CS 489 / 698: Software and Systems Security

Module 5: Hardware Security
security features, enablers, and accelerators

Meng Xu (University of Waterloo)
Spring 2023

Intro
@000

Outline

0 Introduction

2/43

Intro
[o] Tele}

Motivation

Q: What can hardware do for software and system security? J
Ring 3 User Code User Code
Ring 2
Ring 1
Ring 0 OS kernel
Hardware

3/43

Intro
[e]e] e}

Motivation

Q: What can hardware do for software and system security? J

A: There are generally two views on hardware-assisted security:

@ Hardware runs at an even higher privilege level such that a
malicious or compromised kernel cannot temper with — e.g.,
TPMs or TEEs (next lecture)

@ Hardware can accelerate security mechanisms that are
conventionally enforced by kernel, compiler, or even the
developers manually — e.g., CHERI (this lecture)

4/43

Intro
[e]e]e]]

Categorization of hardware-assisted security

HW-assisted
Technologies

Security Performance
Enhancement Boost

HW-assisted
HW-assisted Random Number
Trusted Computing ~ Generation

TPM IntrinsiclD Intel

SRAM Secure
Intel AMD Embed PUF Key

TXT PSP TPMs
TEE HW-assisted

Pointers Violation
Intel ARM AMD Prevention

SGX TrustZone MET
Intel ARM Intel

MPX PA CET

Adapted from survey paper A Comprehensive Survey of Hardware-Assisted Security:
From The Edge to The Cloud

5/43

https://doi.org/10.1016/j.iot.2019.100055
https://doi.org/10.1016/j.iot.2019.100055

CET
©0000000000

Outline

© Intel Control-flow Enforcement Technology (CET)

6/43

CET
0®000000000

Recap on CFl

Control-Flow Integrity (CFl) is a classic example of runtime
reference monitor in software security.

CFl is also sometimes referred to as program shepherding

monitoring control flow transfers during program execution to
enforce a security policy — from a paper in USENIX Security'02.

7/43

https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding

CET
00®00000000

Basic ideas of CFl

void f1Q);
void £2Q);
void £30);
void f4(int, int);

void foo(int usr) {
void (*func)(;

1
2
3
4
5
6
7
8
9

if (usr == MAGIC)
func = f1;

else
func = £2;

R e e
B W N RO

// forward edge CFI check
CHECK_CFI_FORWARD (func);
func(Q);

e
© N o o

// backward edge CFI check
CHECK_CFI_BACKWARDQ) ;

[
©

20 }

Option 1: allow all functions

- f1, £2, £3, f4, foo, printf, systemn, ...

Option 2: allowed only functions defined
in the current module

- f1, £2, £3, f4, foo

Option 3: allow functions with type
signature void (*) QO

- f1, £2, £3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, £2

8/43

CET
000®0000000

Example: Microsoft Control-flow Guard (CFG)

CFG implements coarse-grained control-flow integrity for indirect calls

CFG is a deterministic mitigation, its security is not

Com plle time - dependent on keeping secrets.

For C/C++ code, CFG requires no source code changes.

void Foo(...) {

// SomeFunc is address-taken Process)
// and may be called indirectly Start +Map valid call target data
Object->FuncPtr = SomeFunc; ar
TeAlLILarpbispatchUsercall arget
0000770’ 4e100e10 4c8b1d59e50d00 mov rll,quord ptr
Metadata is automatically added to the image which [ntd11!LdrSystemD11InitBlock+@xbe]
identifies functions that may be called indirectly 00007 ffb’ 4e100e17 4c8bde mov. 110, rax
Image 00007 " 4e160e1a 49c16309 she rie,
void Bar(...) { [P -Upcate valid call target data oB0a7¢¢b" detooele 4fsbicd nov ridauord ptr [riteriers]
// Compiler-inserted check to with metadata from PE image 00007 fb" 4e160¢22 4csbdo v rierax
// verify call target is valid 00007Ffb" 4e10Pe25 49c1ead3 shr re,3
—g‘fa"d—‘h“k—"511(01’3“‘"':“"‘"'")1 00007 4e100e29 asef test al,oFh
Object->FuncPtr(xyz); R N
) -Perform O(1) validity check 000a7¢7b de160e2b 7509 jne ntdlllLdrpDispatchUserCallTarget+ox26
(el - Terminate process if invalid ntd11!LdrpDispatchUserCallTarget xid
A lightweight check is inserted prior to indirect calls Call e e e G gD
which wil vty that the call arget is vald at runtime i N o e

