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Cryptography

@ What is cryptography?
o Related fields:
o Cryptography (“secret writing"): Making secret messages

e Turning plaintext (an ordinary readable message) into ciphertext (secret
messages that are “hard” to read)

o Cryptanalysis: Breaking secret messages
@ Recovering the plaintext from the ciphertext
o Cryptology is the science that studies these both

@ The point of cryptography is to send secure messages over an
insecure medium (e.g., the Internet)
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The scope of these lectures

@ The goal of the cryptography unit in this course is to show you
what cryptographic tools exist, and information about using these
tools in a secure manner

@ We won't be showing you details of how the tools work

o For that, see CO 487, or chapter 2 of van Oorschot's textbook or
chapter 2.3 of Pfleeger’s textbook
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https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch2-rev1.pdf
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Cast of characters

When talking about cryptographic schemes, we often use a standard
cast of characters

Honest) communicating parties Adversaries
Alice Carol  Dave Eve Mallory
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Cast of characters

When talking about cryptographic schemes, we often use a standard
cast of characters

Honest) communicating parties Adversaries
Alice Carol  Dave Eve Mallory

@ Eve: A passive eavesdropper, who can listen to any transmitted
messages but does not modify them.

@ Mallory: An active Man-In-The-Middle, who can listen to, and
modify, insert, or delete transmitted messages

e ... (Many more) ..., Trent (trusted third-party), Peggy (prover),
Victor (verifier), etc.
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Building blocks

Cryptography contains three major types of components

o Confidentiality components
e Preventing Eve from reading Alice's messages
@ Integrity components

o Preventing Mallory from modifying Alice’s messages without being
detected

@ Authenticity components
o Preventing Mallory from impersonating Alice

6/84



Basics
[e]e]e]ele] lelele]e]

Kerckhoffs' principle

Shannon’s maxim: one ought to design systems under the
assumption that the enemy will immediately gain full familiarity
with them.

@ So don't use “secretive” encryption methods
e Then what do we do?

@ Have public algorithms that use a secret key as input

@ It's easy to change the key; it's usually just a smallish number

Kerckhoffs’s principle: a cryptosystem should be secure, even if
everything about the system, except the key, is public knowledge
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Kerckhoffs' Principle

Kerckhoffs' Principle has a number of implications:

@ The system is at most as secure as the number of keys
@ Eve can just try them all, until she finds the right one

@ A strong cryptosystem is one where that's the best Eve can do
o With weaker systems, there are shortcuts to finding the key

@ Example: newspaper cryptogram has
403,291,461,126,605,635,584,000,000 possible keys

@ But you don't try them all; it's way easier than that!
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Daily cryptogram

wordplays|com

Crossword Solver | Scrabble Word Finder | Boggle | Text Twi Sudol Anagram Solver | Word Games

m Scrabble Help  Words with Friends Cheat Words in Words Word Jumbles Word Search ~ Scrabble Cheat Cryptogram

DAILY CRYPTOGRAM Daily Cryptogram Help 0

Puzzle #1267 - CATEGORY: DEFINITIONS Puzzle # I:l Find

’ .

TV] MGQPESMPU, G.

PWREARMZQMGI CEVRPYY BAEMGI

UFMRF CPEYVGGPD VKKMRPEY

YPCZEZQP QFP UFPZQ K E VO QFP RF ZKK

S © QFPG FMEP QFP RF ZKK

Get a Hint Solve the Puzzle New Puzzle Clear
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Daily cryptogram

wordplays|com

Crossword Solver | Scrabble Word Finder | Boggle | Text Twist = Sudoku agram Solver | Word Games

Scrabble Help  Words with Friends Cheat Words in Words Word Jumbles Word Search  Scrabble Cheat  Cryptogram

DAILY CRYPTOGRAM Daily Cryptogram Helpo
Puzzle #1267 - CATEGORY: DEFINITIONS Puzzle # I:] End
pos INTERVIEW, N.: THE

TV MGQPESMPU, G . : QFP
EXCRUCIATING PROCESS DUR I NG
PWREARMZQMGI CEVRPYY BAEMGI

WH I CH PERSONNEL OFF I CERS

UFMRF CPEYVGGPD VKKMRPEY

SEPARATE THE WHEAT FROM THE CHAFF
YPCZEZQP QFP UFPZQ K EVO QFP RFZKK
o © THEN HI1RE THE CHAFF

o o QFPG FMEP QFP RF Z KK .

Get a Hint Solve the Puzzle New Puzzle Clear
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Strong cryptosystems

What information do we assume the attacker (Eve) has when she’s
trying to break our system?

@ She may:
e Know the algorithm

e Know a number (maybe a large number) of corresponding
plaintext/ciphertext pairs

e Have access to an encryption and/or decryption oracle

And we still want to prevent Eve from learning the key!
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© Secret-key cryptography
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Secret-key encryption

@ Secret-key encryption is the simplest form of cryptography
@ Used for thousands of years
@ Also called symmetric encryption

@ The key Alice uses to encrypt the message is the same as the key
Bob uses to decrypt it

(*] Dk(Ek(m)) = m

P C p

N N

K K

@ —
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Secret-key encryption

@ Eve, not knowing the key, should not be able to recover the
plaintext

[Encryot }———{[Decr]
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Vernam cipher

Encrypts one bit at a time by XOR'ing the plaintext with the key:

o Plaintext (t bits): M = [my, my, ..., my]
o Key (t bits): K = [ki, ko, ..., k]
o Ciphertext (t bits):
C = [C1,C2,...,Ct] = [ml,mg,...,mt]@[kl,kg,...,kt]

XOR reminder:

