
CS 489 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: Defenses against Common Vulnerabilities
Lecture: entropy / moving-target defense

Fall 2024



Introduction Canary ASLR/PIE Heap Diversity

Outline

1 Introduction

2 Stack canary

3 Randomizing memory addresses

4 Entropies in heap allocators

5 Security through diversity

2 / 37



Introduction Canary ASLR/PIE Heap Diversity

Why entropy in security?

Nondeterminism is useful in software security when

it has no impact on the intended finite state machine BUT

limits attackers’ abilities to program the weird machine.

In this slide deck: we will examine some standard / deployed
practices of safely introducing nondeterminism to boost system and
software security.

3 / 37



Introduction Canary ASLR/PIE Heap Diversity

Why entropy in security?

Nondeterminism is useful in software security when

it has no impact on the intended finite state machine BUT

limits attackers’ abilities to program the weird machine.

In this slide deck: we will examine some standard / deployed
practices of safely introducing nondeterminism to boost system and
software security.

3 / 37



Introduction Canary ASLR/PIE Heap Diversity

Choosing pills, a lot of pills

Figure: Red pill vs Blue pill. Credits / Trademark: The Matrix Movie
4 / 37



Introduction Canary ASLR/PIE Heap Diversity

Outline

1 Introduction

2 Stack canary

3 Randomizing memory addresses

4 Entropies in heap allocators

5 Security through diversity

5 / 37



Introduction Canary ASLR/PIE Heap Diversity

Recap: stack overflow

1 int main() {
2 char buf[16];
3 scanf("%s", buf);

4 }

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

6 / 37



Introduction Canary ASLR/PIE Heap Diversity

Solution 1: program analysis

1 int main() {
2 char buf[16];
3 scanf("%s", buf);

4 }

1 int main() {

2 char buf[16];

3 - scanf("%s", buf);

4 + scanf("%15s", buf);

5 }

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

7 / 37



Introduction Canary ASLR/PIE Heap Diversity

Solution 1: program analysis

1 int main() {
2 char buf[16];
3 scanf("%s", buf);

4 }

1 int main() {

2 char buf[16];

3 - scanf("%s", buf);

4 + scanf("%15s", buf);

5 }

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

7 / 37



Introduction Canary ASLR/PIE Heap Diversity

Solution 2: exploit mitigation

1 int main() {
2 char buf[16];
3 scanf("%s", buf);

4 }

On function entry,
push canary value
X onto stack.

On function return,
check canary value
is still X .

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

return address

frame pointer

canary

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

8 / 37



Introduction Canary ASLR/PIE Heap Diversity

Solution 2: exploit mitigation

1 int main() {
2 char buf[16];
3 scanf("%s", buf);

4 }

On function entry,
push canary value
X onto stack.

On function return,
check canary value
is still X .

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

return address

frame pointer

canary

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

8 / 37



Introduction Canary ASLR/PIE Heap Diversity

Solution 2: exploit mitigation

1 int main() {
2 char buf[16];
3 scanf("%s", buf);

4 }

On function entry,
push canary value
X onto stack.

On function return,
check canary value
is still X .

return address

frame pointer

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

return address

frame pointer

canary

buf

(16 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

8 / 37



Introduction Canary ASLR/PIE Heap Diversity

Original use of canary

Figure: Canaries in coal-mining. Credits / Trademark: Alamy Stock Photo

9 / 37



Introduction Canary ASLR/PIE Heap Diversity

The default implementation in GCC

1 int main() {
2 char buf[16];
3 scanf("%s", buf);

4 }

1 extern uintptr_t __stack_chk_guard;
2 noreturn void __stack_chk_fail(void);
3

4 int main() {
5 uintptr_t canary = __stack_chk_guard;
6

7 char buf[16];
8 scanf("%s", buf);

9

10 if ((canary = canary ˆ __stack_chk_guard) != 0) {
11 __stack_chk_fail();

12 }

13 }

The __stack_chk_guard and
__stack_chk_fail symbols are normally
supplied by a GCC library called libssp.

You also have the option of specifying your
own value for stack canaries.

