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What is a race condition?
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Wikipedia’s definition

A race condition is the condition of a software system where
the system’s substantive behavior is dependent on the sequence
or timing of other uncontrollable events, leading to unexpected
or inconsistent results.

It becomes a bug when one or more of the possible behaviors is
undesirable.
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What is a data race?
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Data race definition in C++ standard

When

an evaluation of an expression writes to a memory location and
another evaluation reads or modifies the same memory location,

the expressions are said to conflict.

A program that has two conflicting evaluations has a data race unless:

both evaluations execute on the same thread, or
both conflicting evaluations are atomic operations, or
one of the conflicting evaluations happens-before another.

Adapted from a community-backed C++ reference site. For the full
version, please refer to the related sections in C++ working draft.
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https://en.cppreference.com/w/cpp/language/memory_model
http://eel.is/c++draft/intro.races
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An intuitive definition

Intuitively, a data race happens when:

1 There are two memory accesses from different threads.

2 Both accesses target the same memory location.

3 At least one of them is a write operation.

4 Both accesses could interleave freely without restrictions such as
synchronization primitives or causality relations.
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Test of your understanding

Q: Based on the definition of race condition and data race, what do
you think are the relationship between them?

8 / 49



Introduction Simple Tricky Atomicity Clocks Other

Outline

1 Concepts: race condition vs data race

2 Introductory examples

3 More complex examples

4 Atomicity violations

5 A formal way to model concurrency

6 Other form of races

9 / 49



Introduction Simple Tricky Atomicity Clocks Other

Introductory case

global var count = 0

for(i = 0; i < x; i++) {
/* do sth critical */

......

count++;

}

Thread 1

for(i = 0; i < y; i++) {
/* do sth critical */

......

count++;

}

Thread 2

Q: What is the value of count when both threads terminate?
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Introductory case
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......

lock(mutex);
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}
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Race conditions in other settings

Race conditions are not tied to a specific programming language,
instead, they are tied to data sharing in concurrent execution.

For example, in the database context:

Q: If two database clients send the following requests concurrently,
what will be the result (both try to withdraw $100 from Alice)?

Client 1
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";

Client 2
SELECT @balance = Balance

FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance =

@balance - 100 WHERE Name = "Alice";
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Race conditions in a database setting

One possible interleaving (that messes up the states)

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

Q: How to prevent the race condition in this case?

Interleavings with transactions
BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;

BEGIN TRANSACTION;

SELECT @balance = Balance FROM Ledger WHERE Name = "Alice";

UPDATE Ledger SET Balance = @balance - 100 WHERE Name = "Alice";

COMMIT TRANSACTION;
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
count++;

}

Thread 1

for(i = 0; i < y; i++) {
count++;

}

Thread 2
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Free interleavings without locking

Thread 1 Thread 2
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

count++;

unlock(mutex);

}

Thread 2
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Limited interleavings with locking

Thread 1 Thread 2

lock

R
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unlock
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R
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unlock
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Revisiting the definition

Intuitively, a data race happens when:

1 There are two memory accesses from different threads.

2 Both accesses target the same memory location.

3 At least one of them is a write operation.

4 Both accesses could interleave freely without restrictions such as
synchronization primitives

(((((((((((hhhhhhhhhhh
or causality relations.
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Causality relations: an example

1 #include <stdio.h>

2 #include <pthread.h>

3

4 int i;
5 int retval;
6

7 void* foo(void* p){
8 printf("Value of i: %d\n", i);
9 printf("Value of j: %d\n", *(int *)p);

10 pthread_exit(&retval);

11 }

12

13 int main(void){
14 int i = 1;
15 int j = 2;
16

17 pthread_t id;

18 pthread_create(&id, NULL, foo, &j);

19 pthread_join(id, NULL);

20

21 printf("Return value from thread: %d\n", retval);
22 }

18 / 49
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Causality relations

Thread 1 Thread 2

Wvar i

Wvar j

pthread_create

pthread_join

Rvar retval

<thread start>

R var i

R var j

W var retval

<thread end>
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Revisiting the definition

If we can find, statically or dynamically, a pair of memory access
instructions (A1,A2) such that

they originate from different threads,

both A1 and A2 target the same memory location, AND

at least one of them is a write operation,

then we conclude that (A1,A2) must be one of the following cases:

1 A1 strictly happens before A2 or vice versa due to causality, OR

2 A1 and A2 can only occur when a common lock is held, OR

3 (A1,A2) is a data race.

