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Cryptography

What is cryptography?

Related fields:
Cryptography (“secret writing”): Making secret messages

Turning plaintext (an ordinary readable message) into ciphertext (secret
messages that are “hard” to read)

Cryptanalysis: Breaking secret messages

Recovering the plaintext from the ciphertext

Cryptology is the science that studies these both

The point of cryptography is to send secure messages over an
insecure medium (e.g., the Internet)
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The scope of these lectures

The goal of the cryptography unit in this course is to show you
what cryptographic tools exist, and information about using these
tools in a secure manner

We won’t be showing you details of how the tools work

For that, see CO 487, or chapter 2 of van Oorschot’s textbook or
chapter 2.3 of Pfleeger’s textbook
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https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch2-rev1.pdf
https://learning-oreilly-com.proxy.lib.uwaterloo.ca/library/view/security-in-computing/9780134085074/ch02.xhtml#ch02lev1sec3
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Cast of characters

When talking about cryptographic schemes, we often use a standard
cast of characters

(Honest) communicating parties Adversaries

Alice Bob Carol Dave Eve Mallory

Eve: A passive eavesdropper, who can listen to any transmitted
messages but does not modify them.

Mallory: An active Man-In-The-Middle, who can listen to, and
modify, insert, or delete transmitted messages

... (Many more) ..., Trent (trusted third-party), Peggy (prover),
Victor (verifier), etc.
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Building blocks

Cryptography contains three major types of components

Confidentiality components

Preventing Eve from reading Alice’s messages

Integrity components

Preventing Mallory from modifying Alice’s messages without being
detected

Authenticity components

Preventing Mallory from impersonating Alice
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Kerckhoffs’ principle

Shannon’s maxim: one ought to design systems under the
assumption that the enemy will immediately gain full familiarity
with them.

So don’t use “secretive” encryption methods

Then what do we do?

Have public algorithms that use a secret key as input

It’s easy to change the key; it’s usually just a smallish number

Kerckhoffs’s principle: a cryptosystem should be secure, even if
everything about the system, except the key, is public knowledge
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Kerckhoffs’ Principle

Kerckhoffs’ Principle has a number of implications:

The system is at most as secure as the number of keys

Eve can just try them all, until she finds the right one

A strong cryptosystem is one where that’s the best Eve can do

With weaker systems, there are shortcuts to finding the key

Example: newspaper cryptogram has
403,291,461,126,605,635,584,000,000 possible keys

But you don’t try them all; it’s way easier than that!

8 / 84

https://www.wordplays.com/daily-cryptogram
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Daily cryptogram
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Daily cryptogram
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Strong cryptosystems

What information do we assume the attacker (Eve) has when she’s
trying to break our system?

She may:

Know the algorithm
Know a number (maybe a large number) of corresponding
plaintext/ciphertext pairs
Have access to an encryption and/or decryption oracle

And we still want to prevent Eve from learning the key!
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Secret-key encryption

Secret-key encryption is the simplest form of cryptography

Used for thousands of years

Also called symmetric encryption

The key Alice uses to encrypt the message is the same as the key
Bob uses to decrypt it

Dk(Ek(m)) = m

Encrypt Decrypt
P C P

K K
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Secret-key encryption

Eve, not knowing the key, should not be able to recover the
plaintext

Encrypt Decrypt
? C ?
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Vernam cipher

Encrypts one bit at a time by XOR’ing the plaintext with the key:

Plaintext (t bits): M = [m1,m2, . . . ,mt ]

Key (t bits): K = [k1, k2, . . . , kt ]

Ciphertext (t bits):
C = [c1, c2, . . . , ct ] = [m1,m2, . . . ,mt ]⊕ [k1, k2, . . . , kt ]

XOR reminder:

0⊕ 0 = 0 0⊕ 1 = 1 1⊕ 0 = 1 1⊕ 1 = 0

Q: How do we decrypt?

