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We are being too honest...

In all the cases covered in Part 2, we always give a faithful
aggregation result for each query sent from the data analyst.

For example:

The SUM of the salaries

The AVERAGE of ages in census data

Q: How about we add noise to the query response?

A: It will make some of the attacks harder, but the Dinur-Nissim
reconstruction attack illustrates why, when a mechanism adds too
little noise when responding to aggregated queries, an adversary can
still reconstruct the database with high accuracy and efficiency.

3 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

We are being too honest...

In all the cases covered in Part 2, we always give a faithful
aggregation result for each query sent from the data analyst.

For example:

The SUM of the salaries

The AVERAGE of ages in census data

Q: How about we add noise to the query response?

A: It will make some of the attacks harder, but the Dinur-Nissim
reconstruction attack illustrates why, when a mechanism adds too
little noise when responding to aggregated queries, an adversary can
still reconstruct the database with high accuracy and efficiency.

3 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

We are being too honest...

In all the cases covered in Part 2, we always give a faithful
aggregation result for each query sent from the data analyst.

For example:

The SUM of the salaries

The AVERAGE of ages in census data

Q: How about we add noise to the query response?

A: It will make some of the attacks harder, but the Dinur-Nissim
reconstruction attack illustrates why, when a mechanism adds too
little noise when responding to aggregated queries, an adversary can
still reconstruct the database with high accuracy and efficiency.

3 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

Formalize our setup

There is a database, D, which potentially contains sensitive
information about individuals.

The database curator has access to the full database.
We assume the curator is trusted.

The data analyst consumes the data by asking a series of queries
to the curator. Each query is denoted as S and the curator
provides a response to query S with RS .
The analyst may be honest or malicious.

The way in which the curator responds to queries is called the
mechanism. Formally, M : S → RS . We’d like a mechnism that

- gives statistically useful responses but
- avoids leaking sensitive information about individuals.
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Bad news: adding noise is tricky

Dinur-Nissim reconstruction attack: if the mechanism adds too
little noise when responding to aggregated queries, an adversary can
reconstruct the database with high accuracy and efficiency.

Such a mechanism is called blatantly non-private.
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Attack setup

We consider the database to be a collection of n records

D = {d1, d2, ..., dn}

where each record corresponds to one individual.

Each record di may consist of k attributes. For simplicity, we assume
that the adversary already knows k − 1 attribute for all records and
the only attribute unknown to the adversary is a single bit.

D =


a{1,1} a{1,2} . . . a{1,k−1} b1
a{2,1} a{2,2} . . . a{2,k−1} b2

...
... · · ·

...
...

a{n,1} a{n,2} . . . a{n,k−1} bn
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Attack setup example

Name ZIP DOB COVID

Alice K8V 7R6 5/2/1984 1
Bob V5K 5J9 2/8/2001 0
Charlie V1C 7J2 10/10/1954 1
David R4K 5T1 4/4/1944 0
Eve G7N 8Y3 1/1/1980 1

. . . 995 more entries . . .

We assume the adversary knows all but one attributes. The
unknown attribute is a binary bit (e.g., COVID)
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Threat model

The attacker is allowed to ask aggregated queries, and perhaps the
most basic type of aggregate query in this case is a counting query,
i.e., how many records in D that satisfies a condition
C (a{∗,1}, a{∗,2}, . . . , a{∗,k−1}) have their secret bit set to 1?

For example: How many rows satisfying condition
(Name = "David" OR DOB > 1980) have COVID = 1.

The key point is, the adversary is allowed to pick arbitrary rows in
the database using their background knowledge to formulate queries.
Formally, S ∈ {0, 1}n. An example is S = [0, 1, 1, 1, . . . , 0]
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Counting query

Formally, a counting query is represented by S ∈ {0, 1}n.