Q: Wait... how are locks implemented?
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Common synchronization primitives

Lock / Mutex / Critical section

Read-write lock

Barrier

Semaphore
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How are synchronization primitives implemented?

Hardware support

- Atomic swap
- Atomic read-modify-write

* compare-and-swap
* test-and-set
* fetch-and-add
* ......

Software algorithms

- Dekker’s algorithm
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Spinlock with atomic swap (xchg)
1 locked: ; The lock variable. 1 = locked, 0 = unlocked.

2 dd 0

3

4 spin_lock:

5 mov eax, 1 ; Set the EAX register to 1.

6 xchg eax, [locked] ; Atomically swap the EAX register with

7 ; the lock variable.

8 ; This will always store 1 to the lock, leaving

9 ; the previous value in the EAX register.

10 test eax, eax ; Test EAX with itself. Among other things, this

11 ; will set the processor’s Zero Flag if EAX is 0.

12 ; If EAX is 0, then the lock was unlocked and

13 ; we just locked it.

14 ; Otherwise, EAX is 1 and we didn’t acquire the lock.

15 jnz spin_lock ; Jump back to the MOV instruction if the Zero Flag is

16 ; not set; the lock was previously locked, and so

17 ; we need to spin until it becomes unlocked.

18 ret ; The lock has been acquired, return to the caller.

19

20 spin_unlock:

21 xor eax, eax ; Set the EAX register to 0.

22 xchg eax, [locked] ; Atomically swap the EAX register with

23 ; the lock variable.

24 ret ; The lock has been released. 24 / 49
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Spinlock with atomic swap (xchg)

Q: Are there data races or race conditions in spinlock
implementation?

A: By looking at the code

Data race: Yes, but hardware guarantees atomicity

Race condition: No
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Dekker’s algorithm

1 bool wants_to_enter[2] = {false, false};
2 int turn = 0; /* or turn = 1 */

1 // lock

2 wants_to_enter[0] = true;

3 while (wants_to_enter[1]) {
4 if (turn != 0) {
5 wants_to_enter[0] = false;

6 // busy wait

7 while (turn != 0) {}
8 wants_to_enter[0] = true;

9 }

10 }

11

12 /* ... critical section ... */

13

14 // unlock

15 turn = 1;

16 wants_to_enter[0] = false;

Thread 1

1 // lock

2 wants_to_enter[1] = true;

3 while (wants_to_enter[0]) {
4 if (turn != 1) {
5 wants_to_enter[1] = false;

6 // busy wait

7 while (turn != 1) {}
8 wants_to_enter[1] = true;

9 }

10 }

11

12 /* ... critical section ... */

13

14 // unlock

15 turn = 0;

16 wants_to_enter[1] = false;

Thread 2
26 / 49
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Dekker’s algorithm

Q: Are there data races or race conditions in Dekker’s algorithm?

A: By looking at the code

Data race: Yes, but hardware guarantees atomicity

Race condition: No
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Is this a data race or a race condition or neither?

1 int x = 0;
2 bool flag = false;
3 lock mutex = unlocked;

1 x++;

2 lock(mutex);

3 flag = true;

4 unlock(mutex);

Thread 1

1 while(true) {
2 lock(mutex);

3 if (flag) {
4 unlock(mutex);

5 break;
6 }

7 unlock(mutex);

8 }

9 x--;

Thread 2
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Is this a data race or a race condition or neither?

