
CS 458 / 658: Computer Security and Privacy

Module 6 - Data Security and Privacy

Part 1 - On the security of databases

Meng Xu (University of Waterloo)

Winter 2023



Background Access control Integrity Others

Outline

1 Background: relational database

2 Access control

3 Integrity

4 Others

2 / 51



Background Access control Integrity Others

Relational Databases

Q: What is a relational database?

A: A relational database is a structured collection of data (records)
following a relational model.

A relational model

Table has rows (records) and named columns (attributes).

Tables can be related to one another (hence, relations).

The relational model, sometimes also referred to as the schema, is
usually set by database administrator

Database management system (DBMS) provides support for queries
and management of the records.

3 / 51



Background Access control Integrity Others

Relational Databases

Q: What is a relational database?

A: A relational database is a structured collection of data (records)
following a relational model.

A relational model

Table has rows (records) and named columns (attributes).

Tables can be related to one another (hence, relations).

The relational model, sometimes also referred to as the schema, is
usually set by database administrator

Database management system (DBMS) provides support for queries
and management of the records.

3 / 51



Background Access control Integrity Others

Relational Databases

Q: What is a relational database?

A: A relational database is a structured collection of data (records)
following a relational model.

A relational model

Table has rows (records) and named columns (attributes).

Tables can be related to one another (hence, relations).

The relational model, sometimes also referred to as the schema, is
usually set by database administrator

Database management system (DBMS) provides support for queries
and management of the records.

3 / 51



Background Access control Integrity Others

Relational Databases

Q: What is a relational database?

A: A relational database is a structured collection of data (records)
following a relational model.

A relational model

Table has rows (records) and named columns (attributes).

Tables can be related to one another (hence, relations).

The relational model, sometimes also referred to as the schema, is
usually set by database administrator

Database management system (DBMS) provides support for queries
and management of the records.

3 / 51



Background Access control Integrity Others

Relational Databases

Q: What is a relational database?

A: A relational database is a structured collection of data (records)
following a relational model.

A relational model

Table has rows (records) and named columns (attributes).

Tables can be related to one another (hence, relations).

The relational model, sometimes also referred to as the schema, is
usually set by database administrator

Database management system (DBMS) provides support for queries
and management of the records.

3 / 51



Background Access control Integrity Others

Relations: example

Here is a table that an airline booking agency might use to store
details of their customers:

Last First Address City State Zip Airport

ADAMS Charles 212 Market St. Columbus OH 43210 CMH
ADAMS Edward 212 Market St. Columbus OH 43210 CMH
BENCHLY Zeke 501 Union St. Chicago IL 60603 ORD
CARTER Marlene 411 Elm St. Columbus OH 43210 CMH
CARTER Beth 411 Elm St. Columbus OH 43210 CMH
CARTER Ben 411 Elm St. Columbus OH 43210 CMH
CARTER Lisabeth 411 Elm St. Columbus OH 43210 CMH
CARTER Mary 411 Elm St. Columbus OH 43210 CMH

Q: What is the issue with storing data in a flattened table like this?

A: Lots of repeated values. This affects the storage cost, query
speed, difficulty of maintenance, etc

4 / 51



Background Access control Integrity Others

Relations: example

Here is a table that an airline booking agency might use to store
details of their customers:

Last First Address City State Zip Airport

ADAMS Charles 212 Market St. Columbus OH 43210 CMH
ADAMS Edward 212 Market St. Columbus OH 43210 CMH
BENCHLY Zeke 501 Union St. Chicago IL 60603 ORD
CARTER Marlene 411 Elm St. Columbus OH 43210 CMH
CARTER Beth 411 Elm St. Columbus OH 43210 CMH
CARTER Ben 411 Elm St. Columbus OH 43210 CMH
CARTER Lisabeth 411 Elm St. Columbus OH 43210 CMH
CARTER Mary 411 Elm St. Columbus OH 43210 CMH

Q: What is the issue with storing data in a flattened table like this?

A: Lots of repeated values. This affects the storage cost, query
speed, difficulty of maintenance, etc

4 / 51



Background Access control Integrity Others

Relations: example

Here is a table that an airline booking agency might use to store
details of their customers:

Last First Address City State Zip Airport

ADAMS Charles 212 Market St. Columbus OH 43210 CMH
ADAMS Edward 212 Market St. Columbus OH 43210 CMH
BENCHLY Zeke 501 Union St. Chicago IL 60603 ORD
CARTER Marlene 411 Elm St. Columbus OH 43210 CMH
CARTER Beth 411 Elm St. Columbus OH 43210 CMH
CARTER Ben 411 Elm St. Columbus OH 43210 CMH
CARTER Lisabeth 411 Elm St. Columbus OH 43210 CMH
CARTER Mary 411 Elm St. Columbus OH 43210 CMH

Q: What is the issue with storing data in a flattened table like this?

A: Lots of repeated values. This affects the storage cost, query
speed, difficulty of maintenance, etc

4 / 51



Background Access control Integrity Others

Relations: normalization

Last Address City State Zip

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Table: FamilyInfo

Last First

ADAMS Charles
ADAMS Edward
BENCHLY Zeke
CARTER Marlene
CARTER Beth
CARTER Ben
CARTER Lisabeth
CARTER Mary

Table: NameInfo

Zip Airport

43210 CMH
60603 ORD

Table: AirportInfo

5 / 51



Background Access control Integrity Others

Relations: normalization

Normalization eliminates redundant storage of data, which

optimizes the storage costs,

improves query speed, and

reduces future maintenance costs.

6 / 51



Background Access control Integrity Others

Database queries

The most popular language for query and manipulation of a
relational database is SQL.

A single table query
SELECT Address FROM FamilyInfo

WHERE (Zip = "43210") AND (Name ="ADAMS")

A join query across multiple tables
SELECT Name, Airport

FROM FamilyInfo JOIN AirportInfo

ON FamilyInfo.Zip = AirportInfo.Zip

An aggregation
SELECT COUNT(Last) FROM FamilyInfo

WHERE City = "Columbus"

A change of record content
UPDATE FamilyInfo SET Address = "1 Town St."

WHERE Last = "ADAMS"

7 / 51



Background Access control Integrity Others

Database queries

The most popular language for query and manipulation of a
relational database is SQL.

A single table query
SELECT Address FROM FamilyInfo

WHERE (Zip = "43210") AND (Name ="ADAMS")

A join query across multiple tables
SELECT Name, Airport

FROM FamilyInfo JOIN AirportInfo

ON FamilyInfo.Zip = AirportInfo.Zip

An aggregation
SELECT COUNT(Last) FROM FamilyInfo

WHERE City = "Columbus"

A change of record content
UPDATE FamilyInfo SET Address = "1 Town St."

WHERE Last = "ADAMS"

7 / 51



Background Access control Integrity Others

Database queries

The most popular language for query and manipulation of a
relational database is SQL.