0200=0 0ecl=1 190=1 191=0

Q: How do we decrypt? J
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Vernam cipher

Encrypts one bit at a time by XOR'ing the plaintext with the key:

o Plaintext (t bits): M = [my, my, ..., my]
o Key (t bits): K = [ki, ko, ..., k]
o Ciphertext (t bits):
C = [C1,C2,...,Ct] = [ml,mg,...,mt]@[kl,kg,...,kt]

XOR reminder:

0200=0 0ecl=1 190=1 191=0

Q: How do we decrypt? J

A: [m17m25"'7mt]:[C17C27"')Ct]®[klak2a--~akt] J
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One-time pad: definition

If K is randomly chosen and never reused, Vernam cipher is called
One-Time Pad

In other words, one-time pad is a secret-key cryptographic scheme
with the following construction:

@ The key is a truly random bitstring
@ The key is of of the same length as the plaintext
@ The “Encrypt” and “Decrypt” functions are both XOR
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One-time pad: definition

If K is randomly chosen and never reused, Vernam cipher is called
One-Time Pad

In other words, one-time pad is a secret-key cryptographic scheme
with the following construction:

@ The key is a truly random bitstring
@ The key is of of the same length as the plaintext
@ The “Encrypt” and “Decrypt” functions are both XOR

This provides information-theoretic security.
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One-time pad: security

It's very hard to use one-time pad correctly:
@ The key must be truly random, not pseudorandom

@ The key must be of the same length as the plaintext
@ The key (in part or in whole) must never be used more than once
e A "two-time pad” is insecure!
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One-time pad: security

It's very hard to use one-time pad correctly:
@ The key must be truly random, not pseudorandom

@ The key must be of the same length as the plaintext
@ The key (in part or in whole) must never be used more than once
e A "two-time pad” is insecure!

Q: Why does “try every key” not work here? J
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One-time pad: security

It's very hard to use one-time pad correctly:
@ The key must be truly random, not pseudorandom

@ The key must be of the same length as the plaintext
@ The key (in part or in whole) must never be used more than once
e A "two-time pad” is insecure!

Q: Why does “try every key” not work here? J

A: Because, given a ciphertext C, for every possible message M,
there exists a key K that could have generated that ciphertext. J
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One-time pad: security

It's very hard to use one-time pad correctly:
@ The key must be truly random, not pseudorandom

@ The key must be of the same length as the plaintext
@ The key (in part or in whole) must never be used more than once
e A "two-time pad” is insecure!

Q: Why does “try every key” not work here? J

A: Because, given a ciphertext C, for every possible message M,
there exists a key K that could have generated that ciphertext. J

Example:

C = secret 01110011 01100101 01100011 01110010 01100101 01110100

Ky =------ 00010010 00010001 00010111 00010011 00000110 00011111
My = attack 01100001 01110100 01110100 01100001 01100011 01101011
Ky = ------ 00010111 00000000 00000101 00010111 00001011 00010000

My = defend 01100100 01100101 01100110 01100101 01101110 01100100 17/ 84
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One-time pad: key sharing

Q: How to share the secret keys? )
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One-time pad: key sharing

Q: How to share the secret keys? J

A: Keys would have to be shared in person or sent by courier or via
other secure channels J
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One-time pad: key sharing

Q: How to share the secret keys? J

A: Keys would have to be shared in person or sent by courier or via
other secure channels J

Q: If the keys are of the same length as the message, what is the
point of one-time pad? J
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One-time pad: key sharing

Q: How to share the secret keys? J

A: Keys would have to be shared in person or sent by courier or via
other secure channels

Q: If the keys are of the same length as the message, what is the
point of one-time pad? J

A: The keys can be shared ahead of time J
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One-time pad: integrity?

Q: Does one-time pad provide integrity? J
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One-time pad: integrity?

Q: Does one-time pad provide integrity? )

Q: If your boss stores your salary (in binary) encrypted with a one
time pad, and you have write access to the ciphertext, what can you
do with it?
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One-time pad: integrity?

Q: Does one-time pad provide integrity? )

Q: If your boss stores your salary (in binary) encrypted with a one
time pad, and you have write access to the ciphertext, what can you

do with it? )

A: You can XOR a “10000000000..." (in binary). This flips the
most significant bit, which most likely will be zero.
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Computational security

In contrast to the “perfect” (or “information-theoretic”) security
property of one-time pad, most cryptosystems have “computational”
security.

@ This means that it's certain they can be broken, given enough
work by Eve

@ How much is “enough”?

20/84



Secret-key
00000000

Computational security

In contrast to the “perfect” (or “information-theoretic”) security
property of one-time pad, most cryptosystems have “computational”
security.

@ This means that it's certain they can be broken, given enough
work by Eve

@ How much is “enough”?

At worst, Eve tries every key
@ How long that takes depends on how long the keys are
@ But it only takes this long if there are no “shortcuts”!
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Trying every key: some data points

These are some estimates for RCb:

@ One computer can try about 17 million keys per second: 1.7 - 107
keys/second.

@ A medium-sized corporate or research lab may have 100
computers: 1.7 - 10° keys/second.