1 int x = 0;
2 bool flag = false;

1 x++;

2 flag = true;

Thread 1

1 while (!flag) {};
2 x--;

Thread 2
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Revisit the example

global var count = 0

for(i = 0; i < x; i++) {
lock(mutex);

t = count;

unlock(mutex);

t++;

lock(mutex);

count = t;

unlock(mutex);

}

Thread 1

for(i = 0; i < y; i++) {
lock(mutex);

t = count;

unlock(mutex);

t++;

lock(mutex);

count = t;

unlock(mutex);

}

Thread 2
31 / 49
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Revisit the example

Q: In this modified example, is there a data race?

A: No

Q: But the results are the same with all locks removed?

global var count = 0

for(i = 0; i < x; i++) {
t = count;

t++;

count = t;

}

for(i = 0; i < y; i++) {
t = count;

t++;

count = t;

}

A: No, depending on how hardware works (e.g., per-bit conflict)

32 / 49



Introduction Simple Tricky Atomicity Clocks Other

Revisit the example

Q: In this modified example, is there a data race?

A: No

Q: But the results are the same with all locks removed?

global var count = 0

for(i = 0; i < x; i++) {
t = count;

t++;

count = t;

}

for(i = 0; i < y; i++) {
t = count;

t++;

count = t;

}

A: No, depending on how hardware works (e.g., per-bit conflict)

32 / 49



Introduction Simple Tricky Atomicity Clocks Other

Revisit the example

Q: In this modified example, is there a data race?

A: No

Q: But the results are the same with all locks removed?

global var count = 0

for(i = 0; i < x; i++) {
t = count;

t++;

count = t;

}

for(i = 0; i < y; i++) {
t = count;

t++;

count = t;

}

A: No, depending on how hardware works (e.g., per-bit conflict)

32 / 49



Introduction Simple Tricky Atomicity Clocks Other

Revisit the example

Q: In this modified example, is there a data race?

A: No

Q: But the results are the same with all locks removed?

global var count = 0

for(i = 0; i < x; i++) {
t = count;

t++;

count = t;

}

for(i = 0; i < y; i++) {
t = count;

t++;

count = t;

}

A: No, depending on how hardware works (e.g., per-bit conflict)

32 / 49



Introduction Simple Tricky Atomicity Clocks Other

Extract the commonalities of the two variants

Q: What is common in developers’ expectations in the two variants?

A: States do not change for a critical section during execution.

A: Generalization: states remain integral for a critical section
during execution. No change of states is just one way of remaining
integral (assuming state is integral before the critical section).

33 / 49
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State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

1 int add_x(v: int) {
2 g.x += v;

3 g.y -= v;

4 }

Thread 1

1 int add_y(v: int) {
2 g.y += v;

3 g.x -= v;

4 }

Thread 2
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State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

3 lock mutex = unlocked;

1 int add_x(v: int) {
2 lock(mutex);

3 g.x += v;

4 unlock(mutex);

5 lock(mutex);

6 g.y -= v;

7 unlock(mutex);

8 }

Thread 1

1 int add_y(v: int) {
2 lock(mutex);

3 g.y += v;

4 unlock(mutex);

5 lock(mutex);

6 g.x -= v;

7 unlock(mutex);

8 }

Thread 2

Q: Is this the right way of adding locks?

A: No, as the invariant is not guaranteed

35 / 49
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critical section in both threads

36 / 49



Introduction Simple Tricky Atomicity Clocks Other

State integrity example

1 struct R { x: int, y: int } g;
2 [invariant] g.x + g.y == 100;

3 lock mutex = unlocked;

1 int add_x(v: int) {
2 lock(mutex);

3 g.x += v;

4 g.y -= v;

5 unlock(mutex);

6 }

Thread 1

1 int add_y(v: int) {
2 lock(mutex);

3 g.y += v;

4 g.x -= v;

5 unlock(mutex);

6 }

Thread 2

Q: Is this the right way of adding locks?