A single table query
SELECT Address FROM FamilyInfo

WHERE (Zip = "43210") AND (Name ="ADAMS")

A join query across multiple tables
SELECT Name, Airport

FROM FamilyInfo JOIN AirportInfo

ON FamilyInfo.Zip = AirportInfo.Zip

An aggregation
SELECT COUNT(Last) FROM FamilyInfo

WHERE City = "Columbus"

A change of record content
UPDATE FamilyInfo SET Address = "1 Town St."

WHERE Last = "ADAMS"

7 / 51



Background Access control Integrity Others

Database queries

The most popular language for query and manipulation of a
relational database is SQL.

A single table query
SELECT Address FROM FamilyInfo

WHERE (Zip = "43210") AND (Name ="ADAMS")

A join query across multiple tables
SELECT Name, Airport

FROM FamilyInfo JOIN AirportInfo

ON FamilyInfo.Zip = AirportInfo.Zip

An aggregation
SELECT COUNT(Last) FROM FamilyInfo

WHERE City = "Columbus"

A change of record content
UPDATE FamilyInfo SET Address = "1 Town St."

WHERE Last = "ADAMS"

7 / 51



Background Access control Integrity Others

Database queries

The most popular language for query and manipulation of a
relational database is SQL.

A single table query
SELECT Address FROM FamilyInfo

WHERE (Zip = "43210") AND (Name ="ADAMS")

A join query across multiple tables
SELECT Name, Airport

FROM FamilyInfo JOIN AirportInfo

ON FamilyInfo.Zip = AirportInfo.Zip

An aggregation
SELECT COUNT(Last) FROM FamilyInfo

WHERE City = "Columbus"

A change of record content
UPDATE FamilyInfo SET Address = "1 Town St."

WHERE Last = "ADAMS"

7 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

8 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

8 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

8 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

8 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

8 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

8 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

8 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

8 / 51



Background Access control Integrity Others

Outline

1 Background: relational database

2 Access control

3 Integrity

4 Others

9 / 51



Background Access control Integrity Others

Access control - Recall OS module

Q: What are the access control models you have learned?

A: DAC, RBAC, MAC

Discretionary Access Control (DAC)

- owners can delegate (grant/revoke) privileges to others

- If you own the data, you can do anything with it.

Role-based Access Control (RBAC)

- ties in users’ privileges to their position or roles in the organization

- Assign labels to users and assign privileges to labels.

Mandatory Access Control (MAC)

- users and objects are assigned labels based on their ‘security level‘

- You don’t own the data even if you create it. The data has labels too
and may deny access from its creator.

10 / 51



Background Access control Integrity Others

Access control - Recall OS module

Q: What are the access control models you have learned?

A: DAC, RBAC, MAC

Discretionary Access Control (DAC)

- owners can delegate (grant/revoke) privileges to others

- If you own the data, you can do anything with it.

Role-based Access Control (RBAC)

- ties in users’ privileges to their position or roles in the organization

- Assign labels to users and assign privileges to labels.

Mandatory Access Control (MAC)

- users and objects are assigned labels based on their ‘security level‘

- You don’t own the data even if you create it. The data has labels too
and may deny access from its creator.

10 / 51



Background Access control Integrity Others

Access control - Recall OS module

Q: What are the access control models you have learned?

A: DAC, RBAC, MAC

Discretionary Access Control (DAC)

- owners can delegate (grant/revoke) privileges to others

- If you own the data, you can do anything with it.

Role-based Access Control (RBAC)

- ties in users’ privileges to their position or roles in the organization

- Assign labels to users and assign privileges to labels.

Mandatory Access Control (MAC)

- users and objects are assigned labels based on their ‘security level‘

- You don’t own the data even if you create it. The data has labels too
and may deny access from its creator.

10 / 51



Background Access control Integrity Others

Access control - Recall OS module

Q: What are the access control models you have learned?

A: DAC, RBAC, MAC

Discretionary Access Control (DAC)

- owners can delegate (grant/revoke) privileges to others
- If you own the data, you can do anything with it.

Role-based Access Control (RBAC)

- ties in users’ privileges to their position or roles in the organization
- Assign labels to users and assign privileges to labels.

Mandatory Access Control (MAC)

- users and objects are assigned labels based on their ‘security level‘
- You don’t own the data even if you create it. The data has labels too
and may deny access from its creator.

10 / 51



Background Access control Integrity Others

Access control - Recall OS module

Q: What are the access control models you have learned?

A: DAC, RBAC, MAC

Discretionary Access Control (DAC)

- owners can delegate (grant/revoke) privileges to others
- If you own the data, you can do anything with it.

Role-based Access Control (RBAC)

- ties in users’ privileges to their position or roles in the organization
- Assign labels to users and assign privileges to labels.

Mandatory Access Control (MAC)

- users and objects are assigned labels based on their ‘security level‘
- You don’t own the data even if you create it. The data has labels too
and may deny access from its creator.

10 / 51



Background Access control Integrity Others

Access control for databases

All three types of access control (DAC, RBAC, MAC) apply to
databases (with various forms of implementations).

Most commercial DBs have native support for DAC and RBAC

Multi-level security database is an implementation of MAC

Q: What is the design space of a database access control scheme
(i.e., what is the data and what are the privileges?)

A:

Granularity of data: access control on relations, records, attributes

Supporting different operations: SELECT, INSERT, UPDATE, DELETE

11 / 51



Background Access control Integrity Others

Access control for databases

All three types of access control (DAC, RBAC, MAC) apply to
databases (with various forms of implementations).

Most commercial DBs have native support for DAC and RBAC

Multi-level security database is an implementation of MAC

Q: What is the design space of a database access control scheme
(i.e., what is the data and what are the privileges?)

A:

Granularity of data: access control on relations, records, attributes

Supporting different operations: SELECT, INSERT, UPDATE, DELETE

11 / 51



Background Access control Integrity Others

Access control for databases

All three types of access control (DAC, RBAC, MAC) apply to
databases (with various forms of implementations).

Most commercial DBs have native support for DAC and RBAC

Multi-level security database is an implementation of MAC

Q: What is the design space of a database access control scheme
(i.e., what is the data and what are the privileges?)

A:

Granularity of data: access control on relations, records, attributes

Supporting different operations: SELECT, INSERT, UPDATE, DELETE

11 / 51



Background Access control Integrity Others

Access control for databases

All three types of access control (DAC, RBAC, MAC) apply to
databases (with various forms of implementations).

Most commercial DBs have native support for DAC and RBAC

Multi-level security database is an implementation of MAC

Q: What is the design space of a database access control scheme
(i.e., what is the data and what are the privileges?)

A:

Granularity of data: access control on relations, records, attributes

Supporting different operations: SELECT, INSERT, UPDATE, DELETE

11 / 51



Background Access control Integrity Others

DAC for databases

DAC is built into the SQL language.

Use the GRANT keyword to assign a privilege to a user

Use the REVOKE keyword to withdraw a privilege.