10 / 37



Introduction Canary ASLR/PIE Heap Diversity

The default implementation in GCC

1 int main() {
2 char buf[16];
3 scanf("%s", buf);

4 }

1 extern uintptr_t __stack_chk_guard;
2 noreturn void __stack_chk_fail(void);
3

4 int main() {
5 uintptr_t canary = __stack_chk_guard;
6

7 char buf[16];
8 scanf("%s", buf);

9

10 if ((canary = canary ˆ __stack_chk_guard) != 0) {
11 __stack_chk_fail();

12 }

13 }

The __stack_chk_guard and
__stack_chk_fail symbols are normally
supplied by a GCC library called libssp.

You also have the option of specifying your
own value for stack canaries.

10 / 37



Introduction Canary ASLR/PIE Heap Diversity

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

11 / 37



Introduction Canary ASLR/PIE Heap Diversity

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

11 / 37



Introduction Canary ASLR/PIE Heap Diversity

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

11 / 37



Introduction Canary ASLR/PIE Heap Diversity

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

11 / 37



Introduction Canary ASLR/PIE Heap Diversity

Design choices of stack canaries

Which value should we use as canary?

- deterministic? secret? random?

What is the granularity of the canary invocation?

- per function? per execution?

When to do the integrity check?

- on function return? is that enough?

How much randomness is needed?

- 1 byte? 8 bytes? 64 bytes?

11 / 37



Introduction Canary ASLR/PIE Heap Diversity

Limitations of stack canary

Vulnerable to information leak

- e.g., using a buffer over read to retrieve the canary value

Limited protection for frame pointer and return address only

- other stack variables are not protected

Unable to defend against arbitrary writes

- i.e., non-continuous overrides

12 / 37



Introduction Canary ASLR/PIE Heap Diversity

Limitations of stack canary

Vulnerable to information leak

- e.g., using a buffer over read to retrieve the canary value

Limited protection for frame pointer and return address only

- other stack variables are not protected

Unable to defend against arbitrary writes

- i.e., non-continuous overrides

12 / 37



Introduction Canary ASLR/PIE Heap Diversity

Limitations of stack canary

Vulnerable to information leak

- e.g., using a buffer over read to retrieve the canary value

Limited protection for frame pointer and return address only

- other stack variables are not protected

Unable to defend against arbitrary writes

- i.e., non-continuous overrides

12 / 37



Introduction Canary ASLR/PIE Heap Diversity

Outline

1 Introduction

2 Stack canary

3 Randomizing memory addresses

4 Entropies in heap allocators

5 Security through diversity

13 / 37



Introduction Canary ASLR/PIE Heap Diversity

Back to the example

1 int main() {
2 char buf[1024];
3 scanf("%s", buf);

4 }

Meaningful values
for return address:

Shellcode (stack)

system() in libc

return address

frame pointer

canary

buf

(1024 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

Env

Stack

Heap

BSS

Data

Text
low address

high address

14 / 37



Introduction Canary ASLR/PIE Heap Diversity

Back to the example

1 int main() {
2 char buf[1024];
3 scanf("%s", buf);

4 }

Meaningful values
for return address:

Shellcode (stack)

system() in libc
return address

frame pointer

canary

buf

(1024 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

Env

Stack

Heap

BSS

Data

Text
low address

high address

14 / 37



Introduction Canary ASLR/PIE Heap Diversity

Back to the example

1 int main() {
2 char buf[1024];
3 scanf("%s", buf);

4 }

Meaningful values
for return address:

Shellcode (stack)

system() in libc
return address

frame pointer

canary

buf

(1024 bytes)

address of buf

address of "%s"

return address

frame pointer

...

high address

...

low address

Env

Stack

Heap

BSS

Data

Text
low address

high address
14 / 37



Introduction Canary ASLR/PIE Heap Diversity

Randomize the addresses

ASLR — Address Space Layout Randomization, is a system-level
protection that randomly arranges the address space positions of key
data areas of a process, including the base of the executable and the
positions of the stack, heap and libraries.

PIE — Position Independent Executable, is a body of machine code
that executes properly regardless of its absolute address. This is also
known as position-independent code (PIC).