ntdlllLdrpDispatchUserCallTarget+ex23
©0007Ffb 4e100e33 48FFe0 gmp rax

lllustration taken from Microsoft Talk: The Evolution of CFl Attacks and Defenses

9/43

https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon

CET
0000@000000

Example: Microsoft Return-flow Guard (RFG)

RFG was our compatible, ABI compliant, performant software shadow stack
Compile Time untime .
[..] //Prior code

call ChildFunction
+1TB shadow stack region created e
[P -Region cannot be queried mov rax, [rsp]
Start +A/V's in region are fatal
A <FS segment points to the shadow
stack of the current thread

NOP's added to the prolog & epilog of all
functions

mov fs:[rsp], rax

[..] //Child code

Metadata added to the image to locate the
prolog and epilog NOP bytes

mov rcx, fs:[rsp]

«If process enables RFG: patch NOP's cmp recx, [rsp]

with RFG prolog/epilog

jne _fast_fail
ret

OXABCD: [..]
//Remainder of
parent function

«Prolog: Push return address to
Function TR
+Epilog: Fast fail if return address on
Calls stack and shadow stack are
mismatched

If attacker changes the return address at these points RFG is defeated

RFG relies on a secret: the shadow stack’s virtual address

lllustration taken from Microsoft Talk: The Evolution of CF|l Attacks and Defenses

10/43

https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon

CET
00000800000

RFG deployment experience

Secrets are bad!

AnC attack (a side-channel attack) could successfully leak where
shadow stacks are mapped.

11/43

https://www.vusec.net/projects/anc/

CET

0O00000e0000

Back-edge protection: shadow stack

SHADOW STACK (SS)

SS delivers return address protection to defend against
return-oriented programming (ROP) attack methods.

STACK

Intel CET will help block call if return
addresses on both stacks don't match

Copyright: Intel 12/43

CET
00000000000

CET: shadow stack

@ For every regular stack CET adds a shadow stack region, which is
indexed via a new register %ssp.

@ Regular memory stores (executed from any ring) are not allowed
in shadow stack region

When enabled,

@ Each time a call instruction gets executed, in addition to the
return address being pushed onto the regular stack, a copy of it is
also pushed (automatically) onto the shadow stack.

@ Each time a ret instruction gets executed, the return addresses
pointed by %rsp and %ssp are (automatically) popped from the
two stacks, and their values are compared together.

13/43

CET
00000000800

CET: Indirect Branch Tracking (IBT)

CET introduces a new (4-byte) instruction, i.e., endbr, which
becomes the only allowed target of indirect call/jmp instructions.

In other words, forward-edge transfers via (indirect) call or jmp
instructions are pinned to code locations that are “marked” with an
endbr; else, an exception (#CP) is raised.