Different types of privileges have built-in support:

Account-level privileges:

- DBMS functionalities (e.g. shutdown server),
- creating or modifying tables,
- routines (database functions),
- users and roles.

Relation-level privileges:

- SELECT,
- UPDATE,
- REFERENCES privileges on a relation

12 / 51



Background Access control Integrity Others

DAC for databases

DAC is built into the SQL language.

Use the GRANT keyword to assign a privilege to a user

Use the REVOKE keyword to withdraw a privilege.

Different types of privileges have built-in support:

Account-level privileges:

- DBMS functionalities (e.g. shutdown server),
- creating or modifying tables,
- routines (database functions),
- users and roles.

Relation-level privileges:

- SELECT,
- UPDATE,
- REFERENCES privileges on a relation

12 / 51



Background Access control Integrity Others

DAC for databases

DAC is built into the SQL language.

Use the GRANT keyword to assign a privilege to a user

Use the REVOKE keyword to withdraw a privilege.

Different types of privileges have built-in support:

Account-level privileges:

- DBMS functionalities (e.g. shutdown server),
- creating or modifying tables,
- routines (database functions),
- users and roles.

Relation-level privileges:

- SELECT,
- UPDATE,
- REFERENCES privileges on a relation

12 / 51



Background Access control Integrity Others

DAC example: account-level privilege

Accounts A1, A2

, A3

Relations: nil

Account-level privilege

> Admin: GRANT CREATE USER TO A1;

Sysadmin grants user A1 privilege to create users (and roles).

Account-level privilege

> A1: CREATE USER A3;

User A1 now uses her privilege to create another user.

13 / 51



Background Access control Integrity Others

DAC example: account-level privilege

Accounts A1, A2 , A3
Relations: nil

Account-level privilege

> Admin: GRANT CREATE USER TO A1;

Sysadmin grants user A1 privilege to create users (and roles).

Account-level privilege

> A1: CREATE USER A3;

User A1 now uses her privilege to create another user.

13 / 51



Background Access control Integrity Others

DAC example: account-level privilege

Accounts A1, A2, A3
Relations: nil

Account-level privilege

> Admin: GRANT CREATE TABLE TO A2;

Sysadmin grants user A2 privilege to create new tables.

Account-level privilege

> A2: CREATE TABLE Employee (...);

User A2 now uses her privilege to create the Employee table.

14 / 51



Background Access control Integrity Others

DAC example: account-level privilege

Accounts A1, A2, A3
Relations: Employee

Account-level privilege

> Admin: GRANT CREATE TABLE TO A2;

Sysadmin grants user A2 privilege to create new tables.

Account-level privilege

> A2: CREATE TABLE Employee (...);

User A2 now uses her privilege to create the Employee table.

14 / 51



Background Access control Integrity Others

DAC example: relation-level privilege

Accounts A1, A2, A3
Relations: Employee

Relation-level privilege

> A2: GRANT SELECT ON Employee TO A3;

The table owner (A2) grants user A3 the privilege to run SELECT
queries on the Employee table.

Relation-level privilege

> A2: GRANT SELECT ON Employee TO A3 WITH GRANT OPTION;

The table owner (A2) grants user A3 the privilege to run SELECT
queries on the Employee table and to further delegate that privilege
to other users.

15 / 51



Background Access control Integrity Others

DAC example: relation-level privilege

Accounts A1, A2, A3
Relations: Employee

Relation-level privilege

> A2: GRANT SELECT ON Employee TO A3;

The table owner (A2) grants user A3 the privilege to run SELECT
queries on the Employee table.

Relation-level privilege

> A2: GRANT SELECT ON Employee TO A3 WITH GRANT OPTION;

The table owner (A2) grants user A3 the privilege to run SELECT
queries on the Employee table and to further delegate that privilege
to other users.

15 / 51



Background Access control Integrity Others

DAC example: relation-level privilege

Accounts A1, A2, A3
Relations: Employee

Relation-level privilege

> A3: GRANT SELECT ON Employee TO A1;

A3 now can exercise her delegation rights

Relation-level privilege

> A2: REVOKE SELECT ON Employee FROM A1;

The table owner (A2) however, reserves the rights to revoke any
privilege she considers as improper.

16 / 51



Background Access control Integrity Others

DAC example: relation-level privilege

Accounts A1, A2, A3
Relations: Employee

Relation-level privilege

> A3: GRANT SELECT ON Employee TO A1;

A3 now can exercise her delegation rights

Relation-level privilege

> A2: REVOKE SELECT ON Employee FROM A1;

The table owner (A2) however, reserves the rights to revoke any
privilege she considers as improper.

16 / 51



Background Access control Integrity Others

Fine-grained DAC

Q: What is missing in the DAC scheme we have seen so far?

A:

The solution is SQL views:

For an SQL query, we can generate a view that represents the
result of that query.
Views can be used to only reveal certain columns (attributes after
SELECT) and rows (defined by the WHERE clause) for access control.

17 / 51



Background Access control Integrity Others

Fine-grained DAC

Q: What is missing in the DAC scheme we have seen so far?

A:

The solution is SQL views:

For an SQL query, we can generate a view that represents the
result of that query.
Views can be used to only reveal certain columns (attributes after
SELECT) and rows (defined by the WHERE clause) for access control.

17 / 51



Background Access control Integrity Others

Fine-grained DAC

Q: What is missing in the DAC scheme we have seen so far?

A:

The solution is SQL views:

For an SQL query, we can generate a view that represents the
result of that query.
Views can be used to only reveal certain columns (attributes after
SELECT) and rows (defined by the WHERE clause) for access control. 17 / 51



Background Access control Integrity Others

Fine-grained DAC using SQL views

Accounts A1, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Create a view

> A2: CREATE VIEW CSEmployeePublicInfo

SELECT Name, DOB, Address FROM Employee

WHERE Dpt = "CS";

The table owner (A2) creates a view that only expose the (Name,
DOB, Address) information for Employees in the CS department.

Relation-level privilege via views

> A2: GRANT SELECT ON CSEmployeePublicInfo TO A3;

The table owner (A2) grants user A3 the privilege to run SELECT
queries on the restrict view instead of the whole Employee table.

18 / 51



Background Access control Integrity Others

Fine-grained DAC using SQL views

Accounts A1, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Create a view

> A2: CREATE VIEW CSEmployeePublicInfo

SELECT Name, DOB, Address FROM Employee

WHERE Dpt = "CS";

The table owner (A2) creates a view that only expose the (Name,
DOB, Address) information for Employees in the CS department.

Relation-level privilege via views

> A2: GRANT SELECT ON CSEmployeePublicInfo TO A3;

The table owner (A2) grants user A3 the privilege to run SELECT
queries on the restrict view instead of the whole Employee table.

18 / 51



Background Access control Integrity Others

Fine-grained DAC: what about write operations?

Accounts A1, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Column-specific update privilege

> A2: GRANT UPDATE ON Employee (Address) TO A3;

The table owner (A2) grants user A3 the privilege to UPDATE the
Employee table but only on the Address attribute.

