CS 458 / 658: Computer Security and Privacy

* _ Review of Course Content

Meng Xu (University of Waterloo)

Winter 2022

Module 1
©000

Outline

© Module 1

2/81

Module 1
0e00

What is security?

In the context of computers, security generally means three things:

o Confidentiality

o Access to systems or data is limited to authorized parties
o Integrity

e When you receive data, you get the “right” data
@ Availability

e The system or data is there when you want it

3/81

Module 1
coeo

What is privacy?

There are many definitions of privacy. A useful definition can be:
“informational self-determination”

@ This means that you get to control information about you
@ “Control” means many things:

- Who gets to see it

- Who gets to use it

- What they can use it for

- Who they can give it to

- etc.

4/81

Module 1
oooe

Some terminology

@ Vulnerabilities
@ Threats

© Interception
@ Interruption
© Modification
@ Fabrication

o Attacks

@ Controls

One sentence to chain them together: You control a vulnerability to
prevent an attack and defend against a threat.

5/81

Module 2
©0000000000000000

Outline

© Module 2

6/81

Module 2
0®000000000000000

Types of unintentional flaws

Buffer overflows

Integer overflows

Format string vulnerabilities
Incomplete mediation
TOCTTOU erros

7/81

Module 2
00O®00000000000000

What does the memory layout of a process look like?

Program code (Text)

Global data (BSS and data segments)
Dynamically alllocated data (Heap)
Function call data (Stack)

Q: What happens in stack during a function call?

8/81

Module 2
000®0000000000000

Function calls

High memory _ _
FP: frame pointer pre-call ; Eallmgfunc;on pl:lshe{s .::gsccr:inmpsta_;:. .
SP: stack pointer || Stack frame of . “call” opcode pushes Instruction Poi ! er (IP)
calling function as return address, then sets IP to begin
1 executing code in called function
stack grows arg2 3. called function pushes FP for later recovery
qunl argl 4_ FP < 5P (so FP points to old FP),
return addr now FP+k=args, FP-k = local vars
FP—» old FP 5. decrement 5P, making stack space for local vars
e g ca::eg :un?n elxeu.n:es L:_l;‘l'l:kria;y 1o ?um
: . called function cleans up ore return
called function
5p—3 {SP « FP, FP « old FP popped from stack)
8. "ret” opcode pops return address into 1P,
Low memorny 10 resume execution back to calling function

Figure 6.4: User-space stack and function call sequence (x86 conventions). FP is also
called BP (Base Pointer). Register state may also be saved onto the stack (not shown).

(Source: van Oorschot textbook, Chapter 6,
https://people.scs.carleton.ca/~paulv/toolsjewels.html)

9/81

https://people.scs.carleton.ca/~paulv/toolsjewels.html

Module 2
0000®000000000000

Buffer overflows

The single most commonly exploited type of security flaw
Example:

#define LINELEN 1024
char buffer[LINELEN];

gets(buffer);
or
strcpy (buffer, argv[1]);

Important reading: Smashing The Stack For Fun And Profit

10/81

https://insecure.org/stf/smashstack.html

Module 2
00000@00000000000

Defences against buffer overflows

@ Programmer: Use a language with bounds checking
@ Compiler: Place padding between data and return address
(“Canaries")
o Detect if the stack has been overwritten before the return from each
function
@ Memory: Non-executable stack
o "WaX", DEP (memory page is either writable or executable, but
never both)

e OS: Stack (and sometimes code,heap,libraries) at random virtual
addresses for each process

o Address Space Layout Randomization (ASLR) - All mainstream OSes
do this

@ Hardware-assistance: pointer authentication, shadow stack,
memory tagging

11/81

Module 2
000000e0000000000

Integer overflows

Root cause: Machine integers can represent only a limited set of
numbers, might not correspond to programmer’s mental model

Example: If the programmer assumes that integer is always
positive, overflow will make (signed) integer wrap and become
negative, which will violate the assumption

12/81

Module 2
0000000®000000000

Format string vulnerabilities

Unfiltered user input is used as format string in printf(),
fprintf(Q), sprintf(), ...