As a concrete example, if n = 5,

Name ZIP DOB COVID

Alice K8V 7R6 5/2/1984 1
Bob V5K 5J9 2/8/2001 0
Charlie V1C 7J2 10/10/1954 1
David R4K 5T1 4/4/1944 0
Eve G7N 8Y3 1/1/1980 1

S = [1, 0, 1, 0, 0] will be asking for b1 + b3, which is 2

S = [0, 1, 0, 1, 1] will be asking for b2 + b4 + b5, which is 1
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Curator mechanism

Upon receiving a query S , the curator will first calculate the true
answer A(S) = S × [b1, b2, . . . , bn].

RS = A(S)

+ r

And subsequently, add a random noise r to the true answer.

Let’s consider a noise that is upper-bounded by:

|r | ≤ E

Q: What are the pros/cons of using a noise with large upper bound?
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The inefficient attack

Theorem: If the analyst is allowed to ask 2n queries to a dataset of
n users, and the curator adds noise with some bound E , then based
on the results, the adversary can reconstruct the database in all but
at most 4E positions.

e.g., E = n
400 =⇒ reconstruction of 99% entries in the database.

Algorithm:

For an attacker, there are only 2n database candidates.

For each candidate database C ∈ {0, 1}n, if there exists a query
S such that |Σi∈SC [i ]− RS | > E , rule out C .

Any database candidate not ruled out (C ) differs with the actual
database (D) by 4E at max.
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The inefficient attack: an example

In the example, we have a database with n = 3 users (rows):

D =

 a{1,1} a{1,2} . . . a{1,k−1} b1
a{2,1} a{2,2} . . . a{2,k−1} b2
a{3,1} a{3,2} . . . a{3,k−1} b3


The adversary queries for all 2n combinations {0, 1}n, i.e.,
S ∈ {[0, 0, 0], [0, 0, 1], [0, 1, 0], . . . , [1, 1, 1]}

The curator uses noise r sampled randomly from {−0.5,+0.5}.

Q: At least how many bits can we reconstruct?

A: At least 1 bit
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The inefficient attack: more practice

Q: Can you guess the privacy-sensitive column B (or a list of candidates)

A: There is only one candidate: B = [1, 1, 0]
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The inefficient attack proof

Proof: Any database candidate not ruled out (C ) differs with the
actual database (D) by 4E at max

Consider query I0 ← {i |D[i ] = 0}, we know that

|Σi∈I0C [i ]−RI0 | ≤ E , |Σi∈I0D[i ]−RI0 | ≤ E , =⇒ Σi∈I0 |C [i ]−D[i ]| ≤ 2E

Consider query I1 ← {i |D[i ] = 1}, we know that

|Σi∈I1C [i ]−RI1 | ≤ E , |Σi∈I1D[i ]−RI1 | ≤ E , =⇒ Σi∈I1 |C [i ]−D[i ]| ≤ 2E

19 / 77
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The efficient attack

Theorem: If the analyst is allowed to ask O(n) queries to a dataset
of n users, and the curator adds noise with some bound
E = O(α

√
n), then based on the results, a computationally efficient

adversary can reconstruct the database in all but at most O(α2n)
positions.
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Blatantly non-private

Definition: A mechanism is blatantly non-private if an adversary
can reconstruct a database that matches with the true database in
all but o(n) entries.

NOTE 1: According to the efficient attack scenario, adding a noise
of O(

√
n) is blatantly non-private.

NOTE 2: This definition does not specify whether a mechanism is
private. Instead, it defines a criteria to show that a mechanism is
clearly not private.

Differential privacy, on the other hand, is a definition on whether a
mechanism is private.
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So..., more noise maybe?

We add more noise such that the adversary cannot reconstruct the
database. But how much more is more?

Well, that depends on what your privacy goal is.
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Example: strong auxiliary information

A study proved that smoking and cancer are correlated. Thanks to the

study, the adversary learns that Alice has higher risk of cancer.

Q: Is this a violation of Alice’s privacy? Is this the study’s fault? Should
we design an M to prevent this?