Q: How to restrict the UPDATE to selective rows only?

A: Use UPDATE triggers (we will see this later)

19 / 51



Background Access control Integrity Others

Fine-grained DAC: what about write operations?

Accounts A1, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Column-specific update privilege

> A2: GRANT UPDATE ON Employee (Address) TO A3;

The table owner (A2) grants user A3 the privilege to UPDATE the
Employee table but only on the Address attribute.

Q: How to restrict the UPDATE to selective rows only?

A: Use UPDATE triggers (we will see this later)

19 / 51



Background Access control Integrity Others

Fine-grained DAC: what about write operations?

Accounts A1, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Column-specific update privilege

> A2: GRANT UPDATE ON Employee (Address) TO A3;

The table owner (A2) grants user A3 the privilege to UPDATE the
Employee table but only on the Address attribute.

Q: How to restrict the UPDATE to selective rows only?

A: Use UPDATE triggers (we will see this later)

19 / 51



Background Access control Integrity Others

Fine-grained DAC: what about write operations?

Accounts A1, A2, A3
Relations: Employee(Name, SIN, DOB, Address, Salary, Dpt)

Column-specific update privilege

> A2: GRANT UPDATE ON Employee (Address) TO A3;

The table owner (A2) grants user A3 the privilege to UPDATE the
Employee table but only on the Address attribute.

Q: How to restrict the UPDATE to selective rows only?

A: Use UPDATE triggers (we will see this later)

19 / 51



Background Access control Integrity Others

From DAC to RBAC

Q: We already have DAC in SQL, why do we still need RBAC?

A:

DAC requires users to implement the principle of least privilege
(hardly done in practice). Can lead to privilege escalation.

System administrator needs to know how privileges are
inter-related and assign multiple privileges for a user’s tasks.

Need to manually change privileges for multiple users who want
to perform the same task, or when a user changes positions in an
organization (i.e., roles).

20 / 51



Background Access control Integrity Others

From DAC to RBAC

Q: We already have DAC in SQL, why do we still need RBAC?

A:

DAC requires users to implement the principle of least privilege
(hardly done in practice). Can lead to privilege escalation.

System administrator needs to know how privileges are
inter-related and assign multiple privileges for a user’s tasks.

Need to manually change privileges for multiple users who want
to perform the same task, or when a user changes positions in an
organization (i.e., roles).

20 / 51



Background Access control Integrity Others

RBAC for databases

Creating and using roles

> Admin: CREATE ROLE "DptAdmin", "CompanyHR";

> Admin: GRANT "DptAdmin" TO A1;

> Admin: GRANT "CompanyHR" TO A3;

> A2: GRANT SELECT ON CSEmployeePublicInfo TO "DptAdmin";

> A2: GRANT UPDATE ON Employee(Address) TO "CompanyHR";

21 / 51



Background Access control Integrity Others

RBAC for databases

Creating and using roles

> Admin: CREATE ROLE "DptAdmin", "CompanyHR";

> Admin: GRANT "DptAdmin" TO A1;

> Admin: GRANT "CompanyHR" TO A3;

> A2: GRANT SELECT ON CSEmployeePublicInfo TO "DptAdmin";

> A2: GRANT UPDATE ON Employee(Address) TO "CompanyHR";

21 / 51



Background Access control Integrity Others

RBAC for databases

Creating and using roles

> Admin: CREATE ROLE "DptAdmin", "CompanyHR";

> Admin: GRANT "DptAdmin" TO A1;

> Admin: GRANT "CompanyHR" TO A3;

> A2: GRANT SELECT ON CSEmployeePublicInfo TO "DptAdmin";

> A2: GRANT UPDATE ON Employee(Address) TO "CompanyHR";

21 / 51



Background Access control Integrity Others

What about MAC?

We show a case study that aims to implement MAC for a database:
multi-level security (MLS).

The theory behind MLS is the Bell-La Padula confidentiality model:

There are security classifications or security levels applied to

- Subjects: i.e., database users — security clearances
- Objects: i.e., each cell in a table — security classifications

An example of security levels:
Top Secret > Secret > Classified > Unclassified

Security goal: ensures that information does not flow to those not
cleared for that level.

Principles (simplified view):

- The simple security property: S can read O iff L(S) ≥ L(O).
- The star property: S can write O iff L(S) ≤ L(O).

22 / 51



Background Access control Integrity Others

What about MAC?

We show a case study that aims to implement MAC for a database:
multi-level security (MLS).

The theory behind MLS is the Bell-La Padula confidentiality model:

There are security classifications or security levels applied to

- Subjects: i.e., database users — security clearances
- Objects: i.e., each cell in a table — security classifications

An example of security levels:
Top Secret > Secret > Classified > Unclassified

Security goal: ensures that information does not flow to those not
cleared for that level.

Principles (simplified view):

- The simple security property: S can read O iff L(S) ≥ L(O).
- The star property: S can write O iff L(S) ≤ L(O).

22 / 51



Background Access control Integrity Others

What about MAC?

We show a case study that aims to implement MAC for a database:
multi-level security (MLS).

The theory behind MLS is the Bell-La Padula confidentiality model:

There are security classifications or security levels applied to

- Subjects: i.e., database users — security clearances
- Objects: i.e., each cell in a table — security classifications

An example of security levels:
Top Secret > Secret > Classified > Unclassified

Security goal: ensures that information does not flow to those not
cleared for that level.

Principles (simplified view):

- The simple security property: S can read O iff L(S) ≥ L(O).
- The star property: S can write O iff L(S) ≤ L(O).

22 / 51



Background Access control Integrity Others

What about MAC?

We show a case study that aims to implement MAC for a database:
multi-level security (MLS).

The theory behind MLS is the Bell-La Padula confidentiality model:

There are security classifications or security levels applied to

- Subjects: i.e., database users — security clearances
- Objects: i.e., each cell in a table — security classifications

An example of security levels:
Top Secret > Secret > Classified > Unclassified

Security goal: ensures that information does not flow to those not
cleared for that level.

Principles (simplified view):

- The simple security property: S can read O iff L(S) ≥ L(O).
- The star property: S can write O iff L(S) ≤ L(O).

22 / 51



Background Access control Integrity Others

What about MAC?

We show a case study that aims to implement MAC for a database:
multi-level security (MLS).

The theory behind MLS is the Bell-La Padula confidentiality model:

There are security classifications or security levels applied to

- Subjects: i.e., database users — security clearances
- Objects: i.e., each cell in a table — security classifications

An example of security levels:
Top Secret > Secret > Classified > Unclassified

Security goal: ensures that information does not flow to those not
cleared for that level.

Principles (simplified view):

- The simple security property: S can read O iff L(S) ≥ L(O).
- The star property: S can write O iff L(S) ≤ L(O).