For example:
@ printf(buffer) instead of printf("%s", buffer)

e The first one will parse buffer for %s and use whatever is currently
on the stack to process found format parameters

@ printf("%s%s%s¥%s") likely crashes your program
o printf("%x%x%x%x") dumps parts of the stack

@ %n will write to an address found on the stack

13/81

Module 2
00000000®00000000

Incomplete mediation

Inputs to programs are often specified by untrusted users

Users sometimes mistype data in web forms

The web application needs to ensure that what the user has
entered constitutes a meaningful request — mediation

Incomplete mediation occurs when the application accepts
incorrect data from the user
@ We focus on catching entries that are clearly wrong
- Not well formed (e.g., DOB: 1980-04-31)
- Unreasonable values (e.g., DOB: 1876-10-12)
- Inconsistent with other entries
@ We need this to prevent
- SQL injections
- Cross-Site Scripting (XSS) attacks

14 /81

Module 2
000000000e0000000

TOCTTOU errors

Time-Of-Check To Time-Of-Use errors, also known as “race
condition” errors

These errors may occur when the following happens:
@ User requests the system to perform an action
@ The system verifies the user is allowed to perform the action

© The system performs the action

Q: What happens if the state of the system changes between steps
2 and 37

15/81

Module 2
0000000000e000000

Race condition example

A particular Unix terminal program is setuid (runs with
superuser privileges)

It supports a command to dump the terminal contents to a log file

It first checks if the user has permissions to write to the
requested file; if so, it opens the file for writing

The attacker makes a symbolic link:
logfile -> file_she_owns

Between the “check” and the “open”, she changes it:
logfile -> /etc/passwd

16/81

Module 2
00000000000e00000

Types of malware

o Virus

- Malicious code that adds itself to benign programs/files

- Code for spreading + code for actual attack

- Usually activated by users
o Worms

- Self-contained piece of code

- Malicious code spreading with no or little user involvement
o Trojans

- Malicious code hidden in seemingly innocent program downloaded
@ Logic Bombs

- Malicious code hidden in programs already on your machine

17/81

Module 2
000000000000 e0000

Other malicious code

Web bugs (beacon)

Back doors

Salami attacks

Privilege escalation
Rootkits

Keystroke logging
Interface illusions
Phishing
Man-in-the-middle attacks

18/81

Module 2
0000000000000e000

Covert channels and side channels

Covert channel: An attacker creates a capability to transfer
sensitive/unauthorized information through a channel that is not
supposed to transmit that information.

Side channel: Sensitive/unauthorized information is leaked through
a channel that is not supposed to transmit that information.

Examples of such channels:
@ Bandwidth consumption
@ Timing computations

@ Electromagnetic emission
°

Sound emissions

19/81

Module 2
0000000000000 e00

Design-time security controls

Q: How can we design programs so that they're less likely to have
security flaws?

Modularity
Encapsulation
Information hiding

Mutual suspicion

Confinement

20/81

Module 2
000000000000000e0

Implementation-time security controls

Q: When you're actually coding, what can you do to control
security flaws?

Don't use C (but this might not be an option)
Static code analysis
Hardware-assistance

Formal methods

Genetic diversity

21/81

Module 2
0000000000000000e

Software-lifecycle security controls

Change management
Code reviews
Testing

Documentation

Maintenance

22/81

Module 3
9000000000000

Outline

© Module 3

23/81

Module 3
0®00000000000

Protected objects by the OS

An operating system needs to handle the separation and sharing of
the following resources:

e CPU
Memory
Cache

°
o Disk
°
°

I/O devices (disks, printers, keyboards, sensors, ...)

Networks

Amongst different programs as well as between the kernel and the
programs.

24/81

Module 3
00®0000000000

Memory and address protection

0 fer_lce N

[os code][user land]

user land can't write to addresses

lowerthan the fence address

0 boundslE boundsZE N

[OSCOde]é[user land 1 [user land 2]

Base 1 EIé):-:se 2
| > | |

"user land n" can't write to addresses lower than the "base n"
address or higher than the "bounds n" address

25/81

Module 3
000®000000000

Segmentation

Each program has multiple address spaces (segments)
Different segments for code, data, and stack

- Or maybe even more fine-grained, e.g., different segments for data
with different access restrictions

@ Virtual addresses consist of two parts:
e <segment name, offset within segment>