A: [m1,m2, . . . ,mt ] = [c1, c2, . . . , ct ]⊕ [k1, k2, . . . , kt ]
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One-time pad: definition

If K is randomly chosen and never reused, Vernam cipher is called
One-Time Pad

In other words, one-time pad is a secret-key cryptographic scheme
with the following construction:

The key is a truly random bitstring

The key is of of the same length as the plaintext

The “Encrypt” and “Decrypt” functions are both XOR

This provides information-theoretic security.
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One-time pad: security

It’s very hard to use one-time pad correctly:

The key must be truly random, not pseudorandom
The key must be of the same length as the plaintext
The key (in part or in whole) must never be used more than once

A “two-time pad” is insecure!

Q: Why does “try every key” not work here?

A: Because, given a ciphertext C , for every possible message M,
there exists a key K that could have generated that ciphertext.

Example:

C = secret 01110011 01100101 01100011 01110010 01100101 01110100

K1 = ------ 00010010 00010001 00010111 00010011 00000110 00011111

M1 = attack 01100001 01110100 01110100 01100001 01100011 01101011

K2 = ------ 00010111 00000000 00000101 00010111 00001011 00010000

M2 = defend 01100100 01100101 01100110 01100101 01101110 01100100
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One-time pad: key sharing

Q: How to share the secret keys?

A: Keys would have to be shared in person or sent by courier or via
other secure channels

Q: If the keys are of the same length as the message, what is the
point of one-time pad?

A: The keys can be shared ahead of time
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One-time pad: integrity?

Q: Does one-time pad provide integrity?

Q: If your boss stores your salary (in binary) encrypted with a one
time pad, and you have write access to the ciphertext, what can you
do with it?

A: You can XOR a “10000000000 . . . ” (in binary). This flips the
most significant bit, which most likely will be zero.
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Computational security

In contrast to the “perfect” (or “information-theoretic”) security
property of one-time pad, most cryptosystems have “computational”
security.

This means that it’s certain they can be broken, given enough
work by Eve

How much is “enough”?

At worst, Eve tries every key

How long that takes depends on how long the keys are

But it only takes this long if there are no “shortcuts”!
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Trying every key: some data points

These are some estimates for RC5:

One computer can try about 17 million keys per second: 1.7 · 107
keys/second.

A medium-sized corporate or research lab may have 100
computers: 1.7 · 109 keys/second.

The Bitcoin network computes 258 million terahashes per second
as of Oct 2022. If the hardware could be used to try decrypting
with a key in the same time, that’s ≈ 2.6 · 1020 keys/second.
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40-bit crypto

This was the US legal export limit for a long time

240 = 1,099,511,627,776 possible keys

Key size Computer Lab Bitcoin network
key/second ≈ 1.7 · 107 ≈ 1.7 · 109 ≈ 2.6 · 1020

40-bit 18 hours 11 minutes 4.2 ns
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56-bit crypto

This was the US government standard (DES) for a long time

256 = 72,057,594,037,927,936 possible keys

Key size Computer Lab Bitcoin network
key/second ≈ 1.7 · 107 ≈ 1.7 · 109 ≈ 2.6 · 1020

40-bit 18 hours 11 minutes 4.2 ns
56-bit 134 years 16 months 0.22 ms
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128-bit crypto

This is the modern standard

2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456

Key size Computer Lab Bitcoin network
key/second ≈ 1.7 · 107 ≈ 1.7 · 109 ≈ 2.6 · 1020

40-bit 18 hours 11 minutes 4.2 ns
56-bit 134 years 16 months 0.22 ms
128-bit 6.3 · 1023 years 6.3 · 1021 years 4.1 · 1010 years

To make sense of 4.1 · 1010 years:

around 3 times larger than the age of the universe

around 4.2 times larger than the expected lifetime of the sun.

24 / 84



Basics Secret-key Public-key Integrity Authentication

128-bit crypto

This is the modern standard

2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456

Key size Computer Lab Bitcoin network
key/second ≈ 1.7 · 107 ≈ 1.7 · 109 ≈ 2.6 · 1020

40-bit 18 hours 11 minutes 4.2 ns
56-bit 134 years 16 months 0.22 ms
128-bit 6.3 · 1023 years 6.3 · 1021 years 4.1 · 1010 years

To make sense of 4.1 · 1010 years:

around 3 times larger than the age of the universe

around 4.2 times larger than the expected lifetime of the sun.

24 / 84



Basics Secret-key Public-key Integrity Authentication

Well, we cheated a bit

This isn’t really true, since computers get faster over time
Moore’s law: computing speed doubles every 18 months

A better strategy for breaking 128-bit crypto is just to wait until
computers get 288 times faster, then break it on one computer in
just 18 hours.

