CS 489 / 698: Software and Systems Security

Module: Common Vulnerabilities
Lecture: other typical and emerging bug types

Meng Xu (University of Waterloo)

Fall 2024

Introduction
e0

Outline

@ Introduction: why study these bug types?

2/35

Introduction
o]]

“Nice" properties of memory errors

@ They have universally accepted definitions
- Once you find a memory error, you do not need to diligently argue

that this is a bug and not a feature

@ They often lead to a set of known consequences that are generally
considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a

working exploit to justify it

@ Finding them typically do not require program-specific domain

knowledge
- If you have a technique that can find memory errors in one codebase,

you can scale it up to millions of codebases

3/35

Introduction
o]]

“Nice" properties of memory errors

@ They have universally accepted definitions
- Once you find a memory error, you do not need to diligently argue

that this is a bug and not a feature

@ They often lead to a set of known consequences that are generally
considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a

working exploit to justify it

@ Finding them typically do not require program-specific domain
knowledge
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases

In fact, very few types of vulnerabilities meet these requirements.

3/35

Introduction

oe

“Nice" properties of memory errors

@ They have universally accepted definitions
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

@ They often lead to a set of known consequences that are generally
considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

@ Finding them typically do not require program-specific domain
knowledge
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases

In fact, very few types of vulnerabilities meet these requirements.
—> Most of the bug types covered today do not meet all
requirements, but they are representative examples to show easy it

is to make a mistake in programming.
3/35

Outline

© Undefined / counterintuitive behaviors

4/35

Undef
@®0000

Unsafe integer operations

Mathmetical integers are unbounded

WHILE

Machine integers are bounded by a fixed number of bits.

5/35

Undef
0e000

Unsafe integer operations

mapping (address => uint256) public balanceOf;

1
2
3 // INSECURE

4 function transfer(address _to, uint256 _value) {
5 /* Check if sender has balance */

6 require(balanceOf[msg.sender] >= _value);

7
8
9

/* Add and subtract new balances */

balanceOf[msg.sender] -= _value;
10 balanceOf[_to] += _value;
11 }
Q: What is the bug here? J

6/35

Undef
0e000

Unsafe integer operations

mapping (address => uint256) public balanceOf;

1
2
3 // INSECURE

4 function transfer(address _to, uint256 _value) {
5 /% Check if sender has balance */

6 require(balanceOf[msg.sender] >= _value);

7
8
9

/* Add and subtract new balances */

balanceOf[msg.sender] -= _value;
10 balanceOf[_to] += _value;
11 }
1 // SECURE
2 function transfer(address _to, uint256 _value) {
3 /% Check if sender has balance and for overflows */
4 require(balanceOf[msg.sender] >= _value &&
5 balanceOf[_to] + _value >= balanceOf[_to]);
6
7 /% Add and subtract new balances */
8 balanceOf[msg.sender] -= _value;
9 balanceOf[_to] += _value;

i
)
-

6/35

Undef
00e00

Common cases for integer overflows and underflows

signed <> unsigned

size-decreasing cast (a.k.a., truncate)

+, -, * for both signed and unsigned integers

/ for signed integers

++ and -- for both signed and unsigned integers
+=, -=, *= for both signed and unsigned integers
/= for signed integers

Negation - for signed and unsigned integers

<< for both signed and unsigned integers

7/35

Undef
000e0

Unsafe floating-point operations

Mathmetical real numbers are arbitrary precision

WHILE

Machine floating-point numbers are bounded by a limited precision.

8/35

Undef
O000e

The perils of floating point (in Python)

>> 1+ .1+ .1==.3

Q: True or False? J

9/35

https://www.lahey.com/float.htm

Undef
O000e

The perils of floating point (in Python)

>> 1+ .1+ .1==.3

Q: True or False? J

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)

Q: True or False? J

9/35

https://www.lahey.com/float.htm

Undef
O000e

The perils of floating point (in Python)

>> 1+ .1+ .1==.3

Q: True or False? J

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)

Q: True or False? J

>>> round(.1 + .1 + .1, 10) == round(.3, 10)

Q: True or False? J

9/35

https://www.lahey.com/float.htm

Undef
O000e

The perils of floating point (in Python)

>> 1+ .1+ .1==.3

Q: True or False? J

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)

Q: True or False? J

>>> round(.1 + .1 + .1, 10) == round(.3, 10)

Q: True or False? J

Further reading: The Perils of Floating Point

9/35

https://www.lahey.com/float.htm

Undef
[le]

Pointer relational comparison

1 #include <stdio.h>
2
3 struct Record {
int a;
int b;
1

int main(void) {

struct Record r = { 0, 0 };
10 /* defined behavior */
11 if (&r.a < &r.b) {

4
5
6
7
8
9

12 printf("Hello\n");
13 } else {
14 printf("World\n");
15 }
16 return 0;
17 }
Q: Output?)