OS keeps mapping from segment name to its base physical
address in Segment Table

o A segment table for each process

OS can (transparently) relocate or resize segments and share
them between processes

@ Segment table also keeps protection attributes

26/81

Module 3
0000®00000000

Segment table

Segment Translation Table

Address
MAIN c 0
Logical Program SEG_A p
MAIN
SUB a a
SEG_A DATA_SEG| h [
b
FETCH<DATA_SEG,20>
c
SUB
d
DATA_SEG ¢
g .
©
g
h
—
Location 20 Within Segment DATA_SEG i
27/81

Module 3

00000@0000000

Program (i.e., virtual address space) is divided into equal-sized
chunks (pages)

Physical memory is divided into equal-sized chunks (frames)

@ Frame size equals page size

@ Virtual addresses consist of two parts:

e <page #, offset within page>
o # bits for offset = logy(page size)

OS keeps mapping from page # to its base physical address in
Page Table

Page table also keeps memory protection attributes

28/81

Module 3
000000®000000

Page table

virtual address phrysical address
= vhits —= == mbits —>
page # ‘ offset | frame # ‘ offset ‘
|
b -

—— m bifts —

page table base
register

) frame #

orotection and pace tahle 29/81

Module 3
0000000e00000

Access control matrix

@ Set of protected objects: O
e e.g., files or database records
Set of subjects: S

e e.g., humans (users), processes acting on behalf of humans or group
of humans/processes

Set of rights: R

o e.g., {read, write, execute, own}

@ Access control matrix consists of entries as, o], where s € S,
o€ Oandals,0] CR

30/81

Module 3
0000000080000

Access control matrix implementation

Access control lists (ACLs) Each object has a list of subjects and
their access rights

Capabilities A capability is an unforgeable token that gives its
owner some access rights to an object

@ Unforgeability enforced by having OS store and maintain tokens
or by cryptographic mechanisms

@ Tokens might be transferable (e.g., if anonymous)

31/81

Module 3
0000000008000

Authentication factors

Four classes of authentication factors

Something the user knows
o Password, PIN, answer to “secret question”

Something the user has
o ATM card, badge, browser cookie, physical key, uniform, smartphone

Something the user is

o Biometrics (fingerprint, voice pattern, face,...)
e Have been used by humans forever, but only recently by computers

Something about the user’s context
e Location, time, devices in proximity

32/81

Module 3
0000000000800

Password security

@ Store only a digital fingerprint of the password (using a
cryptographic hash) in the password file

@ When logging in, system computes fingerprint of entered
password and compares it with user’s stored fingerprint

o Still allows offline guessing attacks when password file leaks

@ UNIX makes guessing attacks harder by including user-specific
salt in the password fingerprint

@ Two users who happen to have the same password will likely have
different fingerprints

@ Makes guessing attacks harder, can't just build a single table of
fingerprints and passwords and use it for any password file

33/81

Module 3
0000000000080

Interception attacks and challenge-response protocols

An attacker may intercept password (or its fingerprint) while it is in
transmission from client to server

Solution: One-time passwords make intercepted password useless
for later logins.

@ Server sends a random challenge to a client

@ Client uses the received challenge and the (long-term) password
to compute a one-time password

© Client sends one-time password to server

@ Server checks whether client’s response is valid given that the
server also knows the (long term) password

NOTE: Given intercepted challenge and response, attacker might

be able to brute-force password if it is too short
34/81

Module 3
000000000000e

Level of protections

Level of privileges:

@ Virtualization

o Kernel

@ Reference monitor

@ Application insulation

Mechanism of controls:
o Chroot

o Containers

@ Compartmentalization
°

setuid/suid bit

35/81

Module 4
©0000000

Outline

@ Module 4

36/81

Module 4
0®000000

IPv4 packet

0 4 8 16 31 bit
Version| THL | TOS Total length
Identification Flags | Frgment offset 20
TTL | Protocol Header checksum
bytes
Source address

Destination address

0-40
/ Options / bytes
Up to
Data 65536
bytes

37/81

Module 4
[e]eY YeTololele}

IP spoofing example

Attacker
real IP: 1.1.1.1 Internet-Router
source: 3.3.3.3
destination: 2.2.2.2
Lig P

i

source (spoofed): 3.3.3.3

destination: 2.2.2.2 '

source: 2.2.
destination: 3.