22 / 51



Background Access control Integrity Others

Recall: Bell-LaPadula

Principles:

The simple security property: S can read O iff L(S) ≥ L(O) (no read up)

The star property: S can write O iff L(S) ≤ L(O) (no write down)

Q: Who can read what? Who can write what?

23 / 51



Background Access control Integrity Others

Recall: Bell-LaPadula

Principles:

The simple security property: S can read O iff L(S) ≥ L(O) (no read up)

The star property: S can write O iff L(S) ≤ L(O) (no write down)

Q: Who can read what? Who can write what?

23 / 51



Background Access control Integrity Others

Recall: Bell-LaPadula

Principles:

The simple security property: S can read O iff L(S) ≥ L(O) (no read up)

The star property: S can write O iff L(S) ≤ L(O) (no write down)

Q: Who can read what? Who can write what?

23 / 51



Background Access control Integrity Others

MLS table example

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Each attribute has a classification label and a value at that label.

TC label = Highest clearance for any of its attributes.

- TC: Tuple Classification

Primary key label ≤ Lowest clearance for any of its attributes.

- Name is the primary key in this example

Q: Why having this requirement?

A: Otherwise a user may see a partial record without knowing what
that record is about.

24 / 51



Background Access control Integrity Others

MLS table example

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Each attribute has a classification label and a value at that label.

TC label = Highest clearance for any of its attributes.

- TC: Tuple Classification

Primary key label ≤ Lowest clearance for any of its attributes.

- Name is the primary key in this example

Q: Why having this requirement?

A: Otherwise a user may see a partial record without knowing what
that record is about.

24 / 51



Background Access control Integrity Others

MLS table example

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Each attribute has a classification label and a value at that label.

TC label = Highest clearance for any of its attributes.

- TC: Tuple Classification

Primary key label ≤ Lowest clearance for any of its attributes.

- Name is the primary key in this example

Q: Why having this requirement?

A: Otherwise a user may see a partial record without knowing what
that record is about.

24 / 51



Background Access control Integrity Others

MLS table example

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Each attribute has a classification label and a value at that label.

TC label = Highest clearance for any of its attributes.

- TC: Tuple Classification

Primary key label ≤ Lowest clearance for any of its attributes.

- Name is the primary key in this example

Q: Why having this requirement?

A: Otherwise a user may see a partial record without knowing what
that record is about.

24 / 51



Background Access control Integrity Others

MLS table example

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Each attribute has a classification label and a value at that label.

TC label = Highest clearance for any of its attributes.

- TC: Tuple Classification

Primary key label ≤ Lowest clearance for any of its attributes.

- Name is the primary key in this example

Q: Why having this requirement?

A: Otherwise a user may see a partial record without knowing what
that record is about.

24 / 51



Background Access control Integrity Others

MLS table example

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Each attribute has a classification label and a value at that label.

TC label = Highest clearance for any of its attributes.

- TC: Tuple Classification

Primary key label ≤ Lowest clearance for any of its attributes.

- Name is the primary key in this example

Q: Why having this requirement?

A: Otherwise a user may see a partial record without knowing what
that record is about.

24 / 51



Background Access control Integrity Others

MLS read-down by filtering

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Filtering the table for users having classified clearance:

Name Salary Perf TC

Smith U 40000 C - C C
Brown C - C Good C C

Filtering the table for users having unclassified clearance:

Name Salary Perf TC

Smith U - U - U U

25 / 51



Background Access control Integrity Others

MLS read-down by filtering

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Filtering the table for users having classified clearance:

Name Salary Perf TC

Smith U 40000 C - C C
Brown C - C Good C C

Filtering the table for users having unclassified clearance:

Name Salary Perf TC

Smith U - U - U U

25 / 51



Background Access control Integrity Others

MLS read-down by filtering

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

Filtering the table for users having classified clearance:

Name Salary Perf TC

Smith U 40000 C - C C
Brown C - C Good C C

Filtering the table for users having unclassified clearance:

Name Salary Perf TC

Smith U - U - U U

25 / 51



Background Access control Integrity Others

MLS invisible polyinstantiation

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with classified clearance issues a write-up:
UPDATE Employee SET Perf = "Great" WHERE Name = "Smith";

Name Salary Perf TC

Smith U 40000 C Fair S S
Smith U 40000 C Great C C
Brown C 80000 S Good C S

Q: Why not just override the original record?

A: An explicit approval is needed to merge the instantiations.

26 / 51



Background Access control Integrity Others

MLS invisible polyinstantiation

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with classified clearance issues a write-up:
UPDATE Employee SET Perf = "Great" WHERE Name = "Smith";

Name Salary Perf TC

Smith U 40000 C Fair S S
Smith U 40000 C Great C C
Brown C 80000 S Good C S

Q: Why not just override the original record?

A: An explicit approval is needed to merge the instantiations.

26 / 51



Background Access control Integrity Others

MLS invisible polyinstantiation

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with classified clearance issues a write-up:
UPDATE Employee SET Perf = "Great" WHERE Name = "Smith";

Name Salary Perf TC

Smith U 40000 C Fair S S
Smith U 40000 C Great C C
Brown C 80000 S Good C S

Q: Why not just override the original record?

A: An explicit approval is needed to merge the instantiations.

26 / 51



Background Access control Integrity Others

MLS invisible polyinstantiation

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with classified clearance issues a write-up:
UPDATE Employee SET Perf = "Great" WHERE Name = "Smith";

Name Salary Perf TC

Smith U 40000 C Fair S S
Smith U 40000 C Great C C
Brown C 80000 S Good C S

Q: Why not just override the original record?

A: An explicit approval is needed to merge the instantiations.

26 / 51



Background Access control Integrity Others

MLS visible polyinstantiation

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with secret clearance issues a write-down:
UPDATE Employee SET Perf = "Bad" WHERE Name = "Brown";

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S
Brown C 80000 S Bad S S

Q: Why not just override the original record?

A: An explicit declassification is needed to merge the instantiations.

27 / 51



Background Access control Integrity Others

MLS visible polyinstantiation

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with secret clearance issues a write-down:
UPDATE Employee SET Perf = "Bad" WHERE Name = "Brown";

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S
Brown C 80000 S Bad S S

Q: Why not just override the original record?

A: An explicit declassification is needed to merge the instantiations.

27 / 51



Background Access control Integrity Others

MLS visible polyinstantiation

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with secret clearance issues a write-down:
UPDATE Employee SET Perf = "Bad" WHERE Name = "Brown";

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S
Brown C 80000 S Bad S S

Q: Why not just override the original record?

A: An explicit declassification is needed to merge the instantiations.

27 / 51



Background Access control Integrity Others

MLS visible polyinstantiation

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S

A user with secret clearance issues a write-down:
UPDATE Employee SET Perf = "Bad" WHERE Name = "Brown";

Name Salary Perf TC

Smith U 40000 C Fair S S
Brown C 80000 S Good C S
Brown C 80000 S Bad S S

Q: Why not just override the original record?

A: An explicit declassification is needed to merge the instantiations.