14/43

CET
00000000080

IBT example

1 [main>:
2 movq $0x4004fb, -8(%rbp)
1 void main() { 3 mov -8(%rbp), %rdx
2 int (*f) {}; 4 call *%rdx
3 f = foo; 5
4 £O; 6 retq
5 } 7
6 8 [Jfoo>:
7 int foo() { 9 endbro64
8 return 0; 10
9 } 11 mov rax, 0
12
13 retq

15/43

CET
00000000008

IBT example

void main() {

int

int

int (*f) {};
int (*g) {};
f = foo;

g = bar;
£0;

g90;

foo() {
return 0;

bar() {
return 1;

© 00 N O AE W N

I R I I R R
N H O © O U W N O

ain>:

movq
mov
call
mov
call

retq

Hfoo>:

endbr64
mov

retq

ar>:

endbr64
mov

retq

$0x4004fb, -16(%rbp)
-16(%rbp), %rdx
*%rdx

-8(%rbp), %rdx
*%rdx

rax, 0

rax, 1

16/43

Outline

© Arm Pointer Authentication (PA)

17/43

Motivation

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.
- Perfect code pointer integrity implies control-flow integrity (CFI).

QO O

function {
store return_address

corrupt_addr‘ess!
s

load return_address
verify integrit

2

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.
18/43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Overview

Available since Armv8.3-A instruction set architecture (ISA) when
the processor executes in 64-bit Arm state (AArch64)

(8 bits] (L reserved bit] (3 -23bits
= —

tag/PAC | | sign ext./PAC virtual address (Ap)

: \¢ v
[general purp‘ose registers] HK(APa M) PA key (K)

[64-bit modifier (M) H

PA consists of a set of instructions for creating and authenticating
pointer authentication codes (PACs).

19/43

PAC details

@ Each PAC is derived from
- A pointer value
* an N-bit memory address
- A 64-bit context value (modifier)
* doesn't need to secret, as long as it provides enough entropy
- A 128-bit secret key
* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace
o PAC essentially a key-ed message authentication code (MAC)
where the MAC algorithm can be implementation defined
- by default, it is QARMA

@ Instructions hide the algorithm details (sign + authenticate)

20/43

https://eprint.iacr.org/2016/444.pdf

PA
0000e

Example: PA-based return address signing

Deployed as -msign-return-address in GCC and LLVM/Clang

| return address |

func {]
[Function return address]- pacia LR, O-"l generate PAC J:| ia key |
PAC ii PAC return address |
>1dr LR { PAC? ii PAC? return address |
autia LR, (S veriy PAc_104)
ret
pacia —add PAC
autia — authenticate }

21/43

Outline

@ Intel Memory Protection Extensions (MPX)

22/43

Brief history

Intel MPX (Memory Protection Extensions) was a set of extensions
to the x86 instruction set architecture to perform bounds checking.

2013-07: Intel introduces MPX in its ISA manual

2015-02: Linux kernel adds support to MPX in its 3.19 release
2015-04: GCC adds support to MPX in its 5.0 release
2015-08: MPX becomes available in Skylake microarchitecture

2018-06: An important paper Intel MPX Explained: A Cross-layer
Analysis of the Intel MPX System Stack was published.

2019-77: Intel removes MPX from its ISA manual
@ 2019-05: GCC drops support for MPX in its 9.1 release
@ 2020-03: Linux kernel drops support for MPX in its 5.6 release

23/43

https://intel-mpx.github.io/code/submission.pdf
https://intel-mpx.github.io/code/submission.pdf

How does MPX work?

1 struct obj { char buf[100]; int len }
2 obj* a[l0]; total = 0;
3 for (i=0; i<M; i++) { total += a[i]->len; }

1 for (i=0; i<M; i++):

2 ai = a + 1 // Pointer arithmetic on a

3 objptr = load ai // Pointer to obj at a[i]

4 lenptr = objptr + 100 // Pointer to obj.len

5 len = load lenptr

6 total += len // Total length of all objs

1 a_b = bndmk a, a+79

2 for (i=0; i<M; i++):

3 ai = a+ 1

4 bndcl a_b, ai // Lower-bound check of a[i]
5 bndcu a_b, ai+7 // Upper-bound check of a[i]
6 objptr = load ai

7 objptr_b = bndldx ai // Bounds for pointer at a[i]
8 lenptr = objptr + 100

9 bndcl objptr_b, lenptr // Lower-bound check of obj.len

10 bndcu objptr_b, lenptr+3 // Upper-bound check of obj.len
11 len = load lenptr
12 total += len