10/35

Undef
[le]

Pointer relational comparison

1 #include <stdio.h>

2

3 struct Record {

4 int a;

5 int b; 1 #include <stdio.h>

6 }; 2

7 3 int main(void) {

8 int main(void) { 4 int a = 0;

9 struct Record r = { 0, 0 }; 5 int b = 0;

10 /% defined behavior */ 6 /* undefined behavior */
11 if (&r.a < &r.b) { 7 if (&a < &b) {

12 printf("Hello\n"); 8 printf("Hello\n");

13 } else { 9 } else {

14 printf("World\n"); 10 printf("World\n");

15 } 11 }

16 return 0; 12 return 0;

17 } 13 }

Q: Output? Q: Output?)

10/35

Undef
o]]

Pointer relational comparison

In C and C++, the relational comparison of pointers to objects
(i.e., < or >) is only strictly defined if

@ the pointers point to members of the same object, or

@ the pointers point to elements of the same array.

11/35

Undef
o]]

Pointer relational comparison

In C and C++, the relational comparison of pointers to objects
(i.e., < or >) is only strictly defined if

@ the pointers point to members of the same object, or

@ the pointers point to elements of the same array.

However, most compilers will emit a comparison operation based on
the numerical value of the pointers.

11/35

Undef
o]]

Pointer relational comparison

In C and C++, the relational comparison of pointers to objects
(i.e., < or >) is only strictly defined if

@ the pointers point to members of the same object, or

@ the pointers point to elements of the same array.

However, most compilers will emit a comparison operation based on
the numerical value of the pointers. = This is not strictly a bug,
as undefined behavior means the compiler is free to choose whatever
action that might make sense.

11/35

Sanity
[le]

Outline

© Insufficient sanitization on untrusted input

12/35

Sanity
oe

Untrusted input

Handing untrusted input can be dangerous!

13/35

Sanity
[le]e}

SQL injection

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 }

public boolean login(String username, String password) {

String sql =
"SELECT * FROM Users WHERE " +
"username = ’'" + username + "’ AND " +
"password = '" + password + "’;";

ResultSet result = db.executeQuery(sql);
if (result.next()) {
/% login success */
return true;
} else {
/* login failure */
return false;
}

14 /35

Sanity
(o] le}

Mitigating SQL injection with sanitization

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 }

public boolean login(String username, String password) {

PreparedStatement sql = db.prepareStatement(

"SELECT * FROM Users WHERE username = ? AND password = ?;")
sql.setString(l, username);
sql.setString(2, password);

ResultSet result = db.executeQuery(sql);
if (result.next()) {
/% login success */
return true;
} else {
/* login failure */
return false;
}

15/35

Sanity
[efe]]

SQL injection in the wild

Original source unknown, found on Twitter

Sanity

printf is powerful

A format string vulnerability is a bug where untrusted user input is
passed as the format argument to printf, scanf, or another
function in that family.

For details, see the man page of printf.

17/35

https://man7.org/linux/man-pages/man3/printf.3.html

Sanity

printf is powerful

IDA+GDB+-Wall

Debugging with
Debugging with Cheat Engine and printf

Cheat Engine and printf

14%

2% 0.1%
~ KAPWING

55 70 85 100 115 130 145

18/35

Sanity

Format string vulnerability demo

1 #include <stdio.h>
2 #include <unistd.h>

int main() {
int secret = Oxdeadbeef;

char name[64] = {0};

read(0, name, 64);

printf("Hello ");

10 printf(name) ;

11 printf(", try to get the secret!\n");
12 return O;

19/35

Sanity

Format string vulnerability demo

1 #include <stdio.h>
2 #include <unistd.h>
3
int main() {
int secret = Oxdeadbeef;

char name[64] = {0};

read(0, name, 64);

printf("Hello ");

10 printf(name) ;

11 printf(", try to get the secret!\n");
12 return O;

13 }

4
5
6
7
8
9

To trigger the vulnerability, try something like %7$11x, although %7
can be other values depending on the OS and C compiler version.

19/35

Sanity

Cross-site scripting (XSS)

Cross-site scripting (XSS) enables attackers to inject client-side
scripts into web pages viewed by

20/35

Sanity

Same-origin policy

This essentially states that if content from one site (such as
https://crysp.uwaterloo.ca) is granted permission to access

resources (e.g., cookies etc.) on a web browser, then content from
the same origin will share these permissions.

21/35

https://crysp.uwaterloo.ca
https://crysp.uwaterloo.ca/research/
https://crysp.uwaterloo.ca/courses/

Sanity

Same-origin policy

This essentially states that if content from one site (such as
https://crysp.uwaterloo.ca) is granted permission to access
resources (e.g., cookies etc.) on a web browser, then content from
the same origin will share these permissions.

The same-origin property is defined as two URLs sharing the same
@ URI scheme (e.g. ftp, http, or https)
@ hostname (e.g., crysp.uwaterloo.ca) and

@ port number (e.g., 80)

21/35

https://crysp.uwaterloo.ca
https://crysp.uwaterloo.ca/research/
https://crysp.uwaterloo.ca/courses/

Sanity

Same-origin policy

This essentially states that if content from one site (such as
https://crysp.uwaterloo.ca) is granted permission to access
resources (e.g., cookies etc.) on a web browser, then content from
the same origin will share these permissions.