@ The Bitcoin network computes 258 million terahashes per second
as of Oct 2022. If the hardware could be used to try decrypting
with a key in the same time, that's =~ 2.6 - 10%° keys/second.
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40-bit crypto

This was the US legal export limit for a long time

240 — 1,099,511,627,776 possible keys

Key size Computer Lab Bitcoin network
key/second ~1.7-10" ~17-10° =~2.6-10%
40-bit 18 hours 11 minutes 4.2 ns
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56-bit crypto

This was the US government standard (DES) for a long time
250 — 72 057,594,037,927,936 possible keys

Key size Computer Lab Bitcoin network
key/second ~1.7-107 ~17-10° ~26-10%

40-bit 18 hours 11 minutes 4.2 ns

56-bit 134 years 16 months 0.22 ms
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128-bit crypto

This is the modern standard

2128 — 340,282,366,920,938,463,463,374,607,431,768,211,456

Key size Computer Lab Bitcoin network
key/second  ~ 1.7-107 ~1.7-10° ~ 2.6 - 10%°

40-bit 18 hours 11 minutes 4.2 ns

56-bit 134 years 16 months 0.22 ms

128-bit 6.3-10%3 years 6.3-10%! years 4.1-10%° years
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128-bit crypto

This is the modern standard

2128 — 340,282,366,920,938,463,463,374,607,431,768,211,456

Key size Computer Lab Bitcoin network
key/second  ~ 1.7-107 ~1.7-10° ~ 2.6 - 10%°

40-bit 18 hours 11 minutes 4.2 ns

56-bit 134 years 16 months 0.22 ms

128-bit 6.3-10%3 years 6.3-10%! years 4.1-10%° years

To make sense of 4.1 - 1010 years:
@ around 3 times larger than the age of the universe

@ around 4.2 times larger than the expected lifetime of the sun.
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Well, we cheated a bit

This isn't really true, since computers get faster over time
Moore’s law: computing speed doubles every 18 months

@ A better strategy for breaking 128-bit crypto is just to wait until
computers get 288 times faster, then break it on one computer in
just 18 hours.

@ How long do we need to wait? 132 years.

o If we believe Moore's law will keep on working, we'll be able to
break 128-bit crypto in 132 years (and 18 hours) :-)
o Q: Do we believe this?
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Well, we cheated a bit

This isn't really true, since computers get faster over time
Moore’s law: computing speed doubles every 18 months

@ A better strategy for breaking 128-bit crypto is just to wait until
computers get 288 times faster, then break it on one computer in
just 18 hours.

@ How long do we need to wait? 132 years.

o If we believe Moore's law will keep on working, we'll be able to
break 128-bit crypto in 132 years (and 18 hours) :-)

o Q: Do we believe this?

@ How about quantum computers? e.g., Grover's algorithm
o reduces the search space from 2128 to 264
e requires around 3,000 logical qubits (we have 127 qubits now)
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even better strategy

A CRYPTO NERD'S

1 IMAGINATION ¢

HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLUSTER To CRACK \T.

NO Goop! IT'S
uoss -BIT Rﬁm

E\”L PLFW
1S FOILED! ™~

1 ACTUALLY HAPPEN:

WHAT WOULD

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT T,

7Q
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Types of secret-key cryptosystems

Secret-key cryptosystems come in two major classes
@ Stream ciphers
@ Block ciphers
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Stream ciphers

@ A stream cipher is what you get if you take the One-Time Pad,
but use a pseudorandom keystream instead of a truly random one

Plaintext

I

Pseudorandom Keystream
h —> Keystream > @

Generator l

Ciphertext

@ RC4 was the most common stream cipher on the Internet but
deprecated. ChaCha is increasingly popular (Chrome and
Android), and SNOW3G is mostly used in mobile phone networks.
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Two-time pad

Q: What happens if you use the same key (therefore, same
keystream) to encrypt two messages?
G=MaK, G=MaoK
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Two-time pad

Q: What happens if you use the same key (therefore, same
keystream) to encrypt two messages?
G=MoK, G=MoK

A: We can XOR the ciphertexts:
GaG=(MaK) e(MaK)=MaeM
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Two-time pad

Q: What happens if you use the same key (therefore, same
keystream) to encrypt two messages?
G=MoK, G=MoK

A: We can XOR the ciphertexts:
GoG=MaoK)d (M & K)=M &M,

Q: Why is this an issue? J
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Two-time pad

Q: What happens if you use the same key (therefore, same
keystream) to encrypt two messages?
G=MaK, G=MaoK

A: We can XOR the ciphertexts:
GoG=MaoK)d (M & K)=M &M,

Q: Why is this an issue? J

A: Messages are not purely random! J
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Two-time pad, illustrated
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Two-time pad, illustrated
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Two-time pad, illustrated
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Correct use of stream ciphers

Q: How would you solve this problem without requiring a new
shared secret key for each message? J
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Correct use of stream ciphers

Q: How would you solve this problem without requiring a new
shared secret key for each message? J

A: Concatenate key with a nonce that is randomly generated for
each message and can be send in plaintext J

Plaintext
Key H nonce Pseudorandom Keystream ’L
h | Keystream ? @
Generator
4
Ciphertext
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Stream ciphers

@ Stream ciphers can be very fast
e This is useful if you need to send a lot of data securely

@ But they can be tricky to use correctly!

o We saw the issues of re-using a key! (two-time pad)
o Always remember to pick and random (and never re-use) a nonce

WEP, PPTP are great examples of how not to use stream ciphers.
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Block ciphers

@ Stream ciphers operate on the message one bit at a time
@ An alternative design is block ciphers

o Block ciphers operate on the message one block at a time
e Blocks are usually 64 or 128 bits long

@ AES is the block cipher everyone should use today
e Unless you have a really, really good reason
o Native AES support on Intel chips since Westmere (2010)
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Modes of operation

@ Block ciphers work like this:

1 block of plaintext

= —[Er]

1 block of ciphertext
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Modes of operation

@ Block ciphers work like this:
1 block of plaintext

= —[Er]

1 block of ciphertext

o If the plaintext is smaller than one block: padding.