A: The adversary would’ve reached the same conclusion even if Alice
hadn’t participated in the study! We cannot prevent this (without
completely destroying utility, i.e., not doing the study).
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Example: strong auxiliary information
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Possible privacy goal

We cannot guarantee absolute privacy — if the adversary has
sufficiently strong background information, there is nothing M can
do about it!

We should instead ensure that the adversary cannot gain
(significantly) new information from R (i.e., we want a “differential”
and not an “absolute” privacy)

26 / 77
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Possible privacy goal

What if we try to make these cases similar?

We want the RA

and RB to be
“similar”
(RA ≈ RB).

This would ensure
M does not
depend “too
much” on any
single user.
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Possible privacy goal

In addition, note that M is randomized (e.g., adds noise). Thus,
instead of ensuring RA ≈ RB , we ensure their probability
distributions are “similar”.

i.e., for all R, the chance of producing R by D and D ′ are close:
Pr(M(D) = R) ≈ Pr(M(D ′) = R) 28 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

A bit more formal on the possible privacy goal

Consider a setting where

I hand in my data to a database D (which is trusted),

an algorithm A runs over D and releases a set of data T ,

the adversary knows the details of A and has access to T .

A privacy notion: The adversary learns (almost) nothing new
about me even after seeing A and T , and regardless of what other
datasets are available.

This privacy notion makes no assumption about what background
knowledge the adversary might possess:

If the adversary does not know whether I am in the database, it
won’t know that either after seeing the result.

If the adversary already knows whether I am in the database, it
won’t know more about the secret values I supplied.
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An example from the attacker’s perspective

Background knowledge 1: You know that Alice is a top-performer
and always gets ≥ 90 in course scores.

Background knowledge 2: CS458 is challenging and historical
records show that most students score in the range of [45, 55].

Algorithm: You are given an algorithm that

allows you to make 5 queries,

each query returns the average score of 3 randomly selected
students (out of 30 scores in total).

Q: How can you infer whether Alice is enrolled in CS458 or not?
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Q: How can you infer whether Alice is enrolled in CS458 or not?
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The attack

Just send 5 queries and observe what is returned by the database.

D1 with Alice enrolled:
Alice: 90

Everyone else (29 of them): 50

D2 with Alice not enrolled:

Everyone (30 of them): 50

Q: What will happen if Alice IS NOT enrolled (i.e., D2)?
A: Expect [50, 50, 50, 50, 50] in response.

Q: What will happen if Alice IS enrolled (i.e., D1)?
A: For a single response, we either get

63←↩ C2
29

C3
30

= 10%

50←↩ otherwise
For all 5 responses, the chance of getting at least one 63 is

1− (1− C2
29

C3
30
)5 = 40.95%!
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What went wrong?

Alice’s score has too much impact on the output! As a result, seeing
the output of the algorithm allows the attacker to differentiate which
database is the underlying database representing the class score.

This is exactly what Differential Privacy (DP) tries to capture!

Informally, the DP notion requires any single element in a dataset to
have only a limited impact on the output.
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The defense

Background knowledge 1: You know that Alice is a top-performer
and always gets ≥ 90 in course scores.

Background knowledge 2: CS458 is challenging and historical
records show that most students score in the range of [45, 55].

Algorithm: You are given an algorithm that

allows you to make 5 queries,

each query returns the average score of 3 randomly selected
students (out of 30 scores in total)

plus a random value

Demo time (dp-demo.py)
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The data collectors’ argument

... on trying to persuade you to join a differentially private survey:

You will not be affected, adversely or otherwise, by allowing your
data to be used in any study or analysis, no matter what other
studies, data sets, or information sources, are available.

But this is only true if they tell you what algorithm they use to
release your data and you have verified that their algorithm is
indeed differentially private.

34 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

The data collectors’ argument

... on trying to persuade you to join a differentially private survey:

You will not be affected, adversely or otherwise, by allowing your
data to be used in any study or analysis, no matter what other
studies, data sets, or information sources, are available.

But this is only true if they tell you what algorithm they use to
release your data and you have verified that their algorithm is
indeed differentially private.

