times 2^k$ hash operations to build-up a equally competitive chain assuming the difficulty level k does not change.
51% attack

There is a catch in the deterrent:
Alice mines slower than the rest of the participants combined.

\[
P: \quad \cdots \rightarrow N \rightarrow N+1 \rightarrow \cdots \rightarrow N+/ \rightarrow N+/+1 \rightarrow \cdots \rightarrow N+/′ \rightarrow N+/′+1 \rightarrow \cdots \rightarrow N+/′′
\]

\[
A: \quad \cdots \rightarrow N \rightarrow N+1 \rightarrow \cdots \rightarrow N+/ \rightarrow N+/+1 \rightarrow \cdots \rightarrow N+/′
\]

\[\Rightarrow \text{ the public chain grows faster than Alice's chain.}\]

Q: what if Alice mines faster?
A: Alice gets to rewrite the history.
Recall that when we show a proof of payment, we need a few extra blocks after the block that hosts the ledger entry.

Q: Why do we need these extra blocks even when
1) Alice does not control over 50% of computational power and
2) everyone else is honest and cooperative?
How does the data get into the block?

Transaction

A → B

Block N

A → B

Node 1

Block N

A → B

Node 2

Block N

A → B

Shared View

Genesis → ... → Block N-1

Block N

A → B

Node 3

Block N

A → D

Node 4

Block N

A → D

Node 5

Block N

A → B
To trigger a fork, Alice could

- Send two transactions in a short time window
- Send two transactions to separate halves of the network
- Pre-mine one block and only reveal it after the first transaction is sent to the network
Drawbacks of Proof-of-Work consensus

- Speed of confirmation
 - E.g., a Bitcoin transaction takes on average 10 minutes to confirm
 - Even worse, it is advised to wait for 6 confirmations, i.e., 1 hour.

- Vulnerable to 51% attacks
 - In 2014, mining pool Ghash.io obtained 51% hash rate in Bitcoin
 - Bitcoin Gold, was hit by such attacks twice in 2018 and 2020

- Energy consumption
 - Hashing itself is not useful
 - And such useless operations are repeated across the fleet of nodes
Outline

1. An overview of blockchain design space
2. Consensus: Proof-of-Work
3. Consensus: Proof-of-Stake
In a proof-of-work scheme,
- the chance of which node is elected to propose a new block is proportional to its hashing power
- collisions are allowed and are resolved by the longest chain rule
In a proof-of-stake scheme,

- the chance of which node is elected to propose a new block is proportional to its staked value
- collisions are not allowed by design, only the leader creates a block
Transaction lifecycle in PoS
The 51% attack in PoS

Q: What if the attacker controls $\geq 50\%$ of staked resources?
Transaction lifecycle in PoS

Overview

Node 1

Node 2

Node 3

Node 5

Node 4

Genesis → Block N-1 → Block N

Shared View

Transaction
The 51% attack in PoS

Q: What if the attacker controls $\geq 50\%$ of staked resources?

A: The attacker can prove fraudulent transactions.

Q: Is 51% attack less likely in PoS compared with PoW?

A: Yes, because in PoS, the attacker losses the weapon to future attacks, i.e., all the stake are gone, and is not easily recoverable!
Hard fork as a recovery of a 51% attack

To recover from a 51% attack, the only solution is to hard fork the blockchain in order to invalidate the fraudulent transactions added by the attackers.

NOTE: the forked chain can be shorter than the previous chain!

⇒ a higher level of social coordination is required
Hard fork as a recovery of a 51% attack

In PoS, we do a hard fork to invalidate fraudulent transactions AND wipe out the attacker who controls $\geq 50\%$ of the staked resources.

In PoW, the hard fork can only invalidate transaction WHILE the $\geq 50\%$ computational power is still controlled by the attacker.
Chain validation

If Alice shows Bob, the Pizzeria owner, the following blockchain, why would Bob accept it? Why would Bob believe that:

- It is **hard** for Alice to produce such a chain of blocks
- There does not exist a **better** chain of blocks as of now
This turns out to be an extremely complicated problem!

- **S** - Signature of the proposer of this block
- **E** - Election packet that records how this proposer is elected

Q: What are the issues with this scheme?
The Nothing-at-Stake problem

Assuming Alice has some stake (e.g., 1%) and can be elected as a block proposer:

In one of her turn as a block proposer, Alice triggers a fork in the chain with an attempt to double-spend. The next block proposer, even honest, has no incentive to select which chain to converge on. The proposer has no idea which chain will survive in the future, the logical thing to do is to mine on both. When its Alice’s turn again, she only append a block to the chain that is more favorable to her. The other chain dies as a result.
The Nothing-at-Stake problem

Solution? There is no common solution. Different PoS chains adopt different mechanisms.

The Slash protocol (Ethereum PoS candidate) has two rules:

- Penalize those who “equivocated” on a given block, i.e., voted on two different versions of it.
- Penalize those who voted on the wrong block, regardless of whether or not they double-voted.
Long-range attacks (the bootstrapping problem)

Bob first joins the network, which chain should he accept?

Q: Why this is not a problem in PoW?

A: Because it is computationally expensive to create a counterfeit chain in PoW. But it is easy (almost no cost) in the PoS case.
Long-range attacks (the bootstrapping problem)

Solution? In short, there is no simple solutions.

- Casper (Ethereum’s PoS protocol) depends on trusted nodes to broadcast the correct block hash.
- Peercoin, broadcasts the hash of the “legitimate” chain on a daily basis.
- Extremely complicated solutions have been proposed e.g., Ouroboros Genesis.
End