@ If the plaintext is larger than one block: the choice of what to do
with multiple blocks is called the mode of operation of the block

cipher.
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ECB mode

K The simplest thing to do is just to
l encrypt each successive block
My = s separately — This is called Electronic
Code Book (ECB) mode.
T Q: What happens if the plaintext M
has some blocks that are identical,
Mo » E > G M; = /\/I_,'?
K
!
M3 » E > (3
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ECB mode

K The simplest thing to do is just to
l encrypt each successive block
My = s separately — This is called Electronic
Code Book (ECB) mode.
K Q: What happens if the plaintext M
3 has some blocks that are identical,
K
~L A: C,' = EK(M,'), CJ = EK(MJ') —
Iy J £ s C C; = C;: This reveals patterns in the
3 ’ T3 ciphertext...
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Improving ECB (v1)

K We can provide “feedback”
l among different blocks, to
My = s avoid repeating patters.
Q: Does this “feedback”
K avoid repeating patterns?
1 ES Any issues here?
K
1 i
Ms > E > ) > Cs
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Improving ECB (v1)

K We can provide “feedback”
l among different blocks, to
My = s avoid repeating patters.
Q: Does this “feedback”
K avoid repeating patterns?
1 ES Any issues here?
A: We can un-do the XOR
T if we get all the ciphertexts.
B This basically does not
M3 " E AN > G improve compared to ECB.
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Improving ECB (v2)

K
l Q: Does this avoid repeating
My s E y Cy patterns among blocks? Any
| issues here?
K
! L
M, H— E | xe!
K
! L
Ms H— E xe
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Improving ECB (v2)

K
l Q: Does this avoid repeating
My s E s G patterns among blocks? Any
| issues here? )
K :
1 Q: What would happen if we
X t the message twice with
M. | —— > C encryp
2 ~ £ | 2 the same key?
K
I} L
My —H—— E — G
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Improving ECB (v2)

K
l Q: Does this avoid repeating
My s E s G patterns among blocks? Any
| issues here? )
K :
1 Q: What would happen if we
X he message twice with
M Vi , . C encrypt t
2 - £ | 2 the same key?
K :
l A: We get the same ciphertext J
\/\'\ ) N
Ms AN ’ E > G5 To avoid this, we could change

the key... but there's a better way
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v K _ _
l Q: Does this solve the issue of
My \* s E s G re-encrypting equal blocks? J
I\J-/ 7 | 4
K Q: Does this solve the issue of
l re-encrypting equal plaintext? J
M, —P— E | > &
K
I} 2
M3 )C) > E > C3
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v K ; )
l Q: Does this solve the issue of
My >$ N= | e re-encrypting equal blocks? )
K Q: Does this solve the issue of
l re-encrypting equal plaintext?
M, —P— E | > &
A: Yes! This is called the
K Cipher-Block Chaining mode
I} 2
Mz ,CD » E > (3 Q: Can we share IV in the clear? )
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K
l Q: Does this solve the issue of
M, \* s E s re-encrypting equal blocks?

K Q: Does this solve the issue of
l re-encrypting equal plaintext?
M, —P— E | > &
A: Yes! This is called the
K Cipher-Block Chaining mode
I} 2
Mz ,CD » E > (3 Q: Can we share IV in the clear? )
A: Yesl!! J
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v K ; )
l Q: Does this solve the issue of
My >$ N= | e re-encrypting equal blocks?
K Q: Does this solve the issue of
l re-encrypting equal plaintext? )
M, —P— E | > &
A: Yes! This is called the
K Cipher-Block Chaining mode
I} 2
Mz ,CD » E > (3 Q: Can we share IV in the clear? )

A: Yes!! )

An initialization vector might also be called as a nonce (number

used once) or a salt.
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Safe modes of operation

There are different modes of operation for block ciphers. Common
ones include Cipher Block Chaining (CBC), Counter (CTR), and
Galois Counter (GCM) modes

@ Patterns in the plaintext are no longer exposed because these

modes involves some kind of “feedback” among different blocks
o But you need an IV
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mode: example
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Key exchange

How do Alice and Bob share the secret key?

@ Meet in person

@ Diplomatic courier
°
°

In general this is very hard

Or, we invent new technology...
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Outline

© Public-key cryptography
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Public-key cryptography

@ Invented (in public) in the 1970's
@ Also called asymmetric cryptography

o Allows Alice to send a secret message to Bob without any
prearranged shared secret!

e In secret-key cryptography, the same key encrypts the message and
also decrypts it

e In public-key cryptography, there's one key for encryption, and a
different key for decryption!

@ Some common examples:
o RSA, ElGamal, ECC, NTRU, McEliece
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Public-key cryptography

How does it work?
© Bob creates a key pair (e, dk)
Bob gives everyone a copy of his public encryption key ey

o

© Alice uses it to encrypt a message, and sends the encrypted
message to Bob

()

Bob uses his private decryption key di to decrypt the message

e Eve can’t decrypt it; she only has the encryption key ey
o Neither can Alice
e It must be hard to derive d, from e,

So with this, Alice just needs to know Bob's public key in order to
send him secret messages

@ These public keys can be published in a directory somewhere
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Public-key cryptography

l

R -
v_J

@
?¢

€k dk

P 7 C ~N
Encrypt Decrypt

46 /84



Public-key
[e]e]ele] Telelelele]e]

Textbook RSA

@ First popular public-key encryption method (published in 1977)

@ Relies on the practical difficulty of the factoring problem:
given the product of two large prime numbers n = p- q, it is
computationally hard to factor n.