34 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

Outline

1 The Dinur-Nissim reconstruction attack

2 The intuition behind differential privacy

3 A formal definition of differential privacy

4 Properties of the ϵ-DP definition

5 Perturbation mechanisms

6 More topics on differential privacy
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Formalize our setup

There is a database, D, which potentially contains sensitive
information about individuals.

The database curator has access to the full database.
We assume the curator is trusted.

The data analyst consumes the data by asking a series of queries
to the curator. Each query is denoted as S and the curator
provides a response to query S with RS .
The analyst may be honest or malicious.

The way in which the curator responds to queries is called the
mechanism. Formally, M : S → RS . We’d like a mechnism that

- gives statistically useful responses but
- avoids leaking sensitive information about individuals.
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Our informal privacy goal

For all R, the chance of producing R by D and D ′ are close:
Pr[M(D) = R] ≈ Pr[M(D ′) = R]

Q: How do we define close?
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Neighboring databases

Two databases D and D ′ are neighbouring if they agree except for a
single entry.

Unbounded DP: D and D ′ are neighboring if D ′ can be obtained
from D by removing one element

Bounded DP: D and D ′ are neighboring if D ′ can be obtained
from D by replacing one element

These are just slightly different guarantees of privacy. It is
important to know which one your DP algorithm is providing. In
practice, there is not a big difference.
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How do we define “close” distributions?

Tentative privacy definition (this is not an actual definition)

A mechanism M is private (with some privacy parameter p) if the
following holds for all possible outputs R and all pairs of
neighboring datasets (D,D ′):

Pr[M(D ′) = R]− p ≤ Pr[M(D) = R] ≤ Pr[M(D ′) = R] + p
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Potential issues with this closeness measurement

Q: What can go wrong with this case?

A: Suppose we have:

ϵ = 0.01

Pr[M(D) = R] = 0.005

Pr[M(D ′) = R] = 0.001

ϵ = 0.01

Pr[M(D) = R] = 0.96

Pr[M(D ′) = R] = 0.94
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What if we make the distance multiplicative?

Tentative privacy definition II (this is not an actual definition)

A mechanism M is private (with some privacy parameter p) if the
following holds for all possible outputs R and all pairs of
neighboring datasets (D,D ′):

Pr[M(D ′) = R] · 1
p
≤ Pr[M(D) = R)] ≤ Pr[M(D ′) = R] · p
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Almost there...

Instead of using p, we can use ep as the privacy parameter:

Tentative privacy definition III (this is not an actual definition)

A mechanism M is private (with some privacy parameter p) if the
following holds for all possible outputs R and all pairs of
neighboring datasets (D,D ′):

Pr[M(D ′) = R] · 1
ep
≤ Pr[M(D) = R] ≤ Pr[M(D ′) = R] · ep

Further with the symmetry between D and D ′, we can simplify the
definition as:

Pr[M(D) = R] ≤ Pr[M(D ′) = R] · ep
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ϵ-differential privacy

Idea: If the mechanism M behaves nearly identically for D and D ′,
then an attacker can’t tell whether D or D ′ was used (and hence
can’t learn much about the individual).

What we have so far

A mechanism M is private (with some privacy parameter p) if the
following holds for all possible outputs R and all pairs of
neighboring datasets (D,D ′):

Pr[M(D) = R] ≤ Pr[M(D ′) = R] · ep

ϵ-DP

A mechanism M : X → Y is ϵ-differentially private (ϵ-DP) if for any
two neighboring databases D : X and D ′ : X :

∀T ⊆ Y , Pr[M(D) ∈ T ] ≤ Pr[M(D ′) ∈ T ] · eϵ
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ϵ-DP elaboration: perspective

ϵ-DP

A mechanism M : X → Y is ϵ-differentially private (ϵ-DP) if for any
two neighboring databases D : X and D : X :

∀T ⊆ Y , Pr[M(D) ∈ T ] ≤ Pr[M(D ′) ∈ T ] · eϵ

The ∀T ⊆ Y means that the attacker cannot find a perspective
through which the two databases behaves differently.