24/43

Recap: spatial safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:
@ Memory read: (object_id, offset [int], length [int])
@ Memory write: (object_id, offset [int], length [int], _)

It is a violation of spatial safety if:
@ offset + length >= size or

@ offset < 0

25/43

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

@ At the hardware level,
- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions
@ At the kernel level: a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.
@ At the compiler level,
- new MPX transformation passes
- new runtime libraries for initialization/finalization routines, debug
information, and bridges to other non-MPX-protected libraries.
@ At the application level,
- manual change of troublesome C coding patterns
- multithreading issues

- interaction with other ISA extensions (e.g., TSX and SGX). 2043

What do we gain?

Approach Detects RIPEbugs Otherbugs Broken Perf (x)
Native: no protection — 64 (34) 6 (3) 0 (0) 1.00 (1.00)

MPX security levels:

L1: only-writes and no narrowing of bounds inter-object overwrites 14 (14) 3 (0) 3 (5 1.29 (1.18)
L2: no narrowing of bounds +inter-object overreads 14 (14) 3 (0) 2 (8) 239 (1.46)
L3: only-writes and narrowing of bounds all overwrites™ 14 (0) 2 (0) 4 (7) 1.30 (1.19)
L4: narrowing of bounds (default) + all overreads* 14 (0) 0 (0) 4 (9) 252 (147)
L5:+ fchkp-first-field-has-own-bounds * +alloverreads 0 (-) 0 (-) 6 (-) 252 (-)
Lé6:+ BNDPRESERVE=1 (protect all code) all overflows in all code 0 (0) 0 (0) 34 (29 -
AddressSanitizer inter-object overflows 12 3 0 1.55

* except intra-object overwrites & overreads through the first field of struct, level 5 removes this limitation (only relevant for GCC version)

Evaluation results available on this website

27/43

https://intel-mpx.github.io/overview/

Lessons learned

o New MPX instructions are not as fast as expected
- The average overhead of 20-50% is not significantly better than ASan
@ The supporting infrastructure is not mature enough
- MPX transformation in compilers might be buggy
- Other libraries needs to have MPX-enabled
o MPX provides no temporal protection
- ASan has partial support
@ MPX does not support multithreading transparently
- Both false positives and false negatives if the application does not
conform to C11 memory model or if the compiler does not update
bounds in atomic primitives
o MPX is not compatible with some C idioms
- e.g., using a struct field (usually the first field of struct) to access
other fields of the struct
- custom memory management, e.g., arbitrary type casts and
in-pointer bit twiddling

28/43

Outline

© Arm Memory Tagging Extension (MTE)

29/43

Overview

Introduced into the Armv8.5-A instruction set architecture (ISA) as
Memory Tagging Extension (MTE) in 2018.

@ 64-bit architecture only (AArch64)

@ As a hardware accelerator for detecting memory errors

MTE implements a “lock-and-key” scheme for memory access:

@ Two types of tags:
- Every aligned 16 bytes of memory have a 4-bit tag stored separately,
i.e., not addressable (the “lock™)
- Every pointer has a 4-bit tag stored in the top byte (the “key")

@ LD/ST instructions check both tags, raise exception on mismatch

@ New instructions are introduced to manipulate the tags

30/43

MTE illustration

Memory Tag
(Lock)

Address Tag @
(Key)

(o}
e

0x9000

0x8000

O—m
0x06 ... 8010

7
7
7
4
4
4
4
4
4
4
4
6
6
6
6
6

Source: article Delivering enhanced security through Memory Tagging Extension 31/43

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhanced-security-through-mte

Detecting heap overflow

char *k= new char[20]; // 0xl@07fﬂ:ﬁcﬁc124@

32/43

Detecting use-after-free

char *k= new char[20]; // 0xl@@7fﬂ:ﬁcﬁc124@

33/43

Adoption in practice

o LLVM MemTagSanitizer detects a similar class of errors as
AddressSanitizer or HardwareAssistedAddressSanitizer, but with
much lower overhead.