@ Modular arithmetic: integer numbers that “wrap around”
@ High-level idea:
e It is easy to find large integers e, d, and n, such that:

(m®)? = m (mod n)

e But knowing e and n (and even m), it is extremely hard to find d.
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Textbook RSA (simplified)
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Textbook RSA (simplified)

@ Choose two large primes p and g (these are secret).

o Compute n=p-q.

@ “Choose” a number e such that gcd(e, ¢(n)) = 1 where
¢(n)=(p—1)-(q-1).

@ Find d such that e-d =1 (mod n) (This is easy via the extended
Euclidean algorithm).
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@ “Choose” a number e such that gcd(e, ¢(n)) = 1 where
¢(n)=(p—1)-(q-1).

@ Find d such that e-d =1 (mod n) (This is easy via the extended
Euclidean algorithm).

@ Public key: (e, n)
e Private key: (d, n)
@ Other numbers can be discarded
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Textbook RSA (simplified)

@ Choose two large primes p and g (these are secret).

o Compute n=p-q.

@ “Choose” a number e such that gcd(e, ¢(n)) = 1 where
¢(n)=(p—1)-(q-1).

@ Find d such that e-d =1 (mod n) (This is easy via the extended
Euclidean algorithm).

@ Public key: (e, n)
e Private key: (d, n)
@ Other numbers can be discarded

e Encryption: ¢ = m® (mod n)

@ Decryption: ¢? (mod n)
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Textbook RSA (simplified)

@ Choose two large primes p and g (these are secret).

o Compute n=p-q.

@ “Choose” a number e such that gcd(e, ¢(n)) = 1 where
¢(n)=(p—1)-(q-1).

@ Find d such that e-d =1 (mod n) (This is easy via the extended
Euclidean algorithm).

@ Public key: (e, n)

e Private key: (d, n)

@ Other numbers can be discarded
e Encryption: ¢ = m® (mod n)
@ Decryption: ¢? (mod n)

This is textbook RSA, never do this!! It is not secure.
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Example of Textbook RSA

Example (very small RSA):

p=53, q=101, e = 139, d = 1459

@ Compute n =53 -101 = 5353

e Compute C; = E(1011) = 101113% mod 5353 = 5253
- Dy4(5253) = 52531%%° mod 5353 = 1011

o Compute G, = E.(4) = 4'3° mod 5353 = 324
- Dy(324) = 32459 mod 5353 = 4

Feel free to use an online Modular Exponentiation Calculator
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Example of Textbook RSA

Q: Compute Dy(Cy - C2). What is happening? Why? J
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Example of Textbook RSA

Q: Compute Dy(Cy - G3). What is happening? Why? )

A:

Dy(5253 - 324) =Dy(1701972)
= 1701972'*° mod 5353
= 4044
=1011-4

The decryption is the product of the original plaintexts.
(m1)€ - (m2)® = (m1 - m2)°.

Malleability: it is possible to transform a ciphertext into another
ciphertext that decrypts to a related plaintext.

This is typically (but not always!) undesirable.
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Chosen ciphertext attack on Textbook RSA

Settings:

@ You know Alice’s public key (e, n)

@ You know some ciphertext ¢ is encrypted with Alice's public key
but you don't know the plaintext m

@ Alice is willing to decrypt anything for you except for ¢

Q: What can you do to recover m? J
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Chosen ciphertext attack on Textbook RSA

Settings:

@ You know Alice’s public key (e, n)

@ You know some ciphertext ¢ is encrypted with Alice's public key
but you don't know the plaintext m

@ Alice is willing to decrypt anything for you except for ¢

Q: What can you do to recover m? J

A: You can ask Alice to decrypt (2¢ mod n) - ¢

The decryption yields 2 - m, from which you can recover m
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Public key sizes

@ Recall that if there are no shortcuts, Eve would have to try 2128
things in order to read a message encrypted with a 128-bit
symmetric key.

@ Unfortunately, all of the public-key methods we know do have
shortcuts. For example:
e Eve could read a message encrypted with a 128-bit RSA key with just
233 work, which is easy!
o In RSA, n = pg; n is public; factoring n reveals the key
o 2% is the “work factor’ to factor a 128-bit integer n
@ Quantum computers can factor even faster, see Shor's algorithm

2128

o If we want Eve to have to do work, we need to use a much

longer public key
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Public key sizes

Comparison of key sizes for roughly equal strength

AES RSA ECC

80 1024 160
116 2048 232
128 2600 256
160 4500 320
256 14000 512
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Hybrid cryptography

o Secret-key cryptography: shorter keys, faster, same key to
encrypt and decrypt, but requires pre-sharing of the keys.

@ Public-key cryptography: longer keys, slower, different key to
encrypt and decrypt, but does not require sharing of secrets.
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Hybrid cryptography

o Secret-key cryptography: shorter keys, faster, same key to
encrypt and decrypt, but requires pre-sharing of the keys.

@ Public-key cryptography: longer keys, slower, different key to
encrypt and decrypt, but does not require sharing of secrets.

We can get the best of both worlds:

@ Pick a random 128-bit key K for a secret-key cryptosystem

@ Encrypt the large message with the key K (e.g., using AES)

@ Encrypt the key K using a public-key cryptosystem

@ Send both the encrypted message and the encrypted key to Bob
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Hybrid cryptography

o Secret-key cryptography: shorter keys, faster, same key to
encrypt and decrypt, but requires pre-sharing of the keys.

@ Public-key cryptography: longer keys, slower, different key to
encrypt and decrypt, but does not require sharing of secrets.