In the CS458 grades example, for a single query,

M : {Name× [0− 100]} → [0− 100]

T : [60− 100]

Pr[M(D1) ∈ T ] = 10%

Pr[M(D2) ∈ T ] = 0%
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ϵ-DP elaboration: interpreting ϵ

ϵ-DP

A mechanism M : X → Y is ϵ-differentially private (ϵ-DP) if for any
two neighboring databases D : X and D ′ : X :

∀T ⊆ Y , Pr[M(D) ∈ T ] ≤ Pr[M(D ′) ∈ T ] · eϵ

ϵ ∈ [0,∞) =⇒ this ensures that eϵ ∈ [1,∞)

Q: Which is “more private”: ϵ = 1 or ϵ = 2?

A: Smaller ϵ means more privacy

Q: What does ϵ = 0 mean?

A: Perfect privacy!
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ϵ-DP elaboration: value of ϵ

ϵ-DP

A mechanism M : X → Y is ϵ-differentially private (ϵ-DP) if for any
two neighboring databases D : X and D ′ : X :

∀T ⊆ Y , Pr[M(D) ∈ T ] ≤ Pr[M(D ′) ∈ T ] · eϵ

There is no consensus on how small ϵ should be. “Roughly”:

ϵ < 0.1 is high privacy (e0.1 ≈ 1.1)

0.1 < ϵ < 1 is good privacy (e1 ≈ 2.7)

ϵ > 5 starts getting too big (e5 ≈ 148)

ϵ > 100 000 is crazy... yet some works use this
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0.1 < ϵ < 1 is good privacy (e1 ≈ 2.7)

ϵ > 5 starts getting too big (e5 ≈ 148)

ϵ > 100 000 is crazy... yet some works use this
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DP interpretation as a game

Assumption: The adversary has narrowed down to two databases
(D and D ′) which only differ in one entry. The adversary knows M.

- These assumptions are many times unrealistic, but we want
privacy even in this worst-case scenario
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DP interpretation as a game

Guessing procedure: The adversary computes

- pD = Pr[M(D) = R]
- pD′ = Pr[M(D ′) = R]

and guess optimally, i.e., guess D if pD > p′D and D ′ otherwise.

Claim: If M is ϵ-DP, the adversary’s
probability of error (i.e., wrong guess) is

1

eϵ + 1
≤ perror ≤ 0.5
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DP interpretation as a game

Claim: If M is ϵ-DP, the adversary’s
probability of error (i.e., wrong guess) is

1

eϵ + 1
≤ perror ≤ 0.5

ϵ perr range Privacy

0 0.5 ≤ perr ≤ 0.5 Perfect!

0.1 0.47 ≤ perr ≤ 0.5 Very high

1 0.26 ≤ perr ≤ 0.5 OK?

5 0.006 ≤ perr ≤ 0.5 Bad

10 0.00004 ≤ perr ≤ 0.5 Meaningless?

100 000 10−43 430 ≤ perr ≤ 0.5
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ϵ-DP elaboration: small ϵ

ϵ-DP

A mechanism M : X → Y is ϵ-differentially private (ϵ-DP) if for any
two neighboring databases D : X and D ′ : X :

∀T ⊆ Y , Pr[M(D) ∈ T ] ≤ Pr[M(D ′) ∈ T ] · eϵ

Another definition (not ϵ-DP)

A mechanism M : X → Y is ϵ-differentially private (ϵ-DP) if for any
two neighboring databases D : X and D ′ : X :

∀T ⊆ Y , Pr[M(D) ∈ T ] ≤ Pr[M(D ′) ∈ T ] · (1 + ϵ)

NOTE: for small ϵ, eϵ ≈ 1 + ϵ by Talor series

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·
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Outline

1 The Dinur-Nissim reconstruction attack

2 The intuition behind differential privacy

3 A formal definition of differential privacy

4 Properties of the ϵ-DP definition

5 Perturbation mechanisms

6 More topics on differential privacy
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Safety against post-processing

Theorem: Suppose mechanism M : X → Y is ϵ-differentially
private. Then, for any mechanism A : Y → Z , we have that
A ◦M : X → Z is also ϵ-differentially private.