27 / 51



Background Access control Integrity Others

Outline

1 Background: relational database

2 Access control

3 Integrity

4 Others

28 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

29 / 51



Background Access control Integrity Others

Isn’t integrity covered in crypto-protocols?

We are talking about a different type of integrity here.

In cryptography: integrity means that data cannot be changed
without being detected

In database: integrity means that the data records are in a
sensible/correct state

We will cover the following types of integrity properties:

- Element integrity
- Referential integrity
- All-or-nothing / Atomicity

The goal of ensuring integrity is to prevent users from making
changes that will result in an invalid database state. These
changes can be either intentional or unintentional.

30 / 51



Background Access control Integrity Others

Isn’t integrity covered in crypto-protocols?

We are talking about a different type of integrity here.

In cryptography: integrity means that data cannot be changed
without being detected

In database: integrity means that the data records are in a
sensible/correct state

We will cover the following types of integrity properties:

- Element integrity
- Referential integrity
- All-or-nothing / Atomicity

The goal of ensuring integrity is to prevent users from making
changes that will result in an invalid database state. These
changes can be either intentional or unintentional.

30 / 51



Background Access control Integrity Others

Isn’t integrity covered in crypto-protocols?

We are talking about a different type of integrity here.

In cryptography: integrity means that data cannot be changed
without being detected

In database: integrity means that the data records are in a
sensible/correct state

We will cover the following types of integrity properties:

- Element integrity
- Referential integrity
- All-or-nothing / Atomicity

The goal of ensuring integrity is to prevent users from making
changes that will result in an invalid database state. These
changes can be either intentional or unintentional.

30 / 51



Background Access control Integrity Others

Isn’t integrity covered in crypto-protocols?

We are talking about a different type of integrity here.

In cryptography: integrity means that data cannot be changed
without being detected

In database: integrity means that the data records are in a
sensible/correct state

We will cover the following types of integrity properties:

- Element integrity
- Referential integrity
- All-or-nothing / Atomicity

The goal of ensuring integrity is to prevent users from making
changes that will result in an invalid database state. These
changes can be either intentional or unintentional.

30 / 51



Background Access control Integrity Others

Element integrity

Example on element integrity violations

CREATE TABLE Employee (Name VARCHAR(255), Age INTEGER);

INSERT INTO Employee VALUES ("SMITH", 400);

Q: What is the problem here? Is it a mistake from developers?

A: The type system is not expressive enough. There is no way to
restrict that Age must be in a proper range (e.g., 0-150).

And there are even more tricky situations, for example:

At all times, there is at most one employee can have the
Position attribute set to ”CEO”.

A salary increase cannot exceed 100% of the current salary.

31 / 51



Background Access control Integrity Others

Element integrity

Example on element integrity violations

CREATE TABLE Employee (Name VARCHAR(255), Age INTEGER);

INSERT INTO Employee VALUES ("SMITH", 400);

Q: What is the problem here? Is it a mistake from developers?

A: The type system is not expressive enough. There is no way to
restrict that Age must be in a proper range (e.g., 0-150).

And there are even more tricky situations, for example:

At all times, there is at most one employee can have the
Position attribute set to ”CEO”.

A salary increase cannot exceed 100% of the current salary.

31 / 51



Background Access control Integrity Others

Element integrity

Example on element integrity violations

CREATE TABLE Employee (Name VARCHAR(255), Age INTEGER);

INSERT INTO Employee VALUES ("SMITH", 400);

Q: What is the problem here? Is it a mistake from developers?

A: The type system is not expressive enough. There is no way to
restrict that Age must be in a proper range (e.g., 0-150).

And there are even more tricky situations, for example:

At all times, there is at most one employee can have the
Position attribute set to ”CEO”.

A salary increase cannot exceed 100% of the current salary.

31 / 51



Background Access control Integrity Others

Element integrity

Example on element integrity violations

CREATE TABLE Employee (Name VARCHAR(255), Age INTEGER);

INSERT INTO Employee VALUES ("SMITH", 400);

Q: What is the problem here? Is it a mistake from developers?

A: The type system is not expressive enough. There is no way to
restrict that Age must be in a proper range (e.g., 0-150).

And there are even more tricky situations, for example:

At all times, there is at most one employee can have the
Position attribute set to ”CEO”.

A salary increase cannot exceed 100% of the current salary.

31 / 51



Background Access control Integrity Others

Check element integrity with triggers

A typical way to enforce element integrity is to use triggers, i.e.,
procedures that are automatically executed after each write
operation, including INSERT, UPDATE, DELETE, . . . queries

An example on SQL trigger

CREATE TRIGGER AgeCheck ON Employee

AFTER INSERT, UPDATE

FOR EACH ROW

BEGIN

IF NEW.Age >= 150

BEGIN

RAISERROR ("Invalid age")

END

END;

32 / 51



Background Access control Integrity Others

Check element integrity with triggers

A typical way to enforce element integrity is to use triggers, i.e.,
procedures that are automatically executed after each write
operation, including INSERT, UPDATE, DELETE, . . . queries

An example on SQL trigger

CREATE TRIGGER AgeCheck ON Employee

AFTER INSERT, UPDATE

FOR EACH ROW

BEGIN

IF NEW.Age >= 150

BEGIN

RAISERROR ("Invalid age")

END

END;

32 / 51



Background Access control Integrity Others

Foreign key

Last

(PK)

Address City State Zip

(FK)

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Table: FamilyInfo

Last

(FK)

First

ADAMS Charles
ADAMS Edward
BENCHLY Zeke
CARTER Marlene
CARTER Beth
CARTER Ben
CARTER Lisabeth
CARTER Mary

Table: NameInfo

Zip

(PK)

Airport

43210 CMH
60603 ORD

Table: AirportInfo

33 / 51



Background Access control Integrity Others

Foreign key

Last (PK) Address City State Zip (FK)

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Table: FamilyInfo

Last (FK) First

ADAMS Charles
ADAMS Edward
BENCHLY Zeke
CARTER Marlene
CARTER Beth
CARTER Ben
CARTER Lisabeth
CARTER Mary

Table: NameInfo

Zip (PK) Airport

43210 CMH
60603 ORD

Table: AirportInfo

33 / 51



Background Access control Integrity Others

Foreign key

Foreign key in table creation

CREATE TABLE FamilyInfo (

Last VARCHAR(255) NOT NULL,

Address VARCHAR(1024),

City VARCHAR(128),

State VARCHAR(128),

Zip VARCHAR(128),

PRIMARY KEY (Last),

FOREIGN KEY (Zip) REFERENCES AirportInfo(Zip),

);

Q: Why do we need this line here?

34 / 51



Background Access control Integrity Others

Foreign key

Foreign key in table creation

CREATE TABLE FamilyInfo (

Last VARCHAR(255) NOT NULL,

Address VARCHAR(1024),

City VARCHAR(128),

State VARCHAR(128),

Zip VARCHAR(128),

PRIMARY KEY (Last),

FOREIGN KEY (Zip) REFERENCES AirportInfo(Zip),

);

Q: Why do we need this line here?