We can get the best of both worlds:

@ Pick a random 128-bit key K for a secret-key cryptosystem

@ Encrypt the large message with the key K (e.g., using AES)

@ Encrypt the key K using a public-key cryptosystem

@ Send both the encrypted message and the encrypted key to Bob

This hybrid approach is used for almost every cryptography
application on the Internet today
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Is that all there is?

It seems we've got this “sending secret messages” thing down pat.
What else is there to do?

o Even if we're safe from Eve reading our messages, there’s still the
matter of Mallory

@ It turns out that even if our messages are encrypted, Mallory can
sometimes modify them in transit!

@ Mallory won't necessarily know what the message says, but can
still change it in an undetectable way

e e.g. bit-flipping attack on stream ciphers

@ This is counterintuitive, and often forgotten

How do we make sure that Bob gets the same message Alice sent?
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Outline

Q@ Integrity
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Integrity components

How do we tell if a message has changed in transit?
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Integrity components

How do we tell if a message has changed in transit?

Simplest answer: use a checksum
@ For example, add up all the bytes of a message

@ The last digits of serial numbers (credit card, ISBN, etc.) are
usually checksums
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Integrity components

How do we tell if a message has changed in transit?

Simplest answer: use a checksum
@ For example, add up all the bytes of a message

@ The last digits of serial numbers (credit card, ISBN, etc.) are
usually checksums

A naive checksum procedure works like following:

@ Alice computes the checksum of the message, and sticks it at the
end before encrypting it to Bob.

@ When Bob receives the message and checksum, he verifies that
the checksum is correct
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Simple checksums do not work!

Reason 1: Mallory can simply craft a new message and calculate the
checksum of the new message and send both to Bob.
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Simple checksums do not work!

Reason 1: Mallory can simply craft a new message and calculate the
checksum of the new message and send both to Bob.

Reason 2: Simple checksums are insecure even when the checksum
value cannot be changed.

@ With most checksum methods, Mallory can easily change the
message in such a way that the checksum stays the same

@ We need a “cryptographic” checksum

@ It should be hard for Mallory to find a second message with the
same checksum as any given one
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Cryptographic hash functions

A hash function h takes an arbitrary length string x and computes a
fixed length string y = h(x) called a message digest

e Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on)
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Cryptographic hash functions

A hash function h takes an arbitrary length string x and computes a

fixed length string y = h(x) called a message digest

e Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on)

Hash functions should have three properties:
© Preimage-resistance:
- Given y, it's hard to find x such that h(x) =y
i.e., a “preimage" of y
@ Second preimage-resistance:
- Given x, it's hard to find x’ # x such that h(x) = h(x’)
i.e.,, a “second preimage” of h(x)
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Cryptographic hash functions

A hash function h takes an arbitrary length string x and computes a

fixed length string y = h(x) called a message digest

e Common examples: MD5, SHA-1, SHA-2, SHA-3 (a.k.a., Keccak,
from 2012 on)

Hash functions should have three properties:

© Preimage-resistance:
- Given y, it's hard to find x such that h(x) =y
i.e., a “preimage" of y
@ Second preimage-resistance:
- Given x, it's hard to find x’ # x such that h(x) = h(x’)
i.e.,, a “second preimage” of h(x)
@ Collision-resistance:
- It's hard to find any two distinct values x, x” such that h(x) = h(x’)
i.e., a “collision”
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What is “hard”?

@ For SHA-1, for example, it takes 21° work to find a preimage or

second preimage, and 289 work to find a collision using a
brute-force search

e However, there are faster ways than brute force to find collisions in
SHA-1 or MD5

60/84



Integrity
[e]e]ele] lele]

What is “hard”?

@ For SHA-1, for example, it takes 21° work to find a preimage or
second preimage, and 289 work to find a collision using a
brute-force search

e However, there are faster ways than brute force to find collisions in
SHA-1 or MD5

@ Collisions are always easier to find than preimages or second
preimages due to the well-known birthday paradox
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What is “hard”?

@ For SHA-1, for example, it takes 21° work to find a preimage or
second preimage, and 289 work to find a collision using a
brute-force search

e However, there are faster ways than brute force to find collisions in
SHA-1 or MD5

@ Collisions are always easier to find than preimages or second
preimages due to the well-known birthday paradox
* |f there are n people in a room, what is the probability that at least
two people have the same birthday?
- For 23 people, the probability is larger than 50%!
- For 40 people, it's almost 90%!!
- For 60 people, it's more than 99%!!!
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Let's use a hash function!

77

L 2

Assume we don't care about confidentiality, just integrity.

Q: What can Mallory do to change the message? J
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Let's use a hash function!

77

L 2

Assume we don't care about confidentiality, just integrity.

Q: What can Mallory do to change the message? J

A: Just change it and compute the new message digest herself! J
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Cryptographic hash functions

@ Hash functions provide integrity guarantees only when there is a
secure way of sending the message digest
o For example, Bob can publish a hash of his public key (i.e., a
message digest) on his business card
e Putting the whole key on there would be too big
e But Alice can download Bob's key from the Internet, hash it herself,
and verify that the result matches the message digest on Bob's card
@ What if there's no external channel to be had?

e For example, you're using the Internet to communicate
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How to authenticate the message?
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Message authentication codes (MAC)

Assume Alice and Bob share a secret that is only known to them.