2.2
3.3.

trusted Host Victim

IP:3.33.3 1P:2.222
(might be target of DoS-attack) (possible security breach)

38/81

Module 4
[e]eleY Yololele}

Ping (ICMP) flood

Attacker

ICMP ECHO REQUEST

ICMP ECHO REPLY
7?7

ICMP ECHO REQUEST
ICMP ECHO REPLY
—_—

ICMP ECHO REQUEST

ICMP ECHO REPLY

Target

B

39/81

Module 4
[eeleTeY Yolele}

TCP three-way handshake

flags: SYN Eﬁ'er
A > B

— seq(1000) ot

ISN, = 1000 ISN}, = 2000
flags: SYN-ACK

seq(2000), ack(1001)

———flags: oy

Seq(1nmy —— 10 data bytes
C;‘(.IOO.U, aCI’(fZ'UUl)

: N:';(o
20 data bytes flag> —"—
5000 Sck(101d)

se

40/81

Module 4
00000800

Basic SYN flood

ch:nt flags: SYN - FE?VEF
seq(1000) B
ISN, = 1000 ISNy, = 2000

flags: SYN-ACK
seq(2000), ack(1001}

client _
A flags: SYN E\@
seq (3000) B
ISN, = 3000 ISN, = 4000

flags: SYN-ACK
seq(4000), ack(3001)

<
<

41/81

Module 4
000000e0

Basic SYN flood with IP spoofing

Secondary Victims

ez O
& responsive host
/ at IP addr y,

Attacker o Vieem SYN-ACK
I—Ig) f .
SYN-ACK unresponsive host

true source IP addr: x
asserted IP addr:yy, y5, ¥3, -

5}4/ at IP addr)
"qu unresponsive host
atIPaddry,

42/81

Module 4
0000000Oe

Address Resolution Protocol (ARP)

If there is someone out there with the IP o
10.0.0.22, please send me your MAC.
Here is my MAC: 0053.ffff.aaaa

Router
.0.33 10.0.0.99
ffff.cccc 0053.ffff.9999

— A\

Host A
i@ 10.0.0.11
- 0053 . ffff.aaaa

Host B
i 10.0.0.22
=) 0053. ffff.bbbb

=) Serv I'am 10.0.0.22 Router
m | 16.0.| iy MAC is 0053 ffff.bbbb | 19-©.0.99
L7 o053, go53 . FFff.9999
Host A Host B
i@ 10.0.0.11 10.0.0.22
o> 0053.ffff.aaaa 0053 .ffff.bbbb

43/81

Module 5
©000000000000

Outline

© Module 5

44 /81

Module 5
O®00000000000

Kerckhoffs' principle

Kerckhoffs’s principle: a cryptosystem should be secure, even if
everything about the system, except the key, is public knowledge

Which can also be re-stated as:

Shannon’s maxim: one ought to design systems under the
assumption that the enemy will immediately gain full familiarity
with them.

45 /81

Module 5
0O®0000000000

Secret-key encryption

The key Alice uses to encrypt the message is the same as the key
Bob uses to decrypt it:

D (Ex(m)) =m

One-time pad: perfect secret-key encryption
@ kis a truly random bitstring of the same length as m
@ The “Encrypt” and "Decrypt” functions are both XOR

Ciphers and modes of operations
@ Stream ciphers
@ Block ciphers: ECB (not secure), CBC, CTR, etc.

46 /81

Module 5
000®000000000

Public-key encryption

o
2]
o
o

Bob creates a key pair (e, di)

Bob gives everyone a copy of his public encryption key e
Alice uses it to encrypt a message, and sends the encrypted
message to Bob

Bob uses his private decryption key dj to decrypt the message

e Eve can’t decrypt it; she only has the encryption key ey
o Neither can Alice
e It must be hard to derive d, from e,

47/81

Module 5
0000@00000000

Cryptographic hash functions

A hash function h takes an arbitrary length string x and computes a
fixed length string y = h(x) called a message digest