34 / 51



Background Access control Integrity Others

Referential integrity

Referential integrity ensures that each value of a foreign key refers
to a valid primary key value, i.e. there are no dangling foreign keys.

One use case: to prevent accidental or intentional deletion of
records that are still being used.

Example: dropping a still-in-yuse table

DROP TABLE AirportInfo;

This operation will raise an error by the DBMS.

35 / 51



Background Access control Integrity Others

Referential integrity

Referential integrity ensures that each value of a foreign key refers
to a valid primary key value, i.e. there are no dangling foreign keys.

One use case: to prevent accidental or intentional deletion of
records that are still being used.

Example: dropping a still-in-yuse table

DROP TABLE AirportInfo;

This operation will raise an error by the DBMS.

35 / 51



Background Access control Integrity Others

Referential integrity

Referential integrity ensures that each value of a foreign key refers
to a valid primary key value, i.e. there are no dangling foreign keys.

One use case: to prevent accidental or intentional deletion of
records that are still being used.

Example: dropping a still-in-yuse table

DROP TABLE AirportInfo;

This operation will raise an error by the DBMS.

35 / 51



Background Access control Integrity Others

Inconsistent state

Recall that integrity is about ensuring the data records are in a
sensible/correct state at all times.

But what if a transaction requires two or more write operations?
For example: transfer money from Alice to Bob requires two UPDATE:

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

Q: What happens if the database fails after the first UPDATE?

A: The money would be lost forever!

36 / 51



Background Access control Integrity Others

Inconsistent state

Recall that integrity is about ensuring the data records are in a
sensible/correct state at all times.

But what if a transaction requires two or more write operations?
For example: transfer money from Alice to Bob requires two UPDATE:

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

Q: What happens if the database fails after the first UPDATE?

A: The money would be lost forever!

36 / 51



Background Access control Integrity Others

Inconsistent state

Recall that integrity is about ensuring the data records are in a
sensible/correct state at all times.

But what if a transaction requires two or more write operations?
For example: transfer money from Alice to Bob requires two UPDATE:

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

Q: What happens if the database fails after the first UPDATE?

A: The money would be lost forever!

36 / 51



Background Access control Integrity Others

Transaction as an all-or-nothing mechanism

Transaction (abort)

BEGIN TRANSACTION;

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

COMMIT TRANSACTION;

37 / 51



Background Access control Integrity Others

Transaction as an all-or-nothing mechanism

Transaction (commit or rollback)

BEGIN TRANSACTION;

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

IF @balance < 100

BEGIN

ROLLBACK TRANSACTION;

END

ELSE

BEGIN

UPDATE Ledger SET Balance = Balance + 100 WHERE Name = "Bob";

COMMIT TRANSACTION;

END

38 / 51



Background Access control Integrity Others

Data race

Notice that in the prior example, we used an unusual syntax to
update the balance:

Atomic update (implicit)

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

If used on its own (i.e., not in a transaction context), this is
implicitly translated into a transaction:

Atomic update (explicit)

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

Q: Why must we enclose it within a transaction?

39 / 51



Background Access control Integrity Others

Data race

Notice that in the prior example, we used an unusual syntax to
update the balance:

Atomic update (implicit)

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

If used on its own (i.e., not in a transaction context), this is
implicitly translated into a transaction:

Atomic update (explicit)

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

Q: Why must we enclose it within a transaction?

39 / 51



Background Access control Integrity Others

Data race

Notice that in the prior example, we used an unusual syntax to
update the balance:

Atomic update (implicit)

UPDATE Ledger SET Balance = Balance - 100 WHERE Name = "Alice";

If used on its own (i.e., not in a transaction context), this is
implicitly translated into a transaction:

Atomic update (explicit)

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

Q: Why must we enclose it within a transaction?

39 / 51



Background Access control Integrity Others

Data race

If two clients send the request concurrently, what will be the result?

Client 1
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

Client 2
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

One possible interleaving:

Transaction interleavings

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

Q: How much is deducted from Alice’s balance?

40 / 51



Background Access control Integrity Others

Data race

If two clients send the request concurrently, what will be the result?

Client 1
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

Client 2
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

One possible interleaving:

Transaction interleavings

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

Q: How much is deducted from Alice’s balance?

40 / 51



Background Access control Integrity Others

Transaction as a serialization mechanism

Transaction interleavings
BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

41 / 51



Background Access control Integrity Others

Outline

1 Background: relational database

2 Access control

3 Integrity

4 Others

42 / 51



Background Access control Integrity Others

Security requirements for a database

Access control

who can read? who can write?

Authentication

how do we know if a DB client is not masquerading as someone else

Confidentiality

what if the DB server is compromised? what about network tapping?

Integrity

how do we guarantee that the data is in an intact and sensible state

Availability

redundancy? fault-tolerance? Byzantine fault tolerance?

Auditability

a.k.a. provenance, proving how we ended up with a specific state

43 / 51



Background Access control Integrity Others

Authentication

This is a recap of what we learned from last module. . .

Q: How does a client authenticate a DBMS server?

A: Certificates

Q: How does a DBMS server authenticate a client?

A: Some possibilities:

Passwords

Certificates

LDAP (Lightweight Directory Access Protocol) server

44 / 51



Background Access control Integrity Others

Authentication

This is a recap of what we learned from last module. . .

Q: How does a client authenticate a DBMS server?

A: Certificates

Q: How does a DBMS server authenticate a client?

A: Some possibilities:

Passwords

Certificates

LDAP (Lightweight Directory Access Protocol) server

44 / 51



Background Access control Integrity Others

Authentication

This is a recap of what we learned from last module. . .

Q: How does a client authenticate a DBMS server?

A: Certificates

Q: How does a DBMS server authenticate a client?

A: Some possibilities:

Passwords

Certificates

LDAP (Lightweight Directory Access Protocol) server

44 / 51



Background Access control Integrity Others

Authentication

This is a recap of what we learned from last module. . .

Q: How does a client authenticate a DBMS server?

A: Certificates

Q: How does a DBMS server authenticate a client?

A: Some possibilities:

Passwords

Certificates

LDAP (Lightweight Directory Access Protocol) server

44 / 51



Background Access control Integrity Others

Authentication

This is a recap of what we learned from last module. . .

Q: How does a client authenticate a DBMS server?

A: Certificates

Q: How does a DBMS server authenticate a client?

A: Some possibilities:

Passwords

Certificates

LDAP (Lightweight Directory Access Protocol) server

44 / 51



Background Access control Integrity Others

Confidentiality

Now we have:

Authentication, which reduces the risk that someone gains
unauthorized access to the database.

Access control, which further reduces the risks of leakage of
secret information.

Correctness, which guarantees that the DBMS software never has
a bug (as we see in the Program Security module) and always
comply with the policies.