We do the following “trick” (a mental model):
@ Suppose there exists a large collection of hash functions.
@ Alice and Bob can use the secret to pick the “correct” one

@ Only those who know the secret can generate, or even check, the
computed hash value (sometimes called a tag)

@ These “keyed hash functions” are usually called Message
Authentication Codes, or MACs

@ Common examples:
- SHA-1-HMAC, SHA-256-HMAC, CBC-MAC

65/84



Authentication
[e]e] ]

Message authentication codes (MAC)
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Combining ciphers and MACs

In practice we often need both confidentiality and message integrity
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In practice we often need both confidentiality and message integrity

@ There are multiple strategies to combine a cipher and a MAC
when processing a message

- Encrypt-then-MAC, MAC-then-Encrypt, Encrypt-and-MAC
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Authentication

Combining ciphers and MACs

In practice we often need both confidentiality and message integrity
@ There are multiple strategies to combine a cipher and a MAC

when processing a message
- Encrypt-then-MAC, MAC-then-Encrypt, Encrypt-and-MAC

@ ldeally your crypto library already provides an authenticated
encryption mode that securely combines the two operations so

you don't have to worry about getting it right
o E.g., GCM, CCM (used in WPAZ2, see later), or OCB mode
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Combining Ciphers and MACs. Let's try it!

Alice and Bob have a secret key K for a secret-key cryptosystem

(Ex(+), Dk(+)) and a secret key K’ for their MAC (MACk/(+)).

Concatenation is ||. How does Alice build a message for Bob in the

following scenarios?

@ MAC-then-Encrypt: compute the MAC on the message, then
encrypt the message and MAC together, and send that ciphertext.

@ Encrypt-and-MAC: compute the MAC on the message, compute
the encryption of the message, and send both.

@ Encrypt-then-MAC: encrypt the message, compute the MAC on
the encryption, send encrypted message and MAC.
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Authentication

Combining Ciphers and MACs. Let's try it!

Alice and Bob have a secret key K for a secret-key cryptosystem

(Ex(+), Dk(+)) and a secret key K’ for their MAC (MACk/(+)).

Concatenation is ||. How does Alice build a message for Bob in the

following scenarios?

o MAC-then-Encrypt: compute the MAC on the message, then
encrypt the message and MAC together, and send that ciphertext.

Ex(m||MACk:(m))

o Encrypt-and-MAC: compute the MAC on the message, compute
the encryption of the message, and send both.

EK(m)HMACK/(m)

@ Encrypt-then-MAC: encrypt the message, compute the MAC on
the encryption, send encrypted message and MAC.

Ex (m)[[MACk:(Ex(m))
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Encrypt and authenticate: what's the right order?

@ Usually, we want the receiver to verify the MAC first!

Q: Which of this is the recommended strategy, then?

Ex(m[|MACk:(m))  Ex(m)|[MACk:(m)  Ex(m)||[MACy:(Ex(m))
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@ Usually, we want the receiver to verify the MAC first!

Q: Which of this is the recommended strategy, then?
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A: The recommended strategy is Encrypt-then-MAC:

Ex(m)||MACk:(Ex(m))
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Authentication

Encrypt and authenticate: what's the right order?

@ Usually, we want the receiver to verify the MAC first!

Q: Which of this is the recommended strategy, then?

Ex(m||MACk:(m))  Ex(m)|[MACk:(m)  Ex(m)|[MACk:(Ex(m))

A: The recommended strategy is Encrypt-then-MAC:

Ex(m)||MACk:(Ex(m))

v

@ There is a nice blog post that calls this the “Doom principle”: if
you have to perform any cryptographic operation before verifying
the MAC on a message you've received, it will somehow inevitably
lead to doom.

@ It explains two simple attacks that can happen if you violate the
Doom principle.
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Repudiation

Suppose Alice and Bob share a MAC key K, and Bob receives a
message m along with a valid tag T = MACk(m).

m||MACk(m) m||MACk(m)
_— —_—

@ Bob can be assured that Alice is the one who sent m and that
the message has not been modified since she sent it!
@ This is like a “signature” on the message... but not quite!
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the message has not been modified since she sent it!

@ This is like a “signature” on the message... but not quite!

@ Bob can't prove to Carol that Alice sent m, though.
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Repudiation

Suppose Alice and Bob share a MAC key K, and Bob receives a
message m along with a valid tag T = MACk(m).

@ Bob can be assured that Alice is the one who sent m and that
the message has not been modified since she sent it!

@ This is like a “signature” on the message... but not quite!

@ Bob can't prove to Carol that Alice sent m, though.

Q: Why not? J

A: Either Alice or Bob could create any of the message and MAC
combinations. Also, Carol doesn't know the secret keys.
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Repudiation

Alice sent m, look: m||MACy(m)

7

Did she?

@ Alice can just claim that Bob made up the message m, and
calculated the tag T himself
@ This is called repudiation, and we sometimes want to avoid it
@ Some interactions should be repudiable
- Private conversations

@ Some interactions should be non-repudiable
- Electronic commerce
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Digital signatures

For non-repudiation, what we want is a true digital signature, with
the following properties:

If Bob receives a message with Alice’s digital signature on it, then:

@ it must be Alice, and not an impersonator, who sent the message
(like a MAC)

@ the message has not been altered after it was sent
(like a MAQ),

@ Bob can prove these facts to a third party
(additional property not satisfied by a MAC).
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Digital signatures

Alice sent m, she signed it!

She did!
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Digital signatures

Alice sent m, she signed it!

R 4

N

She did!

How do we arrange this?