W 64bytesalignment [l ADI + bzer ADI + bzero + retag on fre

T “WJL

mef bmk

Source of numbers: LLVM whitepaper on memory tagging

@ In Android 12, the kernel and userspace heap memory allocator
can augment each allocation with metadata, based on this article.
34/43

https://llvm.org/docs/MemTagSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://arxiv.org/pdf/1802.09517.pdf
https://source.android.com/docs/security/test/memory-safety/arm-mte

CHERI
©0000

Outline

@ Capability Hardware Enhanced RISC Instructions (CHERI)

35/43

Re-defining pointers

A pointer is not only an N-bit value representing a memory address,
rather, it is a capability granting certain permissions to access a
restrictive range in the memory address space.

36/43

CHERI memory capability

1 bit capability tag: 15-bit: 64-bit:
1 - valid defines if and how 56-bit bounds and 8-bit
0 - invalid the capability is sealed flag. This is offset from
the Bounds field
Bit 128 127 109 94 63 0
Tag Permissions Object type Bounds Value
18-bit: 87-bit bound, limits
limits usage the scope of the capability
of the capability (31 + 56 bits)

A “pointer”, or rather, a memory capability, in the view of the
CHERI Morello architecture (source of image: Pawel Zalewski's blog post).

37/43

https://developer.arm.com/documentation/ddi0606/latest
https://www.thegoodpenguin.co.uk/blog/introducing-arm-morello-cheri-architecture/

CHERI basic idea

#include <stdio.h> x: signed int [@3, 0x14] X: signed int [@3, 0x14]

.]
1

int secret_key = 4091;
int main() {

secret_key: signed int [@4, 0x18] secret_key: signed int [@4, 0x18]

int *xp = &x;

4091
p = ptl; 4091 ‘ |
int y = xp;

p: signed int* [@5, 0x20]

address 0x18 [

base 0x14
length 0x4
perms R/W

printf("sd\in",y); p: signed int* [@5, 0x20]

0x18

TTTTTTT

ITTTTITTITTITTITTTT

tag 1

Q: What will happen?)

38/43

CHERI
0000e

CHERI software stack

Completely re-vamped software stack:

o Compilers: custom-made Clang/LLVM
o Operating systems: hand-tuned FreeBSD, FreeRTOS
o Applications: ported WebKit, OpenSSH, and PostgreSQL

39/43

Outline

@ Authenticated boot and Root-of-Trust (RoT)

40/43

Overview

Goal: ensures only trusted and authenticated software (e.g.,
firmware, kernel, application) runs on a computing system.

T L UL UL LTI, |
Trusted Root Intermediate Intermediate

Component Bootloader 1 Bootloader n

[Public Key] [Slgnature] [Publlc Key} ’Slgnature] [Pubhc Key]

L S

Authenticate Authenticate Authenticate
then Load then Load then Load

Final Stage
Bootloader

[Signature]

An abstract view of the authenticated boot process

41/43

Requirements for the root-of-trust (RoT) component

@ Boot process is guaranteed to start from the RoT component

@ The cryptographic key is non-readable, non-writable at any
privilege level
- The only way to use the key is to verify the signature via special

hardware instructions.

@ The RoT component, upon booting, must first measure the code
content of the first stage bootloader and validate the
measurement with the signature.

Usually, the RoT component is encapsulated in a hardware module
named Hardware Security Module (HSM).

42/43

(End)

43/43

	security features, enablers, and accelerators
	Introduction
	Intel Control-flow Enforcement Technology (CET)
	Arm Pointer Authentication (PA)
	Intel Memory Protection Extensions (MPX)
	Arm Memory Tagging Extension (MTE)
	Capability Hardware Enhanced RISC Instructions (CHERI)
	Authenticated boot and Root-of-Trust (RoT)