How long do we need to wait? 132 years.

If we believe Moore’s law will keep on working, we’ll be able to
break 128-bit crypto in 132 years (and 18 hours) :-)

Q: Do we believe this?

How about quantum computers? e.g., Grover’s algorithm

reduces the search space from 2128 to 264

requires around 3,000 logical qubits (we have 127 qubits now)

25 / 84

https://en.wikipedia.org/wiki/Grover%27s_algorithm


Basics Secret-key Public-key Integrity Authentication

Well, we cheated a bit

This isn’t really true, since computers get faster over time
Moore’s law: computing speed doubles every 18 months

A better strategy for breaking 128-bit crypto is just to wait until
computers get 288 times faster, then break it on one computer in
just 18 hours.

How long do we need to wait? 132 years.

If we believe Moore’s law will keep on working, we’ll be able to
break 128-bit crypto in 132 years (and 18 hours) :-)

Q: Do we believe this?

How about quantum computers? e.g., Grover’s algorithm

reduces the search space from 2128 to 264

requires around 3,000 logical qubits (we have 127 qubits now)

25 / 84

https://en.wikipedia.org/wiki/Grover%27s_algorithm


Basics Secret-key Public-key Integrity Authentication

An even better strategy
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Types of secret-key cryptosystems

Secret-key cryptosystems come in two major classes

Stream ciphers

Block ciphers

27 / 84
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Stream ciphers

A stream cipher is what you get if you take the One-Time Pad,
but use a pseudorandom keystream instead of a truly random one

Pseudorandom
Keystream
Generator

⊕
Plaintext

Ciphertext

Keystream

RC4 was the most common stream cipher on the Internet but
deprecated. ChaCha is increasingly popular (Chrome and
Android), and SNOW3G is mostly used in mobile phone networks.
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Two-time pad

Q: What happens if you use the same key (therefore, same
keystream) to encrypt two messages?
C1 = M1 ⊕ K , C2 = M2 ⊕ K

A: We can XOR the ciphertexts:
C1 ⊕ C2 = (M1 ⊕ K )⊕ (M1 ⊕ K ) = M1 ⊕M2

Q: Why is this an issue?

A: Messages are not purely random!
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Two-time pad, illustrated

C1 C2

C1 ⊕ C2 M2 M1
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Correct use of stream ciphers

Q: How would you solve this problem without requiring a new
shared secret key for each message?

A: Concatenate key with a nonce that is randomly generated for
each message and can be send in plaintext

Pseudorandom
Keystream
Generator

⊕Plaintext

Ciphertext

Key || nonce Keystream
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Stream ciphers

Stream ciphers can be very fast

This is useful if you need to send a lot of data securely

But they can be tricky to use correctly!

We saw the issues of re-using a key! (two-time pad)
Always remember to pick and random (and never re-use) a nonce

WEP, PPTP are great examples of how not to use stream ciphers.
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Block ciphers

Stream ciphers operate on the message one bit at a time

An alternative design is block ciphers

Block ciphers operate on the message one block at a time
Blocks are usually 64 or 128 bits long

AES is the block cipher everyone should use today

Unless you have a really, really good reason
Native AES support on Intel chips since Westmere (2010)
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Modes of operation

Block ciphers work like this:

Encrypt

1 block of plaintext

1 block of ciphertext

If the plaintext is smaller than one block: padding.

If the plaintext is larger than one block: the choice of what to do
with multiple blocks is called the mode of operation of the block
cipher.
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ECB mode

M1 E C1

K

M2 E C2

K

M3 E C3

K

...
...

...

The simplest thing to do is just to
encrypt each successive block
separately — This is called Electronic
Code Book (ECB) mode.

Q: What happens if the plaintext M
has some blocks that are identical,
Mi = Mj?

A: Ci = EK (Mi ), Cj = EK (Mj) =⇒
Ci = Cj : This reveals patterns in the
ciphertext...
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ECB mode: example
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Improving ECB (v1)

M1 E C1

K

M2 E C2

K

M3 E C3

K

...
...

...
...

We can provide “feedback”
among different blocks, to
avoid repeating patters.