A: Yes, the invariant is guaranteed at each entry and exit of the
critical section in both threads

36 / 49



Introduction Simple Tricky Atomicity Clocks Other

State integrity is hard to capture

However, in practice, the invariant often exists in

some architectural design documents (which no one reads)

code comments in a different file (which no one notices)

forklore knowledge among the dev team

the mind of the developer who has resigned a few years ago...
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How to model concurrency mathematically?

Lamport clock

Vector clock
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Lamport clock algorithm

Each thread has its own clock variable t

On initialization:

- t ← 0

On write to shared memory *ptr = val:

- t ← t + 1
- store t alongside val at memory location ptr

On read from shared memory val = *ptr:

- retrieve the stored clock t ′ at memory location ptr
- t ← max(t, t ′) + 1

Properties of Lamport clock:

a→ b =⇒ L(a) < L(b)

L(a) < L(b) ≠⇒ a→ b

40 / 49
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Vector clock algorithm

Each thread i has its own clock vector t

On initialization:

- T ← ⟨0, 0, . . . , 0⟩N , assuming N threads

On write to shared memory *ptr = val:

- T [i ]← T [i ] + 1
- store T alongside val at memory location ptr

On read from shared memory val = *ptr:

- retrieve the stored clock T ′ at memory location ptr
- ∀k ∈ [0,N) : T [k] = max(T [k],T ′[k])
- T [i ]← T [i ] + 1
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Properties of the vector clock algorithm

With the following definition on the timestamp ordering:

T = T ′ ⇐⇒ ∀i ∈ [0,N) : T [i ] = T ′[i ]

T ≤ T ′ ⇐⇒ ∀i ∈ [0,N) : T [i ] ≤ T ′[i ]

T < T ′ ⇐⇒ T ≤ T ′ ∧ T ̸= T ′

T ∥ T ′ ⇐⇒ T ̸≤ T ′ ∧ T ′ ̸≤ T

We have:

a→ b ⇐⇒ V (a) < V (b)

a = b ⇐⇒ V (a) = V (b)

a ∥ b ⇐⇒ V (a) ∥ V (b)

42 / 49
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Practice exercise (vector clock)

1 int x = 0;
2 atomic_bool flag = false;

1 x++;

2 flag = true;

Thread 1

1 while (!flag) {};
2 x--;

Thread 2

Prove: the write of x at x-- in thread 2 can never happen before
the read of x in x++ in thread 1.
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Practice exercise (vector clock)

1 int x = 0;
2 bool r = false;

1 v = load(&x);

2 store(&x, v + 1);

3 store(&r, true);

Thread 1

1 loop:

2 c = load(&r);

3 jump_if_false(c, loop);

4 v = load(&x);

5 store(&x, v - 1);

Thread 2

Prove: line 5 at thread 2 can never happen before line 1 at thread 1.
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Outline

1 Concepts: race condition vs data race

2 Introductory examples

3 More complex examples

4 Atomicity violations

5 A formal way to model concurrency

6 Other form of races
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A more abstract view of race conditions

Q: Why do race conditions happen in the first place?

A: Because two threads in the same process share memory

We can further generalize this concept by asking:

Q: What else do they share?
Q: What about other entities that may run concurrently?
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Example: race over the filesystem

1 #include <...>

2

3 int main(int argc, char *argv[]) {
4 FILE *fd;
5 struct stat buf;
6

7 if (stat("/some_file", &buf)) {
8 exit(1); // cannot read stat message

9 }

10

11 if (buf.st_uid != getuid()) {
12 exit(2); // permission denied

13 }

14

15 fd = fopen("/some_file", "wb+");

16 if (fd == NULL) {
17 exit(3); // unable to open the file

18 }

19

20 fprintf(f, "<some-secret-value>");

21 fclose(fd);

22 return 0;
23 }
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Example: the Dirty COW exploit

CVE-2016-5195

Allows local privilege escalation: user(1000) → root(0).

Existed in the kernel for nine years before finally patched.

Details on the Website.
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⟨ End ⟩
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