Q: then what else can go wrong?

45 / 51



Background Access control Integrity Others

Confidentiality

The DBMS is simply an application that runs on some OS, along
side with other applications.

Perhaps that machine itself is stolen and an attacker then
removes the hard-drive, and attempts to read off the database
contents from the hard-drive.

Perhaps that other applications are compromised and attackers
simply scan over your file system and extract all files related to
the database content.

Perhaps that storage provider itself is malicious, especially in the
cloud computing setting, and are curious about what you store in
your database.

46 / 51



Background Access control Integrity Others

Confidentiality

The DBMS is simply an application that runs on some OS, along
side with other applications.

Perhaps that machine itself is stolen and an attacker then
removes the hard-drive, and attempts to read off the database
contents from the hard-drive.

Perhaps that other applications are compromised and attackers
simply scan over your file system and extract all files related to
the database content.

Perhaps that storage provider itself is malicious, especially in the
cloud computing setting, and are curious about what you store in
your database.

46 / 51



Background Access control Integrity Others

Confidentiality

The DBMS is simply an application that runs on some OS, along
side with other applications.

Perhaps that machine itself is stolen and an attacker then
removes the hard-drive, and attempts to read off the database
contents from the hard-drive.

Perhaps that other applications are compromised and attackers
simply scan over your file system and extract all files related to
the database content.

Perhaps that storage provider itself is malicious, especially in the
cloud computing setting, and are curious about what you store in
your database.

46 / 51



Background Access control Integrity Others

Confidentiality

Solution? If trust is an issue, check if cryptography can be helpful.

File-level encryption

Column-level encryption

Q: Obviously the key cannot be stored alongside the data, then in
this case, how do you supply the key to the DBMS?

A: Many possible solutions, e.g., establish a secure channel with the
DBMS via TLS and send the key, etc.

47 / 51



Background Access control Integrity Others

Confidentiality

Solution? If trust is an issue, check if cryptography can be helpful.

File-level encryption

Column-level encryption

Q: Obviously the key cannot be stored alongside the data, then in
this case, how do you supply the key to the DBMS?

A: Many possible solutions, e.g., establish a secure channel with the
DBMS via TLS and send the key, etc.

47 / 51



Background Access control Integrity Others

Confidentiality

Solution? If trust is an issue, check if cryptography can be helpful.

File-level encryption

Column-level encryption

Q: Obviously the key cannot be stored alongside the data, then in
this case, how do you supply the key to the DBMS?

A: Many possible solutions, e.g., establish a secure channel with the
DBMS via TLS and send the key, etc.

47 / 51



Background Access control Integrity Others

Confidentiality

Solution? If trust is an issue, check if cryptography can be helpful.

File-level encryption

Column-level encryption

Q: Obviously the key cannot be stored alongside the data, then in
this case, how do you supply the key to the DBMS?

A: Many possible solutions, e.g., establish a secure channel with the
DBMS via TLS and send the key, etc.

47 / 51



Background Access control Integrity Others

Availability

Availability is about recognizing the fact that:

Transactions can fail due to physical problems.

- System crashes. Disk failures.
- Physical problems/catastrophes: power failures, floods, fire, thefts.

Contingency plans are needed to recover from these events

48 / 51



Background Access control Integrity Others

Availability

Availability is about recognizing the fact that:

Transactions can fail due to physical problems.

- System crashes. Disk failures.
- Physical problems/catastrophes: power failures, floods, fire, thefts.

Contingency plans are needed to recover from these events

48 / 51



Background Access control Integrity Others

High availability in enterprise settings

Redundancy: reduce risk that service is affected from some
component failure transparently transfer operations to another
functioning component.

- Uninterrupted power supplies.
- Multiple hard-drives in RAID configurations (with error-detection
codes or error-correction codes).

Database clusters: Redundancy by more machines.
Load-balancing among clustered machines.

Failover: deal with catastrophes etc., when machines are down.

- Clustered machines are in the same physical location, so all machines
may be down.

- Primary system handles traffic regularly WHILE secondary system
takes over in case of failures.

49 / 51



Background Access control Integrity Others

High availability in enterprise settings

Redundancy: reduce risk that service is affected from some
component failure transparently transfer operations to another
functioning component.

- Uninterrupted power supplies.
- Multiple hard-drives in RAID configurations (with error-detection
codes or error-correction codes).

Database clusters: Redundancy by more machines.
Load-balancing among clustered machines.

Failover: deal with catastrophes etc., when machines are down.

- Clustered machines are in the same physical location, so all machines
may be down.

- Primary system handles traffic regularly WHILE secondary system
takes over in case of failures.

49 / 51



Background Access control Integrity Others

High availability in enterprise settings

Redundancy: reduce risk that service is affected from some
component failure transparently transfer operations to another
functioning component.

- Uninterrupted power supplies.
- Multiple hard-drives in RAID configurations (with error-detection
codes or error-correction codes).

Database clusters: Redundancy by more machines.
Load-balancing among clustered machines.

Failover: deal with catastrophes etc., when machines are down.

- Clustered machines are in the same physical location, so all machines
may be down.

- Primary system handles traffic regularly WHILE secondary system
takes over in case of failures.

49 / 51



Background Access control Integrity Others

High availability in enterprise settings

Redundancy: reduce risk that service is affected from some
component failure transparently transfer operations to another
functioning component.

- Uninterrupted power supplies.
- Multiple hard-drives in RAID configurations (with error-detection
codes or error-correction codes).

Database clusters: Redundancy by more machines.
Load-balancing among clustered machines.

Failover: deal with catastrophes etc., when machines are down.

- Clustered machines are in the same physical location, so all machines
may be down.

- Primary system handles traffic regularly WHILE secondary system
takes over in case of failures.

49 / 51



Background Access control Integrity Others

Auditability

Expecting the DBMS will never fail in access control or integrity is a
dangerous thought!

In the event of a data breach, we want to be able to:

retroactively identify who has run these queries without
authorization.

hold users accountable and deter such accesses.

comply with relevant legislation, e.g. HIPAA for health data.

50 / 51



Background Access control Integrity Others

Auditability

Expecting the DBMS will never fail in access control or integrity is a
dangerous thought!

In the event of a data breach, we want to be able to:

retroactively identify who has run these queries without
authorization.

hold users accountable and deter such accesses.

comply with relevant legislation, e.g. HIPAA for health data.

50 / 51



Background Access control Integrity Others

Auditability

Set an audit policy (or policies) to observe queries received by the
DBMS.

DBMS generates an audit trail or log of events that comply with
the audit policy. This log can be processed later into DB tables.

Archive the audit log periodically to ensure availability of the logs
for future.

51 / 51


	On the security of databases
	Background: relational database
	Access control
	Overview
	DAC
	RBAC
	MAC

	Integrity
	Overview
	Element
	Referential integrity
	All-or-nothing
	Serialization

	Others
	Authentication
	Confidentiality
	Availability
	Auditability