∀T ⊆ Y , Pr[M(D) ∈ T ] ≤Pr[M(D ′) ∈ T ] · eϵ ⇒
∀T ′ ⊆ Z , Pr[F (M(D)) ∈ T ′] ≤Pr[F (M(D ′)) ∈ T ′] · eϵ

=⇒ Once the data is privatized, it can’t be “un-privatized”
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Compositional privacy

Theorem: Given

M1 : X → Y1 being ϵ1-DP, and

M2 : X → Y2 being ϵ2-DP.

We define a new mechanism M : X → (Y1,Y2) as
M(X ) = (M1(X ),M2(X )). Then M is (ϵ1 + ϵ2)-DP.

This has a gossip analogy:

If A tells you something (potentially with noise),

and then B tells you some other things (again, with noise).

At the end of the day you might have learned more information by
combining them together.
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Privacy on sequential composition

If we run mechanisms with ϵ1, ϵ2, . . . , ϵn, publishing all results
provides (

∑n
i=1 ϵi )-DP

Here, we have

Pr([M1(D),M2(D), . . . ,Mn(D)] = R) ≤
Pr([M1(D

′),M2(D
′), . . . ,Mn(D

′)] = R) · e
∑n

i=1 ϵi
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Privacy on parallel composition

If we run mechanisms with ϵ1, ϵ2, . . . , ϵn over disjoint subsets,
publishing all results provides (maxi ϵi )-DP

Here, we have

Pr([M1(D1),M2(D2), . . . ,Mn(Dn)] = R) ≤
Pr([M1(D

′
1),M2(D2), . . . ,Mn(Dn)] = R) · emaxi ϵi
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Group privacy

Theorem: Suppose mechanism M : X → Y is ϵ-differentially
private. Suppose D1 and D2 are two datasets which differ in exactly
k positions. Then:

∀T ⊆ Y , Pr[M(D1) ∈ T ] ≤ ekϵPr[M(D2) ∈ T ]

If you need to hide the “effect” if a whole group, you need to
prepare a larger privacy budget.
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Group privacy

If this is ϵ-DP: Then this is 2ϵ-DP:
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Outline

1 The Dinur-Nissim reconstruction attack

2 The intuition behind differential privacy

3 A formal definition of differential privacy

4 Properties of the ϵ-DP definition

5 Perturbation mechanisms

6 More topics on differential privacy
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Sensitivity

Q: How much noise to add?

←− Sensitivity is a measurement

Definition: given a query processing function f : X → Rk , the
ℓ1-sensitivity of f is defined as:

∆f
1 = max

D1∼D2

∥f (D1)− f (D2)∥1 where D1,D2 ∈ X

NOTE 1: The range of f is k-dimensional

NOTE 2: ℓ1-sensitivity is ∥x⃗1 − x⃗2∥1 =
∑

i |x⃗1[i ]− x⃗2[i ]|
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Sensitivity w/ one pair of neighboring databases

D1 with Alice enrolled:
Alice: 90

Everyone else (29 of them): 50

D2 with Alice not enrolled:

Everyone (30 of them): 50

Algorithm: You are allowed to make a query that returns the
average score of this course.

Q: What is the ℓ1-sensitivity here?

A: |Avg(D1)− Avg(D2)| = 1.33
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Sensitivity w/ more database candidates

Q: What if we don’t know the scores?

Suppose we only know that each student’s score ∈ [0− 100], and

(in bounded DP): there are 30 students enrolled

(in unbounded DP): there are 29 or 30 students enrolled

Algorithm: You are allowed to make a query that returns the
average score of this course.

Q: What is the ℓ1-sensitivity here?
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Sensitivity w/ more database candidates - bounded

Suppose we only know that each student’s score ∈ [0− 100], and
there are 30 students enrolled in the course.