15 / 37



Introduction Canary ASLR/PIE Heap Diversity

Base case: static program

Env

Stack

Heap

.bss + .data

.text

low address

high address

Fixed address

Fixed address

Fixed address

16 / 37



Introduction Canary ASLR/PIE Heap Diversity

Static program + shared libraries

Env

Stack

.bss + .data

.text

.bss + .data

.text

Heap

.bss + .data

.text

low address

high address

Fixed address

Fixed address

libc.so

Fixed address

ld.so

Fixed address

Fixed address

17 / 37



Introduction Canary ASLR/PIE Heap Diversity

Static program + shared libraries + ASLR

Env

Stack

.bss + .data

.text

.bss + .data

.text

Heap

.bss + .data

.text

low address

high address

Fixed address

Randomized address

libc.so

Randomized address

ld.so

Randomized address

Randomized address

18 / 37



Introduction Canary ASLR/PIE Heap Diversity

Static program + shared libraries + ASLR + PIE

Env

Stack

.bss + .data

.text

.bss + .data

.text

Heap

.bss + .data

.text

low address

high address

Randomized address

Randomized address

libc.so

Randomized address

ld.so

Randomized address

Randomized address

19 / 37



Introduction Canary ASLR/PIE Heap Diversity

Paranoid randomization

Figure: Different level of randomization proposed by the ASLR-NG project
20 / 37

http://cybersecurity.upv.es/solutions/aslr-ng/aslr-ng.html


Introduction Canary ASLR/PIE Heap Diversity

Limitations of ASLR + PIE

Limited entropy

- visualized by the ASLR-NG project

Memory layout inheritance

- Child processes inherit/share the memory layout of the parent.

21 / 37

http://cybersecurity.upv.es/solutions/aslr-ng/aslr-ng.html


Introduction Canary ASLR/PIE Heap Diversity

Limitations of ASLR + PIE

Limited entropy

- visualized by the ASLR-NG project

Memory layout inheritance

- Child processes inherit/share the memory layout of the parent.

21 / 37

http://cybersecurity.upv.es/solutions/aslr-ng/aslr-ng.html


Introduction Canary ASLR/PIE Heap Diversity

Outline

1 Introduction

2 Stack canary

3 Randomizing memory addresses

4 Entropies in heap allocators

5 Security through diversity

22 / 37



Introduction Canary ASLR/PIE Heap Diversity

Motivation for secure heap allocators

Memory errors are equally (if not more) likely to happen on heap
objects which can cause all sorts of unexpected behaviors.

23 / 37



Introduction Canary ASLR/PIE Heap Diversity

A heap buffer overflow case

1 struct dispatcher {
2 uint64_t counter;
3 int (*action)(uint64_t counter, char *data);
4 }

5

6 int main() {
7 char *p1 = malloc(16);
8 char *p2 = malloc(sizeof(struct dispatcher));
9 p2->counter = 0;

10 p2->action = /* some valid function */;

11

12 scanf("%s", p1);

13 int result = p2->action(p2->counter, p1);
14

15 free(p1);

16 free(p2);

17 return result;
18 }

24 / 37



Introduction Canary ASLR/PIE Heap Diversity

A heap use-after-free case

1 struct dispatcher {
2 uint64_t counter;
3 int (*action)(uint64_t counter, char *data);
4 }

5

6 char *p1;
7

8 void main() {
9 p1 = malloc(16);

10 pthread_create(/* ... */, thread_1);

11 pthread_create(/* ... */, thread_2);

12 /* wait for thread termination */

13 }

1 void thread_1() {
2 scanf("%15s", p1);

3 /* ... compromised here ... */

4 /* use-after-free */

5 free(p1);

6 ((struct dispatcher *)p1)
7 ->action = /* bad function */;

8 }

1 void thread_2() {
2 char *p2 = malloc(
3 sizeof(struct dispatcher));
4 p2->counter = 0;

5 p2->action = /* good function */;

6 p2->action(p2->counter, p1);

7 free(p2);

8 }
25 / 37



Introduction Canary ASLR/PIE Heap Diversity

Secure heap allocators

These exploits have implicit assumptions on the layout of the heap,
which can be invalidated by a secure heap allocator.