Hash functions should have three properties:
@ Preimage-resistance:
- Given y, it's hard to find x such that h(x) =y
@ Second preimage-resistance:
- Given x, it's hard to find x’ # x such that h(x) = h(x’)
@ Collision-resistance:
- It's hard to find any two distinct values x, x” such that h(x) = h(x’)

48 /81

Module 5

00000@0000000

Message authentication codes (MAC)

T>

49 /81

Module 5
000000e000000

Digital signatures

R 4

_ Sig Verify —> T/F

N

Sk

(:l.lll. "--1;;---)

Vi

50/81

Module 5
0000000800000

Diffie-Hellman key exchange

@ Alice chooses prime p at random and finds a generator g
@ Alice chooses X < {0,1,...,p— 1} and sends
A = g% (mod p) to Bob, together with p and g
@ Bob chooses Y < {0,1,...,p— 1} and sends
B =g" (mod p) to Alice
@ Alice and Bob both compute s = g% (mod p)

o Alice does that by computing BX (mod p)
o Bob does that by computing A” (mod p)

Now they share a common secret s which can be used to derive a
symmetric key

51/81

Module 5
00000000 e0000

IPSec: modes of operations

A regular IP packet in the form of (H || P) can be transformed
into an IPSec packet depending on the mode of operation:

| AH | ESP

Transport | H || AH || P H || ESP-H || (P)« || ESP-T

< Int. of H and P — Int. and Conf. of P only

H [AH || (H || P) | H" [ESP-H || (H [P) || ESP-T
— Int. of H and P — Int. and Conf. of H and P

Tunnel

52/81

Module 5
0000000008000

PGP: web-of-trust via signing keys

@ Once Alice has verified Bob's key, she uses her signature key to
sign Bob's key

- i.e., Alice signs a message that says "/ have verified that the key with
fingerprint B117 ... 8BF5 really belongs to Bob'

@ Bob can attach Alice’s signature to the key on his webpage

o If Carol doesn't know Bob, but does know Alice (and has already
verified Alice's key, and trusts her to introduce other people):

- she downloads Bob's key from his website
- she sees Alice's signature on it

- she is able to use Bob’s key without checking with Bob personally

53/81

Module 5
0000000000800

OTR: deniable authentication

Alice and Bob chat online in a way that:
@ They can decrypt and authenticate each other's messages but,
@ No one else knows what they say

@ No one can prove what was said

Do not want digital signatures

- Non-repudiation is great for signing contracts, but undesirable for
private conversations

Use Message Authentication Codes (MAC)

54 /81

Module 5
0000000000080

Private information retrieval (PIR)

Goal: allow a user to query a database while hiding the identity of
the data-items the user is after

Formal model:
@ Server: holds an n-bit string { X1, X2, ..., X}
@ User: wishes to retrieve X; AND keep / private

55 /81

Module 5
0000000000008

Comparison of CPIR and IT-PIR

CPIR

@ Possible with a single server

@ Server needs to perform
intensive computations

@ To break it, the server needs
to solve a hard problem

IT-PIR
@ Only possible with > 1 server.

@ Server may need lightweight
computations only

@ To break it, the server needs
to collude with other servers

56 /81

Module 6
©0000000000000000

Outline

© Module 6

57 /81

Module 6
0®000000000000000

DAC for databases

DAC is built-in in the SQL language.
@ Use the GRANT keyword to assign a privilege to a user

@ Use the REVOKE keyword to withdraw a privilege.

58/81

Module 6
0O®00000000000000

Fine-grained DAC using SQL views

Accounts Al, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Create a view

> A2: CREATE VIEW CSEmployeePublicInfo
SELECT Name, DOB, Address FROM Employee
WHERE Dpt = "CS";

The table owner (A2) creates a view that only expose the (Name,
DOB, Address) information for Employees in the CS department.

Relation-level privilege via views
> A2: GRANT SELECT ON CSEmployeePublicInfo TO A3;

The table owner (A2) grants user A3 the privilege to run SELECT
queries on the restrict view instead of the whole Employee table.

59/81

Module 6
000®0000000000000

RBAC for databases

Creating and using roles
> Admin: CREATE ROLE "DptAdmin", "CompanyHR";

> Admin: GRANT "DptAdmin" TO Al;
> Admin: GRANT "CompanyHR" TO A3;

> A2: GRANT SELECT ON CSEmployeePublicInfo TO "DptAdmin";
> A2: GRANT UPDATE ON Employee(Address) TO "CompanyHR";

60 /81

Module 6
0000®000000000000

Element integrity

Example on element integrity violations

CREATE TABLE Employee (Name VARCHAR(255), Age INTEGER);
INSERT INTO Employee VALUES ("SMITH", 400);

The type system is not expressive enough. There is no way to
restrict that Age must be in a proper range (e.g., 0-150).

And there are even more tricky situations, for example:

@ At all times, there is at most one employee can have the
Position attribute set to "CEQ”.

@ A salary increase cannot exceed 100% of the current salary.

61/81

Module 6
00000®00000000000

Referential integrity

Referential integrity ensures that each value of a foreign key refers
to a valid primary key value, i.e. there are no dangling foreign keys.

One use case: to prevent accidental or intentional deletion of
records that are still being used.

62/81

Module 6
000000@®0000000000

Inconsistent state

Recall that integrity is about ensuring the data records are in a
sensible/correct state at all times.

But what if a transaction requires two or more write operations?
For example: transfer money from Alice to Bob requires two UPDATE:

@ UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";
@ UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

Q: What happens if the database fails after the first UPDATE?

63/81

Module 6
0000000e000000000

Data race

If two clients send the request concurrently, what will be the result?

SELECT @balance = Balance SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice"; FROM Ledger WHERE Name = "Alice";
UPDATE Ledger SET Balance = UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice" @balance - 100 WHERE Name = "Alice"

One possible interleaving:

Transaction interleavings

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";
SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";
UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";
UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

Q: How much is deducted from Alice's balance?

64/81

Module 6
0000000080000 0000

Privacy notions

k-anonymity: For each published record, there exists at least kK — 1
other records with the same quasi-identifier (where k > 2)

{-diversity: For any quasi-identifier value, there should be at least ¢
distinct values of the sensitive fields (again ¢ > 2)

t-closeness: Distribution of sensitive attribute values in each
equi-class should be close to that of the overall dataset

@ Privacy is measured by the information gain of an observer.
@ The gain is the difference between

- prior belief, what the observer knows before seeing the data, and
- posterior belief. what the observer knowns after seeing the data.

65/81

Module 6
000000000 e0000000

Neighboring databases

Two databases D; and D, are neighbouring if they agree except for
a single entry.

@ Unbounded DP: Dy and D, are neighboring if D> can be obtained
from D; by adding or removing one element

@ Bounded DP: Dy and D, are neighboring if D> can be obtained
from Dy by replacing one element

66 /81

Module 6
0000000000e000000

e-differential privacy

Idea: If the mechanism M behaves nearly identically for D; and D»,
then an attacker can't tell whether Dy or D, was used (and hence
can't learn much about the individual).

Definition:
A mechanism M : X — Y is e-differentially private (e-DP) if for any
two neighboring databases D; : X and D, : X:

VT CY, Pr[M(D;)e T]<ePr[M(D;) € T]

67/81

Module 6
00000000000e00000

Sensitivity

Definition: given a query processing function f : X — RX, the
{1-sensitivity of f is defined as:

A = max ||f(Dy) — f(D2)||ly where D1, D> € X
Di~D»y

NOTE 1: The range of f is k-dimensional

NOTE 2: ¢1-sensitivity is ||x1 — x2|l1 = >_; |x1[i] — x2[d]]

68 /81

Module 6
000000000000 e0000

Sensitivity w/ one pair of neighboring databases

D1 with Alice enrolled: D2 with Alice not enrolled:

@ Alice: 90 @ Everyone (30 of them): 50
@ Everyone else (29 of them): 50

Algorithm: You are allowed to make a query that returns the
average score of this course.

Q: What is the ¢1-sensitivity here?
A: |Avg(Dy) — Avg(D,)| = 1.33

69 /81

Module 6
0000000000000 e000

Sensitivity w/ more database candidates

Q: What if we don't know the scores?

Suppose we only know that each student’s score € [0 — 100], and
@ (in bounded DP): there are 30 students enrolled
@ (in unbounded DP): there are 29 or 30 students enrolled

Algorithm: You are allowed to make a query that returns the
average score of this course.