Algorithm: You are allowed to make a query that returns the
average score of this course.

ℓ1 = max(|
∑

29 students+k1
30

−
∑

29 students+k2
30

|)

=
1

30
max(|k1 − k2|)

=
1

30
× 100 ←↩ (k1 = 0 ∧ k2 = 100) ∨ (k1 = 100 ∧ k2 = 0)

=
10

3
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Sensitivity w/ more database candidates - unbounded

Suppose we only know that each student’s score ∈ [0− 100], and
there are either 29 or 30 students enrolled in the course.

Algorithm: You are allowed to make a query that returns the
average score of this course.

ℓ1 = max(|
∑

29 students

29
−

∑
29 students+k

30
|)

= max(|
∑

29 students

29× 30
− k

30
|)

case1−−−→ max(

∑
29 students

29× 30
)−min(

k

30
)

case2−−−→ max(
k

30
)−min(

∑
29 students

29× 30
)

=
10

3
for both cases
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Laplace distribution

Lap(µ, b) is defined as:

Pr[x = v ] =
1

2b
exp

(
−|v − µ|

b

)

Usually, for DP, we set µ = 0,
so you may see Lap(b) which is
essentially Lap(0, b)

Lap(µ, b) has variance
σ2 = 2b2

As b increases, the distribution
becomes more flat
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Laplace mechanism

Definition: Let f : X → Rk is the function that calculates the
“true” value of a query. The Laplace mechanism is defined as:

M(D) = f (D) + (Y1,Y2, · · · ,Yk)

where Yi are independent and identically distributed (i.i.d) random

variables sampled from Lap(
∆f

1
ϵ )

In our CS458 example:
let’s take ϵ = 0.1, and together with ∆ = 1.33, we have
M(D) = f (D) + Lap(13.3)

Demo time (average-demo.py)
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Does the Laplace mechanism work in our example?

Let’s first update the PDF by replacing b = ∆
ϵ :

Pr[x = v ] =
ϵ

2∆
exp

(
−ϵ|v − µ|

∆

)
For D1, µ = 50,

Pr1[x = 51.33] =
ϵ

2∆
exp

(
−ϵ|51.33− 50|

∆

)
= C × e−0.1

For D2, µ = 51.33,

Pr2[x = 51.33] =
ϵ

2∆
exp

(
−ϵ|51.33− 51.33|

∆

)
= C × e−0.075

Pr2[x = 51.33]

Pr1[x = 51.33]
=

C × e−0.075

C × e−0.1
= e0.025 ≈ 1.025
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The Laplace mechanism is ϵ-DP

Proof:

Let D1 and D2 be any neighboring databases

Let f : X → Rk be the function that calculates the “true” value

Let z ∈ Rk being any potential response

Pr[M(D1) = z ]

Pr[M(D2) = z ]
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)
exp

(
−ϵ
∆ |f (D2)[i ]− z [i ]|
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k∏
i=1

exp

(
ϵ

∆
(|f (D1)[i ]− z [i ]| − |f (D2)[i ]− z [i ]|)

)
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Outline

1 The Dinur-Nissim reconstruction attack

2 The intuition behind differential privacy

3 A formal definition of differential privacy

4 Properties of the ϵ-DP definition

5 Perturbation mechanisms

6 More topics on differential privacy
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Approximate differential privacy

Definition:
A mechanism M : X → Y is (ϵ, δ)-differentially private ((ϵ, δ)-DP)
if for any two neighboring databases D1 : X and D2 : X :

∀T ⊆ Y , Pr[M(D1) ∈ T ] ≤ eϵPr[M(D2) ∈ T ] + δ

Interpretation: The new privacy parameter, δ, represents a “failure
probability” for the definition.

With probability 1− δ we will get the same guarantee as pure
differential privacy;

With probability δ, we get no privacy guarantee at all.