The same-origin property is defined as two URLs sharing the same
@ URI scheme (e.g. ftp, http, or https)
@ hostname (e.g., crysp.uwaterloo.ca) and

@ port number (e.g., 80)

For example, these webpages are from the same origin:
@ https://crysp.uwaterloo.ca/research/ and

@ https://crysp.uwaterloo.ca/courses/

21/35

https://crysp.uwaterloo.ca
https://crysp.uwaterloo.ca/research/
https://crysp.uwaterloo.ca/courses/

Sanity

XSS Demo |

1 from urllib.parse import unquote as url_unquote

2 from http.server import BaseHTTPRequestHandler, HTTPServer
3

4 HOST = "localhost"

5 PORT = 8080

6

7 PAGE = """<html>

8 <form action=’/submit’ method=’POST’>

9 <input type=’text’ name=’comment’ />

10 </form>

11 </html>"""

12

13 class XSSDemoServer (BaseHTTPRequestHandler):

14 def do_GET(self):

15 self.send_response(200)

16 self.send_header("Content-type", "text/html™)
17 self.end_headers()

18 self.wfile.write(bytes(PAGE, "utf-8"))

19

20 def do_POST(self):

21 size = int(self.headers.get(’Content-Length’))
22 body = url_unquote(self.rfile.read(size).decode(’utf-8'))

22/35

Sanity

XSS Demo |l

23 self.send_response(200)
24 self.send_header("Content-type", "text/html™)
25 self.end_headers()
26 self.wfile.write(bytes("<html>%s</html>" % body[8:], "utf-8"))
27
28
29 if __name__ == "__main__":
30 server = HTTPServer ((HOST, PORT), XSSDemoServer)
31 print("Server started http://%s:%s" % (HOST, PORT))
32
33 try:
34 server.serve_forever()
35 except KeyboardInterrupt:
36 pass
37
38 server.server_close()
39 print("Server stopped.")
Q: Try <script>alert("XSS")</script> J

23/35

Untrusted
[]

Outline

@ Invocation of / by untrusted logic

24/35

Untrusted
[JeJele]

Calling into untrusted code is dangerous

25/35

https://www.coindesk.com/learn/understanding-the-dao-attack/

Untrusted
[JeJele]

Calling into untrusted code is dangerous

The DAO attack on Ethereum

25/35

https://www.coindesk.com/learn/understanding-the-dao-attack/

Untrusted
[JeJele]

Calling into untrusted code is dangerous

The DAO attack on Ethereum

In 2016, an attacker exploited a vulnerability in The DAQO’s
wallet smart contracts. In a couple of weeks (by Saturday, 18th
June), the attacker managed to drain more than 3.6 million
ether into an attacker-controlled account. The price of ether
dropped from over $20 to under $13.

25/35

https://www.coindesk.com/learn/understanding-the-dao-attack/

Untrusted
[JeJele]

Calling into untrusted code is dangerous

The DAO attack on Ethereum

In 2016, an attacker exploited a vulnerability in The DAQO’s
wallet smart contracts. In a couple of weeks (by Saturday, 18th
June), the attacker managed to drain more than 3.6 million
ether into an attacker-controlled account. The price of ether
dropped from over $20 to under $13.

The DAO attack was partially recovered by a hard-fork of the
Ethereum blockchain that returns all stolen ethers into a special
smart contract (which can be subsequently withdrawn). This
resulted in two chains: Ethereum classic and Ethereum.

25/35

https://www.coindesk.com/learn/understanding-the-dao-attack/

Untrusted
[e] Tele]

Reentrancy attack (victim contract)

1 contract {

2 uint256 public withdrawalLimit = 1 ether;

3 mapping(address => uint256) public lastWithdrawTime;

4 mapping(address => uint256) public balances;

5

6 function depositFunds() public payable {

7 balances[msg.sender] += msg.value;

8 }

9

10 function withdrawFunds (uint256 _weiToWithdraw) public {
11 require(balances[msg.sender] >= _weiToWithdraw);

12 require(_weiToWithdraw <= withdrawalLimit);

13 require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
14 require(msg.sender.call.value(_weiToWithdraw) ());

15

16 balances[msg.sender] -= _weiToWithdraw;

17 lastWithdrawTime[msg.sender] = now;

18 }

19 }

26/35

Untrusted
[e]e] o]

Reentrancy attack (attacker’s contract)

1 import "EtherStore.sol";

2

3 contract {

4 EtherStore public etherStore;

5

6 constructor(address _etherStoreAddress) {
7 etherStore = EtherStore(_etherStoreAddress);
8 1}

9 function pwnEtherStore() public payable {
10 require(msg.value >= 1 ether);

11 etherStore.depositFunds.value(l ether)();
12 etherStore.withdrawFunds(1l ether);

13 }

14 function collectEther() public {

15 msg.sender. transfer(this.balance);

16 }

17 function () payable {

18 if (etherStore.balance > 1 ether) {

19 etherStore.withdrawFunds(1l ