
CS 458 / 658: Computer Security and Privacy

Module 5 - Security and Privacy of Internet Applications

Part 2 - Cryptography use cases

Meng Xu (University of Waterloo)

Winter 2023

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Outline

1 Overview of Security Controls

2 Link-layer Security (WEP, WPA)

3 Network-layer Security (IPSec)

4 Transport-layer Security (TLS)

5 Application-layer Security (SSH)

6 Application-layer Security (PGP)

7 Application-layer Security (OTR)

2 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Security controls using cryptography

We use cryptography as security control in situations where trust
cannot be assumed.

We will closely examine case studies on network security

- link layer
- network layer
- transport layer
- application layer

But first, we will see some simple use cases to warm-up.

3 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Security controls using cryptography

We use cryptography as security control in situations where trust
cannot be assumed.

We will closely examine case studies on network security

- link layer
- network layer
- transport layer
- application layer

But first, we will see some simple use cases to warm-up.

3 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Use cases in program and OS security

Apps can be installed only if digitally signed by the vendor
(BlackBerry) or upgraded only if signed by the original developer
(Android)

OS allows execution of programs only if signed (iOS)

OS allows loading of certified device drivers only (Windows)

Secure boot: OS components booted only if correctly signed

4 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Encrypted code

There is research into processors that executes encrypted code only

The processor will decrypt instructions before executing them

The decryption key is unique to each processor

Malware won’t be able to spread without knowing a processor’s
encryption key

Q: What is the downside?

A: Scalability of (legitimate) software deployment

5 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Encrypted code

There is research into processors that executes encrypted code only

The processor will decrypt instructions before executing them

The decryption key is unique to each processor

Malware won’t be able to spread without knowing a processor’s
encryption key

Q: What is the downside?

A: Scalability of (legitimate) software deployment

5 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Encrypted code

There is research into processors that executes encrypted code only

The processor will decrypt instructions before executing them

The decryption key is unique to each processor

Malware won’t be able to spread without knowing a processor’s
encryption key

Q: What is the downside?

A: Scalability of (legitimate) software deployment

5 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Encrypted data

A common technique that aims to protect data in the storage media
when the laptop gets lost/stolen, which can be performed either on
hardware or by software.

However, it does not protect data against

Other users who legitimately use laptop

Somebody installing malware on laptop

Somebody (maybe physically) extracting the decryption key from
the laptop’s memory

6 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Network security and privacy

Entities you can only communicate with over a network are
inherently less trustworthy (e.g., they may not be who they claim to
be). This makes networking a primary scenario for cryptography.

This is a separation of concern, and in particular, “separating the
security of the medium from the security of the message”

7 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recall the Network Stack

Q: Where do we need to apply crypto?
(i.e., one or more of confidentiality, integrity, authentication)

A. Link layer is enough

B. Application layer is enough

C. We need it in all layers

D. Who needs crypto?

8 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Network security and privacy

Cryptography is used at every layer of the network stack for both
security and privacy applications:

Link

WEP, WPA, WPA2

Network

VPN, IPsec

Transport

TLS / SSL, Tor

Application

ssh, PGP, OTR, Signal, Mixminion

9 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Outline

1 Overview of Security Controls

2 Link-layer Security (WEP, WPA)

3 Network-layer Security (IPSec)

4 Transport-layer Security (TLS)

5 Application-layer Security (SSH)

6 Application-layer Security (PGP)

7 Application-layer Security (OTR)

10 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Wired Equivalent Privacy (WEP)

The Wired Equivalent Privacy (WEP) protocol is a link-layer
security protocol that aims to make wireless communication links
just as secure as wired links.

In particular, WEP was intended to enforce three security goals

Data Confidentiality

- Prevent an adversary from learning the contents of the wireless traffic

Data Integrity

- Prevent an adversary from modifying the wireless traffic or
fabricating traffic that looks legitimate

Access Control

- Prevent an adversary from using your wireless infrastructure

Unfortunately, none of these is actually enforced!

11 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Wired Equivalent Privacy (WEP)

The Wired Equivalent Privacy (WEP) protocol is a link-layer
security protocol that aims to make wireless communication links
just as secure as wired links.

In particular, WEP was intended to enforce three security goals

Data Confidentiality

- Prevent an adversary from learning the contents of the wireless traffic

Data Integrity

- Prevent an adversary from modifying the wireless traffic or
fabricating traffic that looks legitimate

Access Control

- Prevent an adversary from using your wireless infrastructure

Unfortunately, none of these is actually enforced!

11 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Wired Equivalent Privacy (WEP)

The Wired Equivalent Privacy (WEP) protocol is a link-layer
security protocol that aims to make wireless communication links
just as secure as wired links.

In particular, WEP was intended to enforce three security goals

Data Confidentiality

- Prevent an adversary from learning the contents of the wireless traffic

Data Integrity

- Prevent an adversary from modifying the wireless traffic or
fabricating traffic that looks legitimate

Access Control

- Prevent an adversary from using your wireless infrastructure

Unfortunately, none of these is actually enforced!

11 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP description

The sender and receiver share a secret s (either 40 or 104 bits)

In order to transmit a message M:

Compute a checksum c(M), which does not depend on s

Pick an IV v and generate a keystream K = RC4(v , s)

Ciphertext C = K ⊕ ⟨M ∥ c(M)⟩
Transmit v and C over the wireless link

Upon receipt of v and C :

Use the received v and the shared s for K = RC4(v , s)

Decrypt as K ⊕ C = K ⊕ K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message transmitted

12 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP description

The sender and receiver share a secret s (either 40 or 104 bits)

In order to transmit a message M:

Compute a checksum c(M), which does not depend on s

Pick an IV v and generate a keystream K = RC4(v , s)

Ciphertext C = K ⊕ ⟨M ∥ c(M)⟩
Transmit v and C over the wireless link

Upon receipt of v and C :

Use the received v and the shared s for K = RC4(v , s)

Decrypt as K ⊕ C = K ⊕ K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message transmitted

12 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP description

The sender and receiver share a secret s (either 40 or 104 bits)

In order to transmit a message M:

Compute a checksum c(M), which does not depend on s

Pick an IV v and generate a keystream K = RC4(v , s)

Ciphertext C = K ⊕ ⟨M ∥ c(M)⟩
Transmit v and C over the wireless link

Upon receipt of v and C :

Use the received v and the shared s for K = RC4(v , s)

Decrypt as K ⊕ C = K ⊕ K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message transmitted

12 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP illustration

Q: What kind of cipher is
this?

A: It’s a stream cipher (w/
symmetric key)

Q: What does the receiver
do with v and C?

A: Upon receipt of v and C :

Use the received v and the shared k
for K = RC4(v , k)

Decrypt as
K ⊕C = K ⊕K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message
transmitted

13 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP illustration

Q: What kind of cipher is
this?

A: It’s a stream cipher (w/
symmetric key)

Q: What does the receiver
do with v and C?

A: Upon receipt of v and C :

Use the received v and the shared k
for K = RC4(v , k)

Decrypt as
K ⊕C = K ⊕K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message
transmitted

13 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP illustration

Q: What kind of cipher is
this?

A: It’s a stream cipher (w/
symmetric key)

Q: What does the receiver
do with v and C?

A: Upon receipt of v and C :

Use the received v and the shared k
for K = RC4(v , k)

Decrypt as
K ⊕C = K ⊕K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message
transmitted

13 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP illustration

Q: What kind of cipher is
this?

A: It’s a stream cipher (w/
symmetric key)

Q: What does the receiver
do with v and C?

A: Upon receipt of v and C :

Use the received v and the shared k
for K = RC4(v , k)

Decrypt as
K ⊕C = K ⊕K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message
transmitted

13 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP illustration

Q: What kind of cipher is
this?

A: It’s a stream cipher (w/
symmetric key)

Q: What does the receiver
do with v and C?

A: Upon receipt of v and C :

Use the received v and the shared k
for K = RC4(v , k)

Decrypt as
K ⊕C = K ⊕K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message
transmitted

13 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP illustration

Q: What kind of cipher is
this?

A: It’s a stream cipher (w/
symmetric key)

Q: What does the receiver
do with v and C?

A: Upon receipt of v and C :

Use the received v and the shared k
for K = RC4(v , k)

Decrypt as
K ⊕C = K ⊕K ⊕ ⟨M ′ ∥ c ′⟩ = M ′ ∥ c ′

Check to see if c ′ = c(M ′)

If it is, accept M ′ as the message
transmitted

13 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 1: key reuse

Keystream is derived as: K = RC4(v , s)

IV (v) is too short: only 3 bytes = 24 bits.

Secret (s) is rarely changed!

Q: What is the problem with this?

A: Key-stream gets re-used after 224 iterations → two-time pad.

14 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 1: key reuse

Keystream is derived as: K = RC4(v , s)

IV (v) is too short: only 3 bytes = 24 bits.

Secret (s) is rarely changed!

Q: What is the problem with this?

A: Key-stream gets re-used after 224 iterations → two-time pad.

14 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 1: key reuse

Keystream is derived as: K = RC4(v , s)

IV (v) is too short: only 3 bytes = 24 bits.

Secret (s) is rarely changed!

Q: What is the problem with this?

A: Key-stream gets re-used after 224 iterations → two-time pad.

14 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recall: two-time pad

C1 C2 C1 ⊕ C2 M2 M1

15 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP checksum calculation

The checksum algorithm in WEP is CRC32, which has two
important (and undesirable) properties:

It is independent of k and v

It is linear: c(M ⊕ D) = c(M)⊕ c(D)

Q: Why is linearity a pessimal property for your integrity mechanism
to have, especially when used in conjunction with a stream cipher?
(Hint: chosen ciphertext attack on Textbook RSA)

16 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP checksum calculation

The checksum algorithm in WEP is CRC32, which has two
important (and undesirable) properties:

It is independent of k and v

It is linear: c(M ⊕ D) = c(M)⊕ c(D)

Q: Why is linearity a pessimal property for your integrity mechanism
to have, especially when used in conjunction with a stream cipher?
(Hint: chosen ciphertext attack on Textbook RSA)

16 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 2: integrity breach

Mallory knows C and v in
C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

If she wants to modify the plaintext M
into M ′ = M ⊕ δ, all she needs to do is

Calculate C ′ = C ⊕ ⟨δ ∥ c(δ)⟩
Send (C ′, v) instead of (C , v)

This passes the integrity check of the
recipient (e.g., Bob in this case)!

17 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 2: integrity breach

Mallory knows C and v in
C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

If she wants to modify the plaintext M
into M ′ = M ⊕ δ, all she needs to do is

Calculate C ′ = C ⊕ ⟨δ ∥ c(δ)⟩
Send (C ′, v) instead of (C , v)

This passes the integrity check of the
recipient (e.g., Bob in this case)!

17 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 2: integrity breach

Mallory knows C and v in
C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

If she wants to modify the plaintext M
into M ′ = M ⊕ δ,

all she needs to do is

Calculate C ′ = C ⊕ ⟨δ ∥ c(δ)⟩
Send (C ′, v) instead of (C , v)

This passes the integrity check of the
recipient (e.g., Bob in this case)!

17 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 2: integrity breach

Mallory knows C and v in
C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

If she wants to modify the plaintext M
into M ′ = M ⊕ δ, all she needs to do is

Calculate C ′ = C ⊕ ⟨δ ∥ c(δ)⟩
Send (C ′, v) instead of (C , v)

This passes the integrity check of the
recipient (e.g., Bob in this case)!

17 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 2: integrity breach

Mallory knows C and v in
C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

If she wants to modify the plaintext M
into M ′ = M ⊕ δ, all she needs to do is

Calculate C ′ = C ⊕ ⟨δ ∥ c(δ)⟩
Send (C ′, v) instead of (C , v)

This passes the integrity check of the
recipient (e.g., Bob in this case)!

17 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 2: integrity breach

Here is the math workout:

C ′ = C ⊕ ⟨δ ∥ c(δ)⟩
C ′ = RC4(v , s)⊕ ⟨M ∥ c(M)⟩ ⊕ ⟨δ ∥ c(δ)⟩
C ′ = RC4(v , s)⊕ ⟨(M ⊕ δ) ∥ (c(M)⊕ c(δ))⟩
C ′ = RC4(v , s)⊕ ⟨(M ⊕ δ) ∥ c(M ⊕ δ)⟩
C ′ = RC4(v , s)⊕ ⟨M ′ ∥ c(M ′)⟩

18 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 3: packet injection

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

... and she wants to inject message M ′ to the network,

... then, all she needs to do is:

Derive the keystream: RC4(v , s) = C ⊕ ⟨M ∥ c(M)⟩
Calculate C ′ = RC4(v , s)⊕ ⟨M ′ ∥ c(M ′)⟩
Send (C ′, v) to the network

This passes the integrity check of the recipient!

19 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 3: packet injection

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩
... and she wants to inject message M ′ to the network,

... then, all she needs to do is:

Derive the keystream: RC4(v , s) = C ⊕ ⟨M ∥ c(M)⟩
Calculate C ′ = RC4(v , s)⊕ ⟨M ′ ∥ c(M ′)⟩
Send (C ′, v) to the network

This passes the integrity check of the recipient!

19 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 3: packet injection

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩
... and she wants to inject message M ′ to the network,
... then, all she needs to do is:

Derive the keystream: RC4(v , s) = C ⊕ ⟨M ∥ c(M)⟩
Calculate C ′ = RC4(v , s)⊕ ⟨M ′ ∥ c(M ′)⟩
Send (C ′, v) to the network

This passes the integrity check of the recipient!

19 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 3: packet injection

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩
... and she wants to inject message M ′ to the network,
... then, all she needs to do is:

Derive the keystream: RC4(v , s) = C ⊕ ⟨M ∥ c(M)⟩
Calculate C ′ = RC4(v , s)⊕ ⟨M ′ ∥ c(M ′)⟩
Send (C ′, v) to the network

This passes the integrity check of the recipient!

19 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 3: packet injection

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

Q: How does Eve get a plaintext / ciphertext pair?

A: It turns out the authentication protocol of WEP gives it to the
adversary for free!

20 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 3: packet injection

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

Q: How does Eve get a plaintext / ciphertext pair?

A: It turns out the authentication protocol of WEP gives it to the
adversary for free!

20 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 3: packet injection

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩

Q: How does Eve get a plaintext / ciphertext pair?

A: It turns out the authentication protocol of WEP gives it to the
adversary for free!

20 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP authentication protocol

The goal of the authentication protocol is to prove that a certain
client knows the shared secret s

AP Client

Challenge: R

Response: C , v

C = RC4(s ′, v)⊕ ⟨R||c(R)⟩

The access point (AP) sends a challenge (a 128-bit random
number R) to the client, in plaintext.
The client picks an IV v and sends back
C = RC4(s ′, v)⊕ ⟨R ∥ c(R)⟩ together with v
The AP decrypts C to get R ′ and R ′ = R =⇒ s ′ = s

The whole process can be observed by the adversary!
=⇒ getting R, C , and v for free!

21 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP authentication protocol

The goal of the authentication protocol is to prove that a certain
client knows the shared secret s

AP Client

Challenge: R

Response: C , v

C = RC4(s ′, v)⊕ ⟨R||c(R)⟩

The access point (AP) sends a challenge (a 128-bit random
number R) to the client, in plaintext.
The client picks an IV v and sends back
C = RC4(s ′, v)⊕ ⟨R ∥ c(R)⟩ together with v
The AP decrypts C to get R ′ and R ′ = R =⇒ s ′ = s

The whole process can be observed by the adversary!
=⇒ getting R, C , and v for free!

21 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP authentication protocol

The goal of the authentication protocol is to prove that a certain
client knows the shared secret s

AP Client

Challenge: R

Response: C , v

C = RC4(s ′, v)⊕ ⟨R||c(R)⟩

The access point (AP) sends a challenge (a 128-bit random
number R) to the client, in plaintext.
The client picks an IV v and sends back
C = RC4(s ′, v)⊕ ⟨R ∥ c(R)⟩ together with v
The AP decrypts C to get R ′ and R ′ = R =⇒ s ′ = s

The whole process can be observed by the adversary!
=⇒ getting R, C , and v for free!

21 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 4: packet injection =⇒ authentication

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩
... and she wants to inject message M ′

= R

to the network,
... then, all she needs to do is:

Derive the keystream: RC4(v , s) = C ⊕ ⟨M ∥ c(M)⟩
Calculate C ′ = RC4(v , s)⊕ ⟨M ′ ∥ c(M ′)⟩
Send (C ′, v) to the network

In this way, Mallory authenticates to the AP even without knowing s

22 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Problem 4: packet injection =⇒ authentication

If Mallory knows C , M, and v in C = RC4(v , s)⊕ ⟨M ∥ c(M)⟩
... and she wants to inject message M ′= R to the network,
... then, all she needs to do is:

Derive the keystream: RC4(v , s) = C ⊕ ⟨M ∥ c(M)⟩
Calculate C ′ = RC4(v , s)⊕ ⟨M ′ ∥ c(M ′)⟩
Send (C ′, v) to the network

In this way, Mallory authenticates to the AP even without knowing s

22 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

More problems with WEP

Somewhat surprisingly, the ability to modify and inject packets
leads to ways in which Eve can trick the AP to decrypt packets!
Check Prof. Goldberg’s talk for more details.

Note that none of the attacks so far use the fact that the stream
cipher was RC4. it turns out that when RC4 is used with similar
keys, the output keystream has a subtle weakness, which lead the
recovery of either a 104-bit or 40-bit WEP key in under 60
seconds, most of the time. Check this paper for more details.

23 / 81

https://cypherpunks.ca/bh2001/
https://eprint.iacr.org/2007/120.pdf

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Replacing WEP

Wi-fi Protected Access (WPA) was rolled out as a short-term patch
to WEP while formal standards for a replacement protocol (IEEE
802.11i, later called WPA2) were being developed

Replaces CRC-32 with a real MAC

IV is 48 bits

Key is changed frequently (TKIP)

Ability to use a 802.1x authentication server

But maintains a less-secure PSK (Pre-Shared Key) mode for home
users

Ability to run on most older WEP hardware

24 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Replacing WEP

The 802.11i standard was finalized in 2004, and the result (called
WPA2) has been required for products calling themselves “Wi-fi”
since 2006

Replaces the RC4 and MAC algorithms in WPA with the CCM
authenticated encryption mode (using AES)

Considered strong, except in PSK mode

- Dictionary attacks still possible (avoided in WPA3 (2018))

25 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP Recap

Q: What have we learned from WEP?

Respect to randomness? (provided by IVs?)

Respect to checksums?

A: Some reflections:

Use sufficiently long IVs, don’t share a key with many people,
don’t reuse short-term secret keys and IVs.

Do not use checksums for integrity. Use keyed MACs instead!

You need to understand what was wrong with WEP, how to fix
these issues, and you need to be able to identify these issues in
other protocols.

26 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP Recap

Q: What have we learned from WEP?

Respect to randomness? (provided by IVs?)

Respect to checksums?

A: Some reflections:

Use sufficiently long IVs, don’t share a key with many people,
don’t reuse short-term secret keys and IVs.

Do not use checksums for integrity. Use keyed MACs instead!

You need to understand what was wrong with WEP, how to fix
these issues, and you need to be able to identify these issues in
other protocols.

26 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

WEP Recap

Q: What have we learned from WEP?

Respect to randomness? (provided by IVs?)

Respect to checksums?

A: Some reflections:

Use sufficiently long IVs, don’t share a key with many people,
don’t reuse short-term secret keys and IVs.

Do not use checksums for integrity. Use keyed MACs instead!

You need to understand what was wrong with WEP, how to fix
these issues, and you need to be able to identify these issues in
other protocols.

26 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Outline

1 Overview of Security Controls

2 Link-layer Security (WEP, WPA)

3 Network-layer Security (IPSec)

4 Transport-layer Security (TLS)

5 Application-layer Security (SSH)

6 Application-layer Security (PGP)

7 Application-layer Security (OTR)

27 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Network layer security: purpose

Q: Suppose every link in our network had strong link-layer security.
Would this be enough?

A: Source, destination IPs may not share the same link. Network
layer threats such as IP spoofing still exist.

28 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Network layer security: purpose

Q: Suppose every link in our network had strong link-layer security.
Would this be enough?

A: Source, destination IPs may not share the same link. Network
layer threats such as IP spoofing still exist.

28 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recap: IP packet

1 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 +---+

3 | | Ver. | IHL |Type Of Service| Total Length |

4 | I +-+

5 | P | Identification |Flags| Fragment Offset |

6 | +-+

7 | H | Time to Live | Protocol | Header Checksum |

8 | E +-+

9 | A | Source IP Address |

10 | D +-+

11 | E | Destination IP Address |

12 | R +-+

13 | | Optional Fields (variable) |

14 +---+

15 | | |

16 | | |

17 | P | Packet Payload (variable) |

18 | | |

19 | | |

20 +---+

29 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recap: IP spoofing

30 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Network layer security: purpose

We need end-to-end security across networks, i.e., securing network
layer packets from one host to another so that routers or other
hosts in the middle cannot modify or read the packet payload (they
still need to read packet metadata for routing)

The IP Security suite (IPSec) extends the Internet Protocol (IP) to
provide confidentiality and integrity of packets transmitted across
the network. IPSec enables various architectures of Virtual Private
Networks (VPNs) which is the foundation in network-layer security.

31 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Network layer security: purpose

We need end-to-end security across networks, i.e., securing network
layer packets from one host to another so that routers or other
hosts in the middle cannot modify or read the packet payload (they
still need to read packet metadata for routing)

The IP Security suite (IPSec) extends the Internet Protocol (IP) to
provide confidentiality and integrity of packets transmitted across
the network. IPSec enables various architectures of Virtual Private
Networks (VPNs) which is the foundation in network-layer security.

31 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

When trust cannot be assumed...

We need end-to-end security across networks, i.e., securing network
layer packets from one host to another so that routers or other
hosts in the middle cannot modify or read the packet payload (they
still need to read packet metadata for routing)

The IP Security suite (IPSec) extends the Internet Protocol (IP) to
provide confidentiality and integrity of packets transmitted across
the network. IPSec enables various architectures of Virtual Private
Networks (VPNs) which is the foundation in network-layer security.

Q: What tool do we have when trust cannot be assumed?

Q: How to get the key?

32 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

When trust cannot be assumed...

We need end-to-end security across networks, i.e., securing network
layer packets from one host to another so that routers or other
hosts in the middle cannot modify or read the packet payload (they
still need to read packet metadata for routing)

The IP Security suite (IPSec) extends the Internet Protocol (IP) to
provide confidentiality and integrity of packets transmitted across
the network. IPSec enables various architectures of Virtual Private
Networks (VPNs) which is the foundation in network-layer security.

Q: What tool do we have when trust cannot be assumed?

Q: How to get the key?

32 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

When trust cannot be assumed...

We need end-to-end security across networks, i.e., securing network
layer packets from one host to another so that routers or other
hosts in the middle cannot modify or read the packet payload (they
still need to read packet metadata for routing)

The IP Security suite (IPSec) extends the Internet Protocol (IP) to
provide confidentiality and integrity of packets transmitted across
the network. IPSec enables various architectures of Virtual Private
Networks (VPNs) which is the foundation in network-layer security.

Q: What tool do we have when trust cannot be assumed?

Q: How to get the key?

32 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Internet Key Exchange (IKE)

The source and destination IP addresses agree on a shared
symmetric key via the IKE process, which internally uses the
Diffie-Hellman protocol:

Alice chooses prime p at random and finds a generator g (i.e., a
primitive root modulo p)

Alice chooses X ←R {0, 1, . . . , p − 2} and sends
A = gX (mod p) to Bob, together with p and g

Bob chooses Y ←R {0, 1, . . . , p − 2} and sends
B = gY (mod p) to Alice

Alice and Bob both compute s = gXY (mod p)
- Alice does that by computing BX (mod p)
- Bob does that by computing AY (mod p)

Now they share a common secret s which can be used to derive a
symmetric key

33 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Internet Key Exchange (IKE)

The source and destination IP addresses agree on a shared
symmetric key via the IKE process, which internally uses the
Diffie-Hellman protocol:

Alice chooses prime p at random and finds a generator g (i.e., a
primitive root modulo p)

Alice chooses X ←R {0, 1, . . . , p − 2} and sends
A = gX (mod p) to Bob, together with p and g

Bob chooses Y ←R {0, 1, . . . , p − 2} and sends
B = gY (mod p) to Alice

Alice and Bob both compute s = gXY (mod p)
- Alice does that by computing BX (mod p)
- Bob does that by computing AY (mod p)

Now they share a common secret s which can be used to derive a
symmetric key

33 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Diffie-Hellman protocol

X (gX , p, g)

(gX , p, g)

(gY , ·, ·) Y(gY , ·, ·)

X (gY , p, g)

gXY

(gX , p, g) Y

gXY=

(Background: computing discrete log, e.g., logg Z (mod p) is hard!)

34 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Diffie-Hellman protocol

X (gX , p, g)

(gX , p, g)

(gY , ·, ·) Y(gY , ·, ·)

X (gY , p, g)

gXY

(gX , p, g) Y

gXY=

(Background: computing discrete log, e.g., logg Z (mod p) is hard!)

34 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Diffie-Hellman protocol

X (gX , p, g)

(gX , p, g)

(gY , ·, ·) Y(gY , ·, ·)

X (gY , p, g)

gXY

(gX , p, g) Y

gXY=

(Background: computing discrete log, e.g., logg Z (mod p) is hard!)

34 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Diffie-Hellman protocol

X (gX , p, g)

(gX , p, g)

(gY , ·, ·) Y(gY , ·, ·)

X (gY , p, g)

gXY

(gX , p, g) Y

gXY=

(Background: computing discrete log, e.g., logg Z (mod p) is hard!)

34 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Diffie-Hellman protocol

X (gX , p, g)

(gX , p, g)

(gY , ·, ·) Y(gY , ·, ·)

X (gY , p, g)

gXY

(gX , p, g) Y

gXY=

(Background: computing discrete log, e.g., logg Z (mod p) is hard!)

34 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Diffie-Hellman protocol

X (gX , p, g)

(gX , p, g)

(gY , ·, ·) Y(gY , ·, ·)

X (gY , p, g)

gXY

(gX , p, g) Y

gXY=

(Background: computing discrete log, e.g., logg Z (mod p) is hard!)

34 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

IPSec headers

Now we have a secret shared by both parties, how to use it?

Authentication Header (AH) – RFC4302

Offers integrity and data source authentication
- Authenticates payload and parts of IP header that do not get
modified during transfer, e.g., source IP address

Offers protection against replay attacks
- Via extended sequence numbers

Encapsulated Security Payload (ESP) – RFC4303

Offers confidentiality
- IP data is encrypted during transmission

Offers authentication functionality similar to AH
- But authenticity checks only focus on the IP payload

Applies padding and generates dummy traffic
- Makes traffic analysis harder

35 / 81

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303

Sec Ctrl WEP IPSec TLS SSH PGP OTR

IPSec headers

Now we have a secret shared by both parties, how to use it?

Authentication Header (AH) – RFC4302

Offers integrity and data source authentication
- Authenticates payload and parts of IP header that do not get
modified during transfer, e.g., source IP address

Offers protection against replay attacks
- Via extended sequence numbers

Encapsulated Security Payload (ESP) – RFC4303

Offers confidentiality
- IP data is encrypted during transmission

Offers authentication functionality similar to AH
- But authenticity checks only focus on the IP payload

Applies padding and generates dummy traffic
- Makes traffic analysis harder

35 / 81

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Authentication Header (AH): RCF4302

1 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 +---+

3 | | Ver. | IHL | DHCP |ECN| Total Length |

4 | I +-+

5 | P | Identification |Flags| Fragment Offset |

6 | +-+

7 | H | Time to Live | Protocol | Header Checksum |

8 | E +-+

9 | A | Source IP Address |

10 | D +-+

11 | E | Destination IP Address |

12 | R +-+

13 | | Optional Fields (variable) |

14 +---+

15 | | Next Header | Payload Len | RESERVED |

16 | +-+

17 | A | Security Parameters Index (SPI) |

18 | +-+

19 | H | Sequence Number Field |

20 | +-+

21 | | ** Integrity Check Value-ICV (variable) ** |

22 +---+

23 | P | Packet Payload (variable) |

24 +---+ 36 / 81

https://datatracker.ietf.org/doc/html/rfc4302

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Encapsulating Security Payload (ESP): RCF4303

1 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 +---+

3 | | Ver. | IHL | DHCP |ECN| Total Length |

4 | I +-+

5 | P | Identification |Flags| Fragment Offset |

6 | +-+

7 | H | Time to Live | Protocol | Header Checksum |

8 | E +-+

9 | A | Source IP Address |

10 | D +-+

11 | E | Destination IP Address |

12 | R +-+

13 | | Optional Fields (variable) |

14 +---+

15 | | Security Parameters Index (SPI) |

16 | E +-+

17 | | Sequence Number Field |

18 | +-+

19 | S | Payload Data + Padding (variable) |

20 | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

21 | | | Pad Length | Next Header |

22 | P +-+

23 | | ** Integrity Check Value-ICV (variable) ** |

24 +---+ 37 / 81

https://datatracker.ietf.org/doc/html/rfc4303

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Mode of operation

A regular IP packet in the form of ⟨ H ∥ P ⟩ can be transformed
into an IPSec packet depending on the mode of operation:

AH ESP

Transport

H ∥ AH ∥ P H ∥ ESP-H ∥ ⟨ P ⟩k ∥ ESP-T
↪→ Int. of H (partial) and P ↪→ Int. and Conf. of P only

Tunnel

H’ ∥ AH ∥ ⟨ H ∥ P ⟩ H’ ∥ ESP-H ∥ ⟨ H ∥ P ⟩k ∥ ESP-T
↪→ Int. of H (whole) and P ↪→ Int. and Conf. of H and P

The Tunnel-ESP combination (also known as an IP-in-IP tunneling)
is often used to implement Virtual Private Networks (VPNs)

38 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Mode of operation

A regular IP packet in the form of ⟨ H ∥ P ⟩ can be transformed
into an IPSec packet depending on the mode of operation:

AH ESP

Transport H ∥ AH ∥ P

H ∥ ESP-H ∥ ⟨ P ⟩k ∥ ESP-T

↪→ Int. of H (partial) and P

↪→ Int. and Conf. of P only

Tunnel

H’ ∥ AH ∥ ⟨ H ∥ P ⟩ H’ ∥ ESP-H ∥ ⟨ H ∥ P ⟩k ∥ ESP-T
↪→ Int. of H (whole) and P ↪→ Int. and Conf. of H and P

The Tunnel-ESP combination (also known as an IP-in-IP tunneling)
is often used to implement Virtual Private Networks (VPNs)

38 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Mode of operation

A regular IP packet in the form of ⟨ H ∥ P ⟩ can be transformed
into an IPSec packet depending on the mode of operation:

AH ESP

Transport H ∥ AH ∥ P

H ∥ ESP-H ∥ ⟨ P ⟩k ∥ ESP-T

↪→ Int. of H (partial) and P

↪→ Int. and Conf. of P only

Tunnel H’ ∥ AH ∥ ⟨ H ∥ P ⟩

H’ ∥ ESP-H ∥ ⟨ H ∥ P ⟩k ∥ ESP-T

↪→ Int. of H (whole) and P

↪→ Int. and Conf. of H and P

The Tunnel-ESP combination (also known as an IP-in-IP tunneling)
is often used to implement Virtual Private Networks (VPNs)

38 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Mode of operation

A regular IP packet in the form of ⟨ H ∥ P ⟩ can be transformed
into an IPSec packet depending on the mode of operation:

AH ESP

Transport H ∥ AH ∥ P H ∥ ESP-H ∥ ⟨ P ⟩k ∥ ESP-T
↪→ Int. of H (partial) and P ↪→ Int. and Conf. of P only

Tunnel H’ ∥ AH ∥ ⟨ H ∥ P ⟩

H’ ∥ ESP-H ∥ ⟨ H ∥ P ⟩k ∥ ESP-T

↪→ Int. of H (whole) and P

↪→ Int. and Conf. of H and P

The Tunnel-ESP combination (also known as an IP-in-IP tunneling)
is often used to implement Virtual Private Networks (VPNs)

38 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Mode of operation

A regular IP packet in the form of ⟨ H ∥ P ⟩ can be transformed
into an IPSec packet depending on the mode of operation:

AH ESP

Transport H ∥ AH ∥ P H ∥ ESP-H ∥ ⟨ P ⟩k ∥ ESP-T
↪→ Int. of H (partial) and P ↪→ Int. and Conf. of P only

Tunnel H’ ∥ AH ∥ ⟨ H ∥ P ⟩ H’ ∥ ESP-H ∥ ⟨ H ∥ P ⟩k ∥ ESP-T
↪→ Int. of H (whole) and P ↪→ Int. and Conf. of H and P

The Tunnel-ESP combination (also known as an IP-in-IP tunneling)
is often used to implement Virtual Private Networks (VPNs)

38 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Mode of operation

A regular IP packet in the form of ⟨ H ∥ P ⟩ can be transformed
into an IPSec packet depending on the mode of operation:

AH ESP

Transport H ∥ AH ∥ P H ∥ ESP-H ∥ ⟨ P ⟩k ∥ ESP-T
↪→ Int. of H (partial) and P ↪→ Int. and Conf. of P only

Tunnel H’ ∥ AH ∥ ⟨ H ∥ P ⟩ H’ ∥ ESP-H ∥ ⟨ H ∥ P ⟩k ∥ ESP-T
↪→ Int. of H (whole) and P ↪→ Int. and Conf. of H and P

The Tunnel-ESP combination (also known as an IP-in-IP tunneling)
is often used to implement Virtual Private Networks (VPNs)

38 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

IPSec deployment challenges

Needs to be included in the kernel’s network stack
implementation.

May use inline hardware that implements IPSec.

There may be legitimate reasons to modify some IP header fields;
IPSec breaks networking functionalities that require such changes.

39 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Outline

1 Overview of Security Controls

2 Link-layer Security (WEP, WPA)

3 Network-layer Security (IPSec)

4 Transport-layer Security (TLS)

5 Application-layer Security (SSH)

6 Application-layer Security (PGP)

7 Application-layer Security (OTR)

40 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Transport-layer security and privacy

Network-layer security mechanisms arrange to send individual IP
packets securely from one network to another

Transport-layer security mechanisms transform arbitrary TCP
connections to add security and privacy

The main transport-layer security mechanism:

- TLS (formerly known as SSL)

The main transport-layer privacy mechanism:

- Tor — will be covered in the lecture on PETs.

41 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Transport-layer security and privacy

Network-layer security mechanisms arrange to send individual IP
packets securely from one network to another

Transport-layer security mechanisms transform arbitrary TCP
connections to add security and privacy

The main transport-layer security mechanism:

- TLS (formerly known as SSL)

The main transport-layer privacy mechanism:

- Tor — will be covered in the lecture on PETs.

41 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

TLS / SSL

In the mid-1990s, Netscape invented a protocol called Secure
Sockets Layer (SSL) for protecting HTTP (web) connections

- HTTP + SSL = HTTPS
- The protocol, however, was general, and could be used to protect any
TCP-based connection

Historical note: there was a competing protocol called S-HTTP.
But Netscape and Microsoft both chose HTTPS, so that’s the
protocol everyone else followed

SSL went through a few revisions, and was eventually
standardized into the protocol known as TLS (Transport Layer
Security, imaginatively enough)

42 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

TLS at a high level: RFC8446

Client connects to server, indicates it wants to speak TLS, with

Client key-share under ECDHE
The list of ciphersuites it knows

Server sends its certificate to client, which contains:

Server key-share under ECDHE
Its host name
Its verification key
Some other administrative information
Server signature and certificate

Both client and server derives tbe same session key K (which is
hard for Eve to derive) based on the two key shares

Server also chooses which ciphersuite to use

All remaining traffic will be encrypted and authenticated under K

43 / 81

https://datatracker.ietf.org/doc/html/rfc8446

Sec Ctrl WEP IPSec TLS SSH PGP OTR

TLS connection establishment

44 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Security properties provided by TLS

Server authentication

Message integrity

Message confidentiality

Client authentication (optional)

45 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Authenticity

So we established confidentiality, but how does the client
authenticate the server?

46 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Authenticity

So we established confidentiality, but how does the client
authenticate the server?

46 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recap: Certificate Authority (CA)

Alice sends Bob the following certificate to prove her identity. Bob
can follow the chain of certificates to validate Alice’s identity.

Subject: Alice

Issuer: CA2

validity_period

public_key: vA

...

Subject: CA2

Issuer: CA1

validity_period

public_key: vCA2

...

Subject: CA1

Issuer: CA1

validity_period

public_key: vCA1

...
Signed with sCA2 Signed with sCA1 Signed with sCA1

Bob has vCA1

47 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What can go wrong with these CAs

An adversary can compromise a CA to plant fake certificates (e.g.,
DigiNotar’s fake *.google.com certificates used by an ISP in Iran)

48 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What can go wrong with these CAs

An adversary can install a custom CA on users’ devices, allowing
them to sign certificates that clients will accept for any site (e.g., in
2019, Kazakhstan’s ISPs mandated the installation of a root
certificate issued by the government)

49 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What’s next?

TLS can provide for confidentiality, integrity, and authenticity at the
TCP socket level. This is already an “end-to-end” protection in the
sense of a network connection (i.e., host-to-host).

Q: Is this good enough?

A: An adversary can still decrypt TLS traffic if the adversary has an
access to the pre-master secret (or more directly, the session key).

PolarProxy is primarily designed to intercept and decrypt SSL or
TLS encrypted traffic from malware.

curl and browsers such as Chrome and Firefox can generate
these secrets when the connection is set up and dump them in a
file pointed to by an environment variable SSLKEYLOGFILE.

50 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What’s next?

TLS can provide for confidentiality, integrity, and authenticity at the
TCP socket level. This is already an “end-to-end” protection in the
sense of a network connection (i.e., host-to-host).

Q: Is this good enough?

A: An adversary can still decrypt TLS traffic if the adversary has an
access to the pre-master secret (or more directly, the session key).

PolarProxy is primarily designed to intercept and decrypt SSL or
TLS encrypted traffic from malware.

curl and browsers such as Chrome and Firefox can generate
these secrets when the connection is set up and dump them in a
file pointed to by an environment variable SSLKEYLOGFILE.

50 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Outline

1 Overview of Security Controls

2 Link-layer Security (WEP, WPA)

3 Network-layer Security (IPSec)

4 Transport-layer Security (TLS)

5 Application-layer Security (SSH)

6 Application-layer Security (PGP)

7 Application-layer Security (OTR)

51 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Secure remote login (ssh)

You’re already familiar with this tool for securely logging in to a
remote computer (the ugster machines)

Usual usage (simplified):

Client connects to server
Server sends its verification key

- The client should verify that this is the correct key

Q: How to verify the key is the correct key?

A:

52 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Secure remote login (ssh)

You’re already familiar with this tool for securely logging in to a
remote computer (the ugster machines)

Usual usage (simplified):

Client connects to server
Server sends its verification key

- The client should verify that this is the correct key

Q: How to verify the key is the correct key?

A:

52 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Secure remote login (ssh)

You’re already familiar with this tool for securely logging in to a
remote computer (the ugster machines)

Usual usage (simplified):

Client connects to server
Server sends its verification key

- The client should verify that this is the correct key

Q: How to verify the key is the correct key?

A:

52 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Secure remote login (ssh)

You’re already familiar with this tool for securely logging in to a
remote computer (the ugster machines)

Usual usage (simplified):

Client connects to server
Server sends its verification key

- The client should verify that this is the correct key

Q: How to verify the key is the correct key?

A:

52 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Secure remote login (ssh)

You’re already familiar with this tool for securely logging in to a
remote computer (the ugster machines)

Usual usage (simplified):

Client connects to server
Server sends its verification key

- The client should verify that this is the correct key

Client and server run a key agreement protocol to establish session
keys, server signs its messages

- All communication from here on in is encrypted and MAC-ed with the
session keys

Client authenticates to server
Server accepts authentication, login proceeds

53 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

User authentication with ssh

There are two main ways to authenticate with ssh:

Send a password over the encrypted channel

The server needs to know (a hash of) your password

Sign a random challenge with your private signature key

The server needs to know your public verification key

Q: Advantages/disadvantages of each?

A: People create weak passwords or have poor password
management practices (e.g., writing passwords in post-it notes, etc.)

A: People usually don’t protect private keys with passphrases

54 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

User authentication with ssh

There are two main ways to authenticate with ssh:

Send a password over the encrypted channel

The server needs to know (a hash of) your password

Sign a random challenge with your private signature key

The server needs to know your public verification key

Q: Advantages/disadvantages of each?

A: People create weak passwords or have poor password
management practices (e.g., writing passwords in post-it notes, etc.)

A: People usually don’t protect private keys with passphrases

54 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

User authentication with ssh

There are two main ways to authenticate with ssh:

Send a password over the encrypted channel

The server needs to know (a hash of) your password

Sign a random challenge with your private signature key

The server needs to know your public verification key

Q: Advantages/disadvantages of each?

A: People create weak passwords or have poor password
management practices (e.g., writing passwords in post-it notes, etc.)

A: People usually don’t protect private keys with passphrases

54 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Outline

1 Overview of Security Controls

2 Link-layer Security (WEP, WPA)

3 Network-layer Security (IPSec)

4 Transport-layer Security (TLS)

5 Application-layer Security (SSH)

6 Application-layer Security (PGP)

7 Application-layer Security (OTR)

55 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Pretty Good Privacy

The first popular implementation of public-key cryptography.

Originally made by Phil Zimmermann in 1991

He got in a lot of trouble for it, since cryptography was highly
controlled at the time.
But that’s a whole ’nother story. :-)

Today, there are many (more-or-less) compatible programs

GNU Privacy Guard (gpg), Hushmail, etc.

56 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Pretty Good Privacy

What does it do?

- Its primary use is to protect the contents of email messages
- Provides confidentiality, integrity, authentication, and non-repudiation

How does it work?
Uses public-key cryptography to provide:

- Encryption of email messages (using hybrid encryption)
- Digital signatures on email messages (hash-then-sign)

57 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Pretty Good Privacy

What does it do?

- Its primary use is to protect the contents of email messages
- Provides confidentiality, integrity, authentication, and non-repudiation

How does it work?
Uses public-key cryptography to provide:

- Encryption of email messages (using hybrid encryption)
- Digital signatures on email messages (hash-then-sign)

57 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recall: Public-key Cryptography

encryption/decryption:
(eA, dA)

signature/verification:
(sA, vA)

encryption/decryption:
(eB , dB)

signature/verification:
(sB , vB)

To send a message m to Bob, Alice will:

1 ???

2 ???

Q: What is the sequence of actions to encode m?

A: EeB (m ∥ SignsA(m))

Q: And you also know what Bob does next...

58 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recall: Public-key Cryptography

encryption/decryption:
(eA, dA)

signature/verification:
(sA, vA)

encryption/decryption:
(eB , dB)

signature/verification:
(sB , vB)

To send a message m to Bob, Alice will:

1 ???

2 ???

Q: What is the sequence of actions to encode m?

A: EeB (m ∥ SignsA(m))

Q: And you also know what Bob does next...

58 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recall: Public-key Cryptography

encryption/decryption:
(eA, dA)

signature/verification:
(sA, vA)

encryption/decryption:
(eB , dB)

signature/verification:
(sB , vB)

To send a message m to Bob, Alice will:

1 ???

2 ???

Q: What is the sequence of actions to encode m?

A: EeB (m ∥ SignsA(m))

Q: And you also know what Bob does next...

58 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Recall: Public-key Cryptography

encryption/decryption:
(eA, dA)

signature/verification:
(sA, vA)

encryption/decryption:
(eB , dB)

signature/verification:
(sB , vB)

To send a message m to Bob, Alice will:

1 ???

2 ???

Q: What is the sequence of actions to encode m?

A: EeB (m ∥ SignsA(m))

Q: And you also know what Bob does next...

58 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Back to PGP

PGP’s main functions:

Create these four kinds of keys

- encryption, decryption, signature, verification

Encrypt messages using someone else’s encryption key

Decrypt messages using your own decryption key

Sign messages using your own signature key

Verify signatures using someone else’s verification key

Sign other people’s keys using your own signature key

Disclaimer: in practice there are primary keypairs, used for signing,
verifying, and creating encryption sub-keypairs, but let’s abstract
from this...

59 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Back to PGP

PGP’s main functions:

Create these four kinds of keys

- encryption, decryption, signature, verification

Encrypt messages using someone else’s encryption key

Decrypt messages using your own decryption key

Sign messages using your own signature key

Verify signatures using someone else’s verification key

Sign other people’s keys using your own signature key

Disclaimer: in practice there are primary keypairs, used for signing,
verifying, and creating encryption sub-keypairs, but let’s abstract
from this...

59 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Back to PGP

PGP’s main functions:

Create these four kinds of keys

- encryption, decryption, signature, verification

Encrypt messages using someone else’s encryption key

Decrypt messages using your own decryption key

Sign messages using your own signature key

Verify signatures using someone else’s verification key

Sign other people’s keys using your own signature key

Disclaimer: in practice there are primary keypairs, used for signing,
verifying, and creating encryption sub-keypairs, but let’s abstract
from this...

59 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Obtaining keys

Earlier, we said that Alice needs to get an authentic copy of Bob’s
public key in order to send him an encrypted message.

Q: How does Alice do this in TLS setting?

A: Certificate authorities (CAs)

What if we don’t involve CAs?

Bob could put a copy of his public key on his webpage

Q: Is this good enough?

60 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Obtaining keys

Earlier, we said that Alice needs to get an authentic copy of Bob’s
public key in order to send him an encrypted message.

Q: How does Alice do this in TLS setting?

A: Certificate authorities (CAs)

What if we don’t involve CAs?

Bob could put a copy of his public key on his webpage

Q: Is this good enough?

60 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Obtaining keys

Earlier, we said that Alice needs to get an authentic copy of Bob’s
public key in order to send him an encrypted message.

Q: How does Alice do this in TLS setting?

A: Certificate authorities (CAs)

What if we don’t involve CAs?

Bob could put a copy of his public key on his webpage

Q: Is this good enough?

60 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Obtaining keys

Earlier, we said that Alice needs to get an authentic copy of Bob’s
public key in order to send him an encrypted message.

Q: How does Alice do this in TLS setting?

A: Certificate authorities (CAs)

What if we don’t involve CAs?

Bob could put a copy of his public key on his webpage

Q: Is this good enough?

60 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Verifying public keys

If Alice knows Bob personally, she could:

Download the key from Bob’s web page

Phone up Bob, and verify she’s got the right key

Problem: keys are big and unwieldy!

mQGiBDi5qEURBADitpDzvvzW+9lj/zYgK78G3D76hvvvIT6gpTIlwg6WIJNLKJat

01yNpMIYNvpwi7EUd/lSNl6t1/A022p7s7bDbE4T5NJda0IOAgWeOZ/plIJC4+o2

tD2RNuSkwDQcxzm8KUNZOJla4LvgRkm/oUubxyeY5omus7hcfNrBOwjC1wCg4Jnt

m7s3eNfMu72Cv+6FzBgFog8EANirkNdC1Q8oSMDihWj1ogiWbBz4s6HMxzAaqNf/

rCJ9qoK5SLFeoB/r5ksRWty9QKV4VdhhCIy1U2B9tSTlEPYXJHQPZ3mwCxUnJpGD

8UgFM5uKXaEq2pwpArTm367k0tTpMQgXAN2HwiZv//ahQXH4ov30kBBVL5VFxMUL

UJ+yA/4r5HLTpP2SbbqtPWdeW7uDwhe2dTqffAGuf0kuCpHwCTAHr83ivXzT/7OM

61 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Verifying public keys

If Alice knows Bob personally, she could:

Download the key from Bob’s web page

Phone up Bob, and verify she’s got the right key

Problem: keys are big and unwieldy!

mQGiBDi5qEURBADitpDzvvzW+9lj/zYgK78G3D76hvvvIT6gpTIlwg6WIJNLKJat

01yNpMIYNvpwi7EUd/lSNl6t1/A022p7s7bDbE4T5NJda0IOAgWeOZ/plIJC4+o2

tD2RNuSkwDQcxzm8KUNZOJla4LvgRkm/oUubxyeY5omus7hcfNrBOwjC1wCg4Jnt

m7s3eNfMu72Cv+6FzBgFog8EANirkNdC1Q8oSMDihWj1ogiWbBz4s6HMxzAaqNf/

rCJ9qoK5SLFeoB/r5ksRWty9QKV4VdhhCIy1U2B9tSTlEPYXJHQPZ3mwCxUnJpGD

8UgFM5uKXaEq2pwpArTm367k0tTpMQgXAN2HwiZv//ahQXH4ov30kBBVL5VFxMUL

UJ+yA/4r5HLTpP2SbbqtPWdeW7uDwhe2dTqffAGuf0kuCpHwCTAHr83ivXzT/7OM

61 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Fingerprints

Luckily, there’s a better way!

A fingerprint is a cryptographic hash of a key

This, of course, is much shorter:

B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

Remember: there’s no (known) way to make two different keys
that have the same fingerprint, provided that we use a
collision-resistant hash function

62 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Fingerprints

So now we can try this:

Alice downloads Bob’s key from his webpage

Alice’s software calculates the fingerprint

Alice phones up Bob, and asks him to read his key’s actual
fingerprint to her

If they match, Alice knows she’s got an authentic copy of Bob’s
key

That’s great for Alice, but what about Carol?

Carol might not know Bob

At least not well enough to phone him

63 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Fingerprints

So now we can try this:

Alice downloads Bob’s key from his webpage

Alice’s software calculates the fingerprint

Alice phones up Bob, and asks him to read his key’s actual
fingerprint to her

If they match, Alice knows she’s got an authentic copy of Bob’s
key

That’s great for Alice, but what about Carol?

Carol might not know Bob

At least not well enough to phone him

63 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Signing keys

Once Alice has verified Bob’s key, she uses her signature key to
sign Bob’s key

This is effectively the same as Alice signing a message that says
“I have verified that the key with fingerprint
B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

really belongs to Bob (bob@bobmail.com)”

Bob can attach Alice’s signature to the key on his webpage

If Bob wants, he can get many people to sign his key...

Q: Can you see some potential issue with key signing?

A: Once you sign a key... you cannot take that back...

64 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Signing keys

Once Alice has verified Bob’s key, she uses her signature key to
sign Bob’s key

This is effectively the same as Alice signing a message that says
“I have verified that the key with fingerprint
B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

really belongs to Bob (bob@bobmail.com)”

Bob can attach Alice’s signature to the key on his webpage

If Bob wants, he can get many people to sign his key...

Q: Can you see some potential issue with key signing?

A: Once you sign a key... you cannot take that back...

64 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Signing keys

Once Alice has verified Bob’s key, she uses her signature key to
sign Bob’s key

This is effectively the same as Alice signing a message that says
“I have verified that the key with fingerprint
B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

really belongs to Bob (bob@bobmail.com)”

Bob can attach Alice’s signature to the key on his webpage

If Bob wants, he can get many people to sign his key...

Q: Can you see some potential issue with key signing?

A: Once you sign a key... you cannot take that back...

64 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Signing keys

Once Alice has verified Bob’s key, she uses her signature key to
sign Bob’s key

This is effectively the same as Alice signing a message that says
“I have verified that the key with fingerprint
B117 2656 DFF9 83C3 042B C699 EB5A 896A 2898 8BF5

really belongs to Bob (bob@bobmail.com)”

Bob can attach Alice’s signature to the key on his webpage

If Bob wants, he can get many people to sign his key...

Q: Can you see some potential issue with key signing?

A: Once you sign a key... you cannot take that back...

64 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Web of Trust

Now Alice can act as an introducer for Bob

If Carol doesn’t know Bob, but does know Alice (and has already
verified Alice’s key, and trusts her to introduce other people):

she downloads Bob’s key from his website
she sees Alice’s signature on it
she is able to use Bob’s key without having to check with Bob
personally

This is called the Web of Trust, and the PGP software handles it
mostly automatically

65 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

So, great!

So if Alice and Bob want to have a private conversation by email:

They each create their sets of keys

They exchange public encryption keys and verification keys

They send signed and encrypted messages back and forth

Pretty Good, no?

66 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

(If you want to be extra safe,
check that there’s a big block of jumbled characters at the bottom.)

67 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Plot twist

Suppose (encrypted) communications between Alice and Bob are
recorded by the “bad guys”

- criminals, competitors, etc

Later, Bob’s computer is stolen by the same bad guys

Or just broken into

- Virus, trojan, etc

All of Bob’s key material is recovered

68 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

The bad guys can...

Decrypt past messages

Learn their content

Learn that Alice sent them

And have a mathematical proof they can show to anyone else!

How private is that?

69 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What went wrong?

Bob’s computer got stolen?

How many of you have never...

Left your laptop unattended?
Not installed the latest patches?
Run software with a remotely exploitable bug?

What about your friends?

70 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What went wrong?

Bob’s computer got stolen?

How many of you have never...

Left your laptop unattended?
Not installed the latest patches?
Run software with a remotely exploitable bug?

What about your friends?

70 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What went wrong?

Bob’s computer got stolen?

How many of you have never...

Left your laptop unattended?
Not installed the latest patches?
Run software with a remotely exploitable bug?

What about your friends?

70 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What went wrong?

Bob’s computer got stolen?

How many of you have never...

Left your laptop unattended?
Not installed the latest patches?
Run software with a remotely exploitable bug?

What about your friends?

70 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What really went wrong

PGP creates lots of incriminating records:

- Key material that decrypts data sent over the public Internet
- Signatures with proofs of who said what

Alice had better watch what she says!

- Her privacy depends on Bob’s actions

71 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Outline

1 Overview of Security Controls

2 Link-layer Security (WEP, WPA)

3 Network-layer Security (IPSec)

4 Transport-layer Security (TLS)

5 Application-layer Security (SSH)

6 Application-layer Security (PGP)

7 Application-layer Security (OTR)

72 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Casual conversations

Alice and Bob talk in a room

No one else can hear

- Unless being recorded

No one else knows what they say

- Unless Alice or Bob tells them

No one can prove what was said

- Not even Alice or Bob

These conversations are “off-the-record” (OTR)

73 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Casual conversations

Alice and Bob talk in a room

No one else can hear

- Unless being recorded

No one else knows what they say

- Unless Alice or Bob tells them

No one can prove what was said

- Not even Alice or Bob

These conversations are “off-the-record” (OTR)

73 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

We like off-the-record conversations

Legal support for having them

- Illegal to record other people’s conversations without notification

We can have them over the phone

- Illegal to tap phone lines

But what about over the Internet?

74 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What do we want to achieve?

(Perfect) Forward secrecy: a key compromise does not reveal past
communication.

Repudiation (deniable authentication): authenticated
communication, but a participant cannot prove to a third party
that another participant said something.

Forward secrecy

Alice said this!

No proof!
Repudiation

75 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What do we want to achieve?

(Perfect) Forward secrecy: a key compromise does not reveal past
communication.

Repudiation (deniable authentication): authenticated
communication, but a participant cannot prove to a third party
that another participant said something.

Forward secrecy

Alice said this!

No proof!
Repudiation

75 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What do we want to achieve?

(Perfect) Forward secrecy: a key compromise does not reveal past
communication.

Repudiation (deniable authentication): authenticated
communication, but a participant cannot prove to a third party
that another participant said something.

Forward secrecy

Alice said this!

No proof!
Repudiation

75 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

What do we want to achieve?

(Perfect) Forward secrecy: a key compromise does not reveal past
communication.

Repudiation (deniable authentication): authenticated
communication, but a participant cannot prove to a third party
that another participant said something.

Forward secrecy

Alice said this!

No proof!
Repudiation

75 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Cryptographic tools

We have the cryptographic tools to do OTR, but we need to have
new perspectives on how to use these tools

76 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Perfect forward secrecy

Future key compromises should not reveal past communication

Use secret-key encryption with a short-lived key (a session key)

The session key is created by a modified Diffie-Hellman protocol

Discard the session key after use

- Securely erase it from memory (and everywhere possible)

Use long-term keys only to authenticate the Diffie-Hellman
protocol messages only

77 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Deniable authentication

Do not want digital signatures

Non-repudiation is great for signing contracts, but undesirable for
private conversations

But we do want authentication

We can’t maintain privacy if attackers can impersonate our friends

Q: What should we use then?

A: Message Authentication Codes (MAC)

78 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Deniable authentication

Do not want digital signatures

Non-repudiation is great for signing contracts, but undesirable for
private conversations

But we do want authentication

We can’t maintain privacy if attackers can impersonate our friends

Q: What should we use then?

A: Message Authentication Codes (MAC)

78 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Deniable authentication

Do not want digital signatures

Non-repudiation is great for signing contracts, but undesirable for
private conversations

But we do want authentication

We can’t maintain privacy if attackers can impersonate our friends

Q: What should we use then?

A: Message Authentication Codes (MAC)

78 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

No third-party proofs

Shared-key authentication

Alice and Bob have the same K
K is required to compute the MAC
How is Bob assured that Alice sent the message?

Bob cannot prove that Alice generated the MAC

He could have done it, too
Anyone who can verify can also forge

This gives Alice a measure of deniability

79 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Using these techniques

Using these techniques, we can make our online conversations more
like face-to-face “off-the-record” conversations.

But there is a wrinkle:

These techniques require the parties to communicate interactively

This makes them unsuitable for email

But they’re still great for instant messaging!

80 / 81

Sec Ctrl WEP IPSec TLS SSH PGP OTR

Off-the-Record Messaging

Perfect Forward Secrecy

Shortly after Bob receives the message, it becomes unreadable to
anyone, anywhere (provided the key is erased securely)

Deniability

Although Bob is assured that the message came from Alice, he can’t
convince Carol of that fact
Also, Carol can create forged transcripts of conversations that are
every bit as accurate as the real thing

81 / 81

	Cryptography use cases
	Overview of Security Controls
	Link-layer Security (WEP, WPA)
	Network-layer Security (IPSec)
	Transport-layer Security (TLS)
	Application-layer Security (SSH)
	Application-layer Security (PGP)
	Application-layer Security (OTR)