26 / 37



Introduction Canary ASLR/PIE Heap Diversity

Basic allocator example

Initial state:

p1 = malloc(16);

p2 = malloc(sizeof(..));

free(p1);

p3 = malloc(sizeof(..));

0Each square is a 4-byte box
27 / 37



Introduction Canary ASLR/PIE Heap Diversity

Allocator + random placement

Initial state:

p1 = malloc(16);

p2 = malloc(sizeof(..));

free(p1);

p3 = malloc(sizeof(..));

0Each square is a 4-byte box
28 / 37



Introduction Canary ASLR/PIE Heap Diversity

Allocator + random placement + canary

Initial state:

p1 = malloc(16);

p2 = malloc(sizeof(..));

free(p1);

p3 = malloc(sizeof(..));

0Each square is a 4-byte box
29 / 37



Introduction Canary ASLR/PIE Heap Diversity

Outline

1 Introduction

2 Stack canary

3 Randomizing memory addresses

4 Entropies in heap allocators

5 Security through diversity

30 / 37



Introduction Canary ASLR/PIE Heap Diversity

Intuition: gene/DNA diversity

In biology, maintaining high genetic diversity allows species to
adapt to future environmental changes, survive from deadly diseases,
and avoid inbreeding.

Similarly, we expect software diversity to protect software systems
(especially critical systems) from deadly viruses and attacks while
also serving as an early signal of being attacked.

31 / 37



Introduction Canary ASLR/PIE Heap Diversity

Intuition: gene/DNA diversity

In biology, maintaining high genetic diversity allows species to
adapt to future environmental changes, survive from deadly diseases,
and avoid inbreeding.

Similarly, we expect software diversity to protect software systems
(especially critical systems) from deadly viruses and attacks while
also serving as an early signal of being attacked.

31 / 37



Introduction Canary ASLR/PIE Heap Diversity

Core architecture

Instance 0 Instance 1 . . . Instance N

Input dispatching

Synchronization & output aggregation

32 / 37



Introduction Canary ASLR/PIE Heap Diversity

Core architecture (under attack)

Instance 0 Instance 1 . . . Instance N

Input dispatching

Synchronization & output aggregation

33 / 37



Introduction Canary ASLR/PIE Heap Diversity

Challenges of applying diversity-based defenses

Source of diversity

Synchronization of diversified instances

34 / 37



Introduction Canary ASLR/PIE Heap Diversity

Source of diversity

Compiler/loader-assisted diversity

- e.g., direction of stack growth
- e.g., different canary values
- e.g., different sanitizer instrumentation

N-version programming

- e.g., different language VM (V8 vs SpiderMonkey)
- e.g., different applications (nginx vs apache web server)
- e.g., similar applications from independent vendors/teams

Platform diversity

- e.g., different libc implementations (glibc vs musl libc)
- e.g., Adobe Reader on MacOS and Windows
- e.g., Server programs on Intel and ARM CPUs

35 / 37



Introduction Canary ASLR/PIE Heap Diversity

Source of diversity

Compiler/loader-assisted diversity

- e.g., direction of stack growth
- e.g., different canary values
- e.g., different sanitizer instrumentation

N-version programming

- e.g., different language VM (V8 vs SpiderMonkey)
- e.g., different applications (nginx vs apache web server)
- e.g., similar applications from independent vendors/teams

Platform diversity

- e.g., different libc implementations (glibc vs musl libc)
- e.g., Adobe Reader on MacOS and Windows
- e.g., Server programs on Intel and ARM CPUs

35 / 37



Introduction Canary ASLR/PIE Heap Diversity

Source of diversity

Compiler/loader-assisted diversity

- e.g., direction of stack growth
- e.g., different canary values
- e.g., different sanitizer instrumentation

N-version programming

- e.g., different language VM (V8 vs SpiderMonkey)
- e.g., different applications (nginx vs apache web server)
- e.g., similar applications from independent vendors/teams

Platform diversity

- e.g., different libc implementations (glibc vs musl libc)
- e.g., Adobe Reader on MacOS and Windows
- e.g., Server programs on Intel and ARM CPUs

35 / 37



Introduction Canary ASLR/PIE Heap Diversity

Mode of synchronization

Online mode (via rendezvous points)

Offline mode (via record-and-replay)

The key is to synchronize all sources of nondeterminism.

36 / 37



Introduction Canary ASLR/PIE Heap Diversity

⟨ End ⟩

37 / 37


	entropy / moving-target defense
	Introduction
	Stack canary
	Randomizing memory addresses
	Entropies in heap allocators
	Security through diversity