Q: What is the ¢1-sensitivity here?

70/81

Module 6
0000000000000 0e00

Sensitivity w/ more database candidates - bounded

Suppose we only know that each student’s score € [0 — 100], and
there are 30 students enrolled in the course.

Algorithm: You are allowed to make a query that returns the
average score of this course.

229 students +k1 o 229 students +k2 |)

f= "lax(‘ 30 30
= @ max(|ky — ka|)
=35 X100 (ki =0k =100) V (la = 100 A k, = 0)
_ 10
3

71/81

Module 6
000000000000000e0

Sensitivity w/ more database candidates - unbounded

Suppose we only know that each student’s score € [0 — 100], and
there are either 29 or 30 students enrolled in the course.

Algorithm: You are allowed to make a query that returns the
average score of this course.

229 students 229 students +k D

l1 = max(] 29 - 30
= max(Rz -)
casel, max(zzzsgjgi)m) - min(%)

= E for both cases

72/81

Module 6
0000000000000000e

Laplace mechanism

Definition: Let : X — R is the function that calculates the
“true” value of a query. The Laplace mechanism is defined as:

M(D) = f(D) + (Y1, Ya, -+, Yk)

where Y; are independent and identically distributed (i.i.d) random

;
variables sampled from Lap(%)

73/81

Module 7
©0000000

Outline

@ Module 7

74/81

Module 7
0@000000

vs ethics

@ Laws are a set of formal rules that governs how we behave as
members of a society.

@ The goal is to create a set of basic and objectively enforceable
standard of behaviors.

@ Specifies, in greater details, what we MUST do and more
frequently, what we MUST NOT do.

@ Laws are upheld and applied by a state-backed justice system.

Q: Why laws are not enough?

@ The lengthy legislative process does not match with the
fast-pacing tech industry

@ Laws usually have a very narrow focus.

75/81

Module 7
[e]e] Yololelele]

Responsible disclosure

Q: You have found a security vulnerability, what should you do?

Coordinated vulnerability disclosure

@ A private full disclosure to all responsible parties (e.g., software
vendors for most software bugs)

o Wait for either a patch from the responsible parties of a specific
amount of time (e.g., 90-days or 120-days)

@ A public partial disclosure if you want to further pressure the
responsible parties; or a public full disclosure in the interests of
potential victims.

76 /81

Module 7
[ee]eY Tolelele]

Talk to independent experts

Institutional review board (IRB), a.k.a., independent ethics
committee (IEC), ethical review board (ERB), or research ethics
board (REB), etc...

is a committee that applies research ethics by reviewing the
methods proposed for research to ensure that they are ethical.

77/81

Module 7
0000®000

Codes of professional ethics

You will probably be a member of one or more professional societies

@ Association for Computing Machinery (ACM)
o Institute of Electrical and Electronics Engineers (IEEE)

e Canadian Information Processing Society (CIPS)

These organizations have codes of professional ethics

78/81

Module 7
00000@00

Types of intellectual property

Four kinds of IP here: These four kinds of IP:

@ Trade secrets, o Cover different intangibles

@ Trademarks, o Convey different rights

@ Patents, and @ Have different durations
°

o Copyrights Use different registration process

79/81

Module 7
000000e0

Risk assessment

Definition: A risk is a potential problem that a system or its users
may experience

Risks have two important characteristics:

@ Probability: what is the probability (between 0 and 1) that the
risk will occur? (That is, the risk will turn into a problem)

@ Impact: if the risk occurs, what harm will happen? This is usually
measured in terms of money (cost to clean up, direct losses, PR
damage to the company, etc.)

The risk exposure = probability x impact

80/81

Module 7
0000000Oe

Project savings due to control

@ The expected cost of not controlling the risk is just the risk
exposure, as computed earlier

@ For each control, the cost of the control is its direct cost (e.g.,
buying the network monitoring equipment, training, etc.), plus
the exposure of the controlled risk

- Most controls aren't perfect: even with the control, there will still be
a (smaller, hopefully) probability of a problem

@ Savings = Risk exposure — Cost of control — New risk exposure

81/81

	-
	Module 1
	Module 2
	Module 3
	Module 4
	Module 5
	Module 6
	Module 7