Q: Does this “feedback”
avoid repeating patterns?
Any issues here?

A: We can un-do the XOR
if we get all the ciphertexts.
This basically does not
improve compared to ECB.
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Improving ECB (v2)

M1 E C1

K

M2 E C2

K

M3 E C3

K

...
...

...
...

Q: Does this avoid repeating
patterns among blocks? Any
issues here?

Q: What would happen if we
encrypt the message twice with
the same key?

A: We get the same ciphertext

To avoid this, we could change
the key... but there’s a better way
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CBC mode
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...
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Q: Does this solve the issue of
re-encrypting equal blocks?

Q: Does this solve the issue of
re-encrypting equal plaintext?

A: Yes! This is called the
Cipher-Block Chaining mode

Q: Can we share IV in the clear?

A: Yes!!

An initialization vector might also be called as a nonce (number
used once) or a salt.

39 / 84



Basics Secret-key Public-key Integrity Authentication

CBC mode

M1 E C1

K

M2 E C2

K

M3 E C3

K

IV

...
...

...
...

Q: Does this solve the issue of
re-encrypting equal blocks?

Q: Does this solve the issue of
re-encrypting equal plaintext?

A: Yes! This is called the
Cipher-Block Chaining mode

Q: Can we share IV in the clear?

A: Yes!!

An initialization vector might also be called as a nonce (number
used once) or a salt.

39 / 84



Basics Secret-key Public-key Integrity Authentication

CBC mode

M1 E C1

K

M2 E C2

K

M3 E C3

K

IV

...
...

...
...

Q: Does this solve the issue of
re-encrypting equal blocks?

Q: Does this solve the issue of
re-encrypting equal plaintext?

A: Yes! This is called the
Cipher-Block Chaining mode

Q: Can we share IV in the clear?

A: Yes!!

An initialization vector might also be called as a nonce (number
used once) or a salt.

39 / 84



Basics Secret-key Public-key Integrity Authentication

CBC mode

M1 E C1

K

M2 E C2

K

M3 E C3

K

IV

...
...

...
...

Q: Does this solve the issue of
re-encrypting equal blocks?

Q: Does this solve the issue of
re-encrypting equal plaintext?

A: Yes! This is called the
Cipher-Block Chaining mode

Q: Can we share IV in the clear?

A: Yes!!

An initialization vector might also be called as a nonce (number
used once) or a salt.

39 / 84



Basics Secret-key Public-key Integrity Authentication

Safe modes of operation

There are different modes of operation for block ciphers. Common
ones include Cipher Block Chaining (CBC), Counter (CTR), and
Galois Counter (GCM) modes

Patterns in the plaintext are no longer exposed because these
modes involves some kind of “feedback” among different blocks

But you need an IV
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CBC mode: example
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Key exchange

How do Alice and Bob share the secret key?

Meet in person

Diplomatic courier

...

In general this is very hard

Or, we invent new technology...
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Public-key cryptography

Invented (in public) in the 1970’s

Also called asymmetric cryptography

Allows Alice to send a secret message to Bob without any
prearranged shared secret!
In secret-key cryptography, the same key encrypts the message and
also decrypts it
In public-key cryptography, there’s one key for encryption, and a
different key for decryption!

Some common examples:

RSA, ElGamal, ECC, NTRU, McEliece
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Public-key cryptography

How does it work?

1 Bob creates a key pair (ek , dk)

2 Bob gives everyone a copy of his public encryption key ek
3 Alice uses it to encrypt a message, and sends the encrypted

message to Bob
4 Bob uses his private decryption key dk to decrypt the message

Eve can’t decrypt it; she only has the encryption key ek
Neither can Alice!
It must be hard to derive dk from ek

So with this, Alice just needs to know Bob’s public key in order to
send him secret messages

These public keys can be published in a directory somewhere
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Public-key cryptography

Encrypt Decrypt
P C P

dk

ek

ek
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Textbook RSA

First popular public-key encryption method (published in 1977)

Relies on the practical difficulty of the factoring problem:
given the product of two large prime numbers n = p · q, it is
computationally hard to factor n.