@ Use similar techniques to public-key cryptography
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Making digital signatures

@ Remember public-key cryptosystems:

e Separate keys for encryption and decryption
o Give everyone a copy of the encryption key
e The decryption key is private

@ To make a digital signature:
o Alice signs the message with her private signature key (sk)
o To verify Alice's signature:

o Bob verifies the message with Alice's public verification key (v)
o If it verifies correctly, the signature is valid
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Verify

—> T/F

@

Vi
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Hybrid signatures

@ Just like encryption in public-key cryptosystems, signing large
messages is slow
@ We can also hybridize signatures to make them faster:

o Alice sends the (unsigned) message, and also a signature on a hash of
the message

e The hash is much smaller than the message, so it is faster to sign
and verify

m||sig

> Verify,, (sig, h(m))?
sig = Signg, (h(m)) (st h(m))
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Hybrid signatures

@ Just like encryption in public-key cryptosystems, signing large
messages is slow
@ We can also hybridize signatures to make them faster:

o Alice sends the (unsigned) message, and also a signature on a hash of
the message

e The hash is much smaller than the message, so it is faster to sign
and verify

m||sig

> Verify,, (sig, h(m))?
sig = Signg, (h(m)) (st h(m))

Remember that authenticity and confidentiality are separate; if you
want both, you need to do both
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Combining public-key encryption and digital signatures

@ Alice has two different key pairs:
- an (encryption, decryption) key pair (e}, d/')
- a (signature, verification) key pair (s/', v/)

@ So does Bob:
- an (encryption, decryption) key pair (ef, df)
- a (signature, verification) key pair (s2, vf?)
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Combining public-key encryption and digital signatures

@ Alice has two different key pairs:
- an (encryption, decryption) key pair (e}, d/')
- a (signature, verification) key pair (s/', v/)

@ So does Bob:
- an (encryption, decryption) key pair (ef, df)
- a (signature, verification) key pair (s2, vf?)

Q: What would be the best scheme to encode a message m?
@ Sign-then-Encrypt: Eef(m I Signséx(m))
e Encrypt-then-Sign: EeE(m) I Signsﬁ(EeE(m))
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Combining public-key encryption and digital signatures

@ Sign-then-Encrypt: Eef(m I Signséx(m))
@ Encrypt-then-Sign: EeE(m) I Signsﬁ(EeE(m))

Q: What can Eve learn from an Encrypt-then-Sign message that she
cannot learn from a Sign-then-Encrypt message? J
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Combining public-key encryption and digital signatures

@ Sign-then-Encrypt: Eef(m I Signsf(m))
@ Encrypt-then-Sign: EeE(m) I Signsﬁ(EeE(m))

Q: What can Eve learn from an Encrypt-then-Sign message that she
cannot learn from a Sign-then-Encrypt message? J

A: Eve can see Alice signed the encrypted message (if she has
Alice’s verification key) J
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Combining public-key encryption and digital signatures

@ Sign-then-Encrypt: Eef(m I 5ignsf(m))
@ Encrypt-then-Sign: Eef(m) I Signsf(EeE(m))

Q: What can Mallory do with a captured Encrypt-then-Sign
message? J
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Combining public-key encryption and digital signatures

@ Sign-then-Encrypt: EeE(m I 5ignsf(m))
@ Encrypt-then-Sign: Eef(m) I Signsf(EeE(m))

Q: What can Mallory do with a captured Encrypt-then-Sign
message?

A: Mallory could remove the signature and sign it herself! (even if
she does not know the plaintext)

Ee(m) || Sign.a(E.e(m)) — Ez(m) || Signgu(E z(m))
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The key management problem

One of the hardest problems of public-key cryptography is that of
key management

How can Bob find Alice's verification key?
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Authentication

The key management problem

One of the hardest problems of public-key cryptography is that of
key management

How can Bob find Alice's verification key?

@ He can know it personally (manual keying)
- SSH does this

@ He can trust a friend to tell him (web of trust)
- PGP does this

@ He can trust some third party to tell him (CA)
- TLS / SSL do this

@ He trusts no one... (blockchain maybe?)
- Decentralized Public-Key Infrastructure?
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Certificate authorities

@ A CA is a trusted third party who keeps a directory of people’s
(and organizations’) verification keys

o Alice generates a (signature, verification) key pair, and sends the
verification key, as well as a bunch of personal information, both
signed with Alice’s signature key, to the CA

@ The CA ensures that the personal information and Alice's
signature are correct

@ The CA generates a certificate consisting of Alice's personal
information, as well as her verification key. The entire certificate
is signed with the CA's signature key

@ https://letsencrypt.org/ has changed the game. Extended
validation certificates (for which CAs charged a lot of money) are
not treated differently by most browsers after 2019. See more on
Extended Validation Certificates are (Really, Really) Dead

81/84


https://letsencrypt.org/
https://www.troyhunt.com/extended-validation-certificates-are-really-really-dead/

Authentication

Certificate authorities

@ Everyone is assumed to have a copy of the CA's verification key,
so they can verify the signature on the certificate

@ There can be multiple levels of CAs; level n CA issues certificates
for level n 4+ 1 CAs—public-key infrastructure (PKI)

@ Need to have only verification key of root CA to verify a
certificate chain

signs verification key
E / root \ E

/N /N

® ® ® ®
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Authentication

Chain of certificates

Alice sends Bob the following certificate to prove her identity. Bob
can follow the chain of certificates to validate Alice's identity.

2 & 8

Subject: Alice Subject: CA2 Subject: CA1l
Issuer: CA2 /Issuer‘: CA1 /Issuer: CA1
validity period validity period validity period
public_key: v* public_key: v®? public_key: vt
Signed with s“? Signed with s®! Signed with st
q Bob has v
L )
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Authentication

Putting it all together

We have all these blocks: now what?
Put them together into protocols
This is HARD. Just because your pieces all work, doesn’t mean

what you build out of them will; you have to use the pieces
correctly: see a counterexample here.

Common mistakes include:

Using the same stream cipher key for two messages
Assuming encryption also provides integrity

Falling for replay attacks or reaction attacks
LOTS more!
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https://youtu.be/PTj177nD7xw
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