This definition allows us to add a much smaller noise.
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Local differential privacy (LDP)

Local differential privacy (LDP) is a model of differential privacy
with the added restriction that even if an adversary has access to the
personal responses of an individual in the database, that adversary
will still be unable to learn too much about the user’s personal data.

This eliminates the trust on the database curator.
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“Neighboring datasets” in LDP

In the local setting, usually the user has a value X , and providing
ϵ-LDP means hiding whether the value was X or another value X ′.

Definition M provides ϵ-LDP, if the following holds for all X ,X ′

and outputs R:

Pr[M(X ) = R] ≤ Pr[M(X ′) = R] · eϵ
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Concrete use cases of LDP

Recap We are in the local model. Alice has a secret bit X , and
reports another bit R.

Q: Can you name some use cases?

A:

“Have you voted for party Y ?”

“Have you tested positive for virus Z?”

“Have you cheated in exam W ?”

72 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

Concrete use cases of LDP

Recap We are in the local model. Alice has a secret bit X , and
reports another bit R.

Q: Can you name some use cases?

A:

“Have you voted for party Y ?”

“Have you tested positive for virus Z?”

“Have you cheated in exam W ?”

72 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

Concrete use cases of LDP

Recap We are in the local model. Alice has a secret bit X , and
reports another bit R.

Q: Can you name some use cases?

A:

“Have you voted for party Y ?”

“Have you tested positive for virus Z?”

“Have you cheated in exam W ?”

72 / 77



Dinur-Nissim Intuition Definition Properties Mechanisms More

Randomized Response

Randomized Response

Given your true answer X , you report an answer R following this
process:

Q: What are these probabilities?
Pr[R = 0|X = 0]
Pr[R = 1|X = 0]
Pr[R = 0|X = 1]
Pr[R = 1|X = 1]

A: The probabilities are:
Pr[R = 0|X = 0] = 0.75
Pr[R = 1|X = 0] = 0.25
Pr[R = 0|X = 1] = 0.25
Pr[R = 1|X = 1] = 0.75
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Randomized Response: computing ϵ

Recall: LDP definition

A mechanism M is ϵ-LDP if, for all possible input pairs (X ,X ′) and
all possible outputs R,

Pr[R|X ] ≤ Pr[R|X ′] · eϵ ⇒ Pr[R|X ]

Pr[R|X ′]
≤ eϵ

A: We have this:
Pr[R = 0|X = 0] = 0.75
Pr[R = 1|X = 0] = 0.25
Pr[R = 0|X = 1] = 0.25
Pr[R = 1|X = 1] = 0.75

Q: How to calculate ϵ?

A: ϵ = ln 3 ≈ 1.10
This is because all Pr[R|X ]

Pr[R|X ′] ≤ 3
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Statistical utility from randomized responses?

We draw randomized response as: Additional facts:
Assume there are n users
reporting values, and a fraction
p0 have X = 0, while a fraction
p1 = 1− p0 have X = 1.

Q: Given p0 and p1, what is the probability that a response is
R = 1? (or E[R])

A: From the users that had X = 0, a fraction 1− p of them will
report R = 1. From the users that had X = 1, a fraction p will
report R = 1. Therefore,

E[R] = p0 · (1− p) + p1 · p = 1− p + (2p − 1) · p1
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E[R] = p0 · (1− p) + p1 · p = 1− p + (2p − 1) · p1

Q: Out of n responses, we received k 1s and n − k 0s. How would
you estimate the percentage of users that had X = 1?

A: E[R] ≈ R̄ =
k

n
⇒ p̂1 =

R̄ − (1− p)

2p − 1
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Computing ϵ for discrete mechanisms

Given a mechanism M with a discrete input space
X = {x1, x2, . . . , xn} and discrete output space
R = {r1, r2, . . . , rm}, you can compute ϵ this way:

1 List inputs vs outputs
2 Compute the probabilities
3 Compute the max. ratio per

possible value of output

4 Take the maximum of the
ratios calculated above

5 ϵ is the natural log of that
maximum
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