Modular arithmetic: integer numbers that “wrap around”

High-level idea:

It is easy to find large integers e, d , and n, such that:

(me)d ≡ m (mod n)

But knowing e and n (and even m), it is extremely hard to find d .
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Textbook RSA (simplified)

Choose two large primes p and q (these are secret).

Compute n = p · q.
“Choose” a number e such that gcd(e, ϕ(n)) = 1 where
ϕ(n) = (p − 1) · (q − 1).

Find d such that e · d ≡ 1 (mod n) (This is easy via the extended
Euclidean algorithm).

Public key: (e, n)

Private key: (d , n)

Other numbers can be discarded

Encryption: c ≡ me (mod n)

Decryption: cd (mod n)

This is textbook RSA, never do this!! It is not secure.
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Example of Textbook RSA

Example (very small RSA):

p = 53, q = 101, e = 139, d = 1459

Compute n = 53 · 101 = 5353

Compute C1 = Ee(1011) = 1011139 mod 5353 = 5253

- Dd(5253) = 52531459 mod 5353 = 1011

Compute C2 = Ee(4) = 4139 mod 5353 = 324

- Dd(324) = 3241459 mod 5353 = 4

Feel free to use an online Modular Exponentiation Calculator
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Example of Textbook RSA

Q: Compute Dd(C1 · C2). What is happening? Why?

A:

Dd(5253 · 324) =Dd(1701972)

= 17019721459 mod 5353
= 4044
= 1011 · 4

The decryption is the product of the original plaintexts.
(m1)

e · (m2)
e ≡ (m1 ·m2)

e .

Malleability: it is possible to transform a ciphertext into another
ciphertext that decrypts to a related plaintext.
This is typically (but not always!) undesirable.
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Chosen ciphertext attack on Textbook RSA

Settings:

You know Alice’s public key (e, n)

You know some ciphertext c is encrypted with Alice’s public key
but you don’t know the plaintext m

Alice is willing to decrypt anything for you except for c

Q: What can you do to recover m?

A: You can ask Alice to decrypt (2e mod n) · c

The decryption yields 2 ·m, from which you can recover m
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Public key sizes

Recall that if there are no shortcuts, Eve would have to try 2128

things in order to read a message encrypted with a 128-bit
symmetric key.

Unfortunately, all of the public-key methods we know do have
shortcuts. For example:

Eve could read a message encrypted with a 128-bit RSA key with just
233 work, which is easy!

In RSA, n = pq; n is public; factoring n reveals the key
233 is the “work factor” to factor a 128-bit integer n
Quantum computers can factor even faster, see Shor’s algorithm

If we want Eve to have to do 2128 work, we need to use a much
longer public key
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Public key sizes

Comparison of key sizes for roughly equal strength

AES RSA ECC

80 1024 160
116 2048 232
128 2600 256
160 4500 320
256 14000 512
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Hybrid cryptography

Secret-key cryptography: shorter keys, faster, same key to
encrypt and decrypt, but requires pre-sharing of the keys.

Public-key cryptography: longer keys, slower, different key to
encrypt and decrypt, but does not require sharing of secrets.

We can get the best of both worlds:

Pick a random 128-bit key K for a secret-key cryptosystem

Encrypt the large message with the key K (e.g., using AES)

Encrypt the key K using a public-key cryptosystem

Send both the encrypted message and the encrypted key to Bob

This hybrid approach is used for almost every cryptography
application on the Internet today
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Is that all there is?

It seems we’ve got this “sending secret messages” thing down pat.
What else is there to do?

Even if we’re safe from Eve reading our messages, there’s still the
matter of Mallory

It turns out that even if our messages are encrypted, Mallory can
sometimes modify them in transit!

Mallory won’t necessarily know what the message says, but can
still change it in an undetectable way

e.g. bit-flipping attack on stream ciphers

This is counterintuitive, and often forgotten

How do we make sure that Bob gets the same message Alice sent?
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Integrity components

How do we tell if a message has changed in transit?

Simplest answer: use a checksum

For example, add up all the bytes of a message

The last digits of serial numbers (credit card, ISBN, etc.) are
usually checksums

A naive checksum procedure works like following:

Alice computes the checksum of the message, and sticks it at the
end before encrypting it to Bob.

When Bob receives the message and checksum, he verifies that
the checksum is correct
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Simple checksums do not work!

Reason 1: Mallory can simply craft a new message and calculate the
checksum of the new message and send both to Bob.

Reason 2: Simple checksums are insecure even when the checksum
value cannot be changed.

With most checksum methods, Mallory can easily change the
message in such a way that the checksum stays the same

We need a “cryptographic” checksum

It should be hard for Mallory to find a second message with the
same checksum as any given one

58 / 84



Basics Secret-key Public-key Integrity Authentication

Simple checksums do not work!

Reason 1: Mallory can simply craft a new message and calculate the
checksum of the new message and send both to Bob.

Reason 2: Simple checksums are insecure even when the checksum
value cannot be changed.

With most checksum methods, Mallory can easily change the
message in such a way that the checksum stays the same

We need a “cryptographic” checksum

It should be hard for Mallory to find a second message with the
same checksum as any given one

58 / 84



Basics Secret-key Public-key Integrity Authentication

Cryptographic hash functions

A hash function h takes an arbitrary length string x and computes a
fixed length string y = h(x) called a message digest

Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on)

Hash functions should have three properties:
1 Preimage-resistance:

- Given y , it’s hard to find x such that h(x) = y
i.e., a “preimage” of y

2 Second preimage-resistance:

- Given x , it’s hard to find x ′ ̸= x such that h(x) = h(x ′)
i.e., a “second preimage” of h(x)

3 Collision-resistance:

- It’s hard to find any two distinct values x , x ′ such that h(x) = h(x ′)
i.e., a “collision”
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What is “hard”?

For SHA-1, for example, it takes 2160 work to find a preimage or
second preimage, and 280 work to find a collision using a
brute-force search

However, there are faster ways than brute force to find collisions in
SHA-1 or MD5

Collisions are always easier to find than preimages or second
preimages due to the well-known birthday paradox

* If there are n people in a room, what is the probability that at least
two people have the same birthday?

- For 23 people, the probability is larger than 50%!
- For 40 people, it’s almost 90%!!
- For 60 people, it’s more than 99%!!!
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Let’s use a hash function!

[m, h(m)] ???

Assume we don’t care about confidentiality, just integrity.

Q: What can Mallory do to change the message?

A: Just change it and compute the new message digest herself!

[m, h(m)] [m′, h(m′)]
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Cryptographic hash functions

Hash functions provide integrity guarantees only when there is a
secure way of sending the message digest

For example, Bob can publish a hash of his public key (i.e., a
message digest) on his business card
Putting the whole key on there would be too big
But Alice can download Bob’s key from the Internet, hash it herself,
and verify that the result matches the message digest on Bob’s card

What if there’s no external channel to be had?

For example, you’re using the Internet to communicate
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How to authenticate the message?

C C ′
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Message authentication codes (MAC)

Assume Alice and Bob share a secret that is only known to them.

We do the following “trick” (a mental model):

Suppose there exists a large collection of hash functions.

Alice and Bob can use the secret to pick the “correct” one

Only those who know the secret can generate, or even check, the
computed hash value (sometimes called a tag)

These “keyed hash functions” are usually called Message
Authentication Codes, or MACs

Common examples:

- SHA-1-HMAC, SHA-256-HMAC, CBC-MAC
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Message authentication codes (MAC)

MAC

MAC

M

T1

T2

=?

K
K
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Combining ciphers and MACs

In practice we often need both confidentiality and message integrity

There are multiple strategies to combine a cipher and a MAC
when processing a message

- Encrypt-then-MAC, MAC-then-Encrypt, Encrypt-and-MAC

Ideally your crypto library already provides an authenticated
encryption mode that securely combines the two operations so
you don’t have to worry about getting it right

E.g., GCM, CCM (used in WPA2, see later), or OCB mode
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Basics Secret-key Public-key Integrity Authentication

Combining Ciphers and MACs. Let’s try it!

Alice and Bob have a secret key K for a secret-key cryptosystem
(EK (·),DK (·)) and a secret key K ′ for their MAC (MACK ′(·)).
Concatenation is ||. How does Alice build a message for Bob in the
following scenarios?

MAC-then-Encrypt: compute the MAC on the message, then
encrypt the message and MAC together, and send that ciphertext.

Encrypt-and-MAC: compute the MAC on the message, compute
the encryption of the message, and send both.

Encrypt-then-MAC: encrypt the message, compute the MAC on
the encryption, send encrypted message and MAC.
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Basics Secret-key Public-key Integrity Authentication

Encrypt and authenticate: what’s the right order?

Usually, we want the receiver to verify the MAC first!

Q: Which of this is the recommended strategy, then?

EK (m||MACK ′(m)) EK (m)||MACK ′(m) EK (m)||MACK ′(EK (m))

A: The recommended strategy is Encrypt-then-MAC:

EK (m)||MACK ′(EK (m))

There is a nice blog post that calls this the “Doom principle”: if
you have to perform any cryptographic operation before verifying
the MAC on a message you’ve received, it will somehow inevitably
lead to doom.

It explains two simple attacks that can happen if you violate the
Doom principle.

69 / 84

https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html


Basics Secret-key Public-key Integrity Authentication

Encrypt and authenticate: what’s the right order?

Usually, we want the receiver to verify the MAC first!

Q: Which of this is the recommended strategy, then?

EK (m||MACK ′(m)) EK (m)||MACK ′(m) EK (m)||MACK ′(EK (m))

A: The recommended strategy is Encrypt-then-MAC:

EK (m)||MACK ′(EK (m))

There is a nice blog post that calls this the “Doom principle”: if
you have to perform any cryptographic operation before verifying
the MAC on a message you’ve received, it will somehow inevitably
lead to doom.

It explains two simple attacks that can happen if you violate the
Doom principle.

69 / 84

https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html


Basics Secret-key Public-key Integrity Authentication

Encrypt and authenticate: what’s the right order?

Usually, we want the receiver to verify the MAC first!

Q: Which of this is the recommended strategy, then?

EK (m||MACK ′(m)) EK (m)||MACK ′(m) EK (m)||MACK ′(EK (m))

A: The recommended strategy is Encrypt-then-MAC:

EK (m)||MACK ′(EK (m))

There is a nice blog post that calls this the “Doom principle”: if
you have to perform any cryptographic operation before verifying
the MAC on a message you’ve received, it will somehow inevitably
lead to doom.

It explains two simple attacks that can happen if you violate the
Doom principle.

69 / 84

https://moxie.org/2011/12/13/the-cryptographic-doom-principle.html


Basics Secret-key Public-key Integrity Authentication

Repudiation

Suppose Alice and Bob share a MAC key K , and Bob receives a
message m along with a valid tag T = MACK (m).

m||MACK (m) m||MACK (m)

Bob can be assured that Alice is the one who sent m and that
the message has not been modified since she sent it!
This is like a “signature” on the message... but not quite!

Bob can’t prove to Carol that Alice sent m, though.

Q: Why not?

A: Either Alice or Bob could create any of the message and MAC
combinations. Also, Carol doesn’t know the secret keys.
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Basics Secret-key Public-key Integrity Authentication

Repudiation

??
Alice sent m, look: m||MACK (m)

Did she?

Alice can just claim that Bob made up the message m, and
calculated the tag T himself

This is called repudiation, and we sometimes want to avoid it

Some interactions should be repudiable

- Private conversations

Some interactions should be non-repudiable

- Electronic commerce
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Digital signatures

For non-repudiation, what we want is a true digital signature, with
the following properties:

If Bob receives a message with Alice’s digital signature on it, then:

it must be Alice, and not an impersonator, who sent the message
(like a MAC)

the message has not been altered after it was sent
(like a MAC),

Bob can prove these facts to a third party
(additional property not satisfied by a MAC).
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Digital signatures

??
Alice sent m, she signed it!

She did!

How do we arrange this?

Use similar techniques to public-key cryptography
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Basics Secret-key Public-key Integrity Authentication

Making digital signatures

Remember public-key cryptosystems:

Separate keys for encryption and decryption
Give everyone a copy of the encryption key
The decryption key is private

To make a digital signature:

Alice signs the message with her private signature key (sk)

To verify Alice’s signature:

Bob verifies the message with Alice’s public verification key (vk)
If it verifies correctly, the signature is valid
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Making digital signatures

Sign
Verify

M

Sig T/F

vk vk

sk
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Basics Secret-key Public-key Integrity Authentication

Hybrid signatures

Just like encryption in public-key cryptosystems, signing large
messages is slow

We can also hybridize signatures to make them faster:

Alice sends the (unsigned) message, and also a signature on a hash of
the message
The hash is much smaller than the message, so it is faster to sign
and verify

Verifyvk (sig , h(m))?
m||sig

sig = Signsk (h(m))

Remember that authenticity and confidentiality are separate; if you
want both, you need to do both
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Basics Secret-key Public-key Integrity Authentication

Combining public-key encryption and digital signatures

Alice has two different key pairs:

- an (encryption, decryption) key pair (eAk , d
A
k )

- a (signature, verification) key pair (sAk , v
A
k )

So does Bob:

- an (encryption, decryption) key pair (eBk , d
B
k )

- a (signature, verification) key pair (sBk , v
B
k )

Q: What would be the best scheme to encode a message m?

Sign-then-Encrypt: EeBk
(m ∥ SignsAk (m))

Encrypt-then-Sign: EeBk
(m) ∥ SignsAk (EeBk

(m))
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Combining public-key encryption and digital signatures

Sign-then-Encrypt: EeBk
(m ∥ SignsAk (m))

Encrypt-then-Sign: EeBk
(m) ∥ SignsAk (EeBk

(m))

Q: What can Eve learn from an Encrypt-then-Sign message that she
cannot learn from a Sign-then-Encrypt message?

A: Eve can see Alice signed the encrypted message (if she has
Alice’s verification key)
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Combining public-key encryption and digital signatures

Sign-then-Encrypt: EeBk
(m ∥ SignsAk (m))

Encrypt-then-Sign: EeBk
(m) ∥ SignsAk (EeBk

(m))

Q: What can Mallory do with a captured Encrypt-then-Sign
message?

A: Mallory could remove the signature and sign it herself! (even if
she does not know the plaintext)

EeBk
(m) ∥ SignsAk (EeBk

(m)) → EeBk
(m) ∥ SignsMk (EeBk

(m))
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Basics Secret-key Public-key Integrity Authentication

The key management problem

One of the hardest problems of public-key cryptography is that of
key management

How can Bob find Alice’s verification key?

He can know it personally (manual keying)

- SSH does this

He can trust a friend to tell him (web of trust)

- PGP does this

He can trust some third party to tell him (CA)

- TLS / SSL do this

He trusts no one... (blockchain maybe?)

- Decentralized Public-Key Infrastructure?
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Certificate authorities

A CA is a trusted third party who keeps a directory of people’s
(and organizations’) verification keys

Alice generates a (signature, verification) key pair, and sends the
verification key, as well as a bunch of personal information, both
signed with Alice’s signature key, to the CA

The CA ensures that the personal information and Alice’s
signature are correct

The CA generates a certificate consisting of Alice’s personal
information, as well as her verification key. The entire certificate
is signed with the CA’s signature key

https://letsencrypt.org/ has changed the game. Extended
validation certificates (for which CAs charged a lot of money) are
not treated differently by most browsers after 2019. See more on
Extended Validation Certificates are (Really, Really) Dead
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Certificate authorities

Everyone is assumed to have a copy of the CA’s verification key,
so they can verify the signature on the certificate

There can be multiple levels of CAs; level n CA issues certificates
for level n + 1 CAs—public-key infrastructure (PKI)

Need to have only verification key of root CA to verify a
certificate chain

root
signs verification key
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Chain of certificates

Alice sends Bob the following certificate to prove her identity. Bob
can follow the chain of certificates to validate Alice’s identity.

Subject: Alice

Issuer: CA2

validity_period

public_key: vA

...

Subject: CA2

Issuer: CA1

validity_period

public_key: vCA2

...

Subject: CA1

Issuer: CA1

validity_period

public_key: vCA1

...
Signed with sCA2 Signed with sCA1 Signed with sCA1

Bob has vCA1
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Putting it all together

We have all these blocks; now what?

Put them together into protocols

This is HARD. Just because your pieces all work, doesn’t mean
what you build out of them will; you have to use the pieces
correctly: see a counterexample here.

Common mistakes include:

Using the same stream cipher key for two messages
Assuming encryption also provides integrity
Falling for replay attacks or reaction attacks
LOTS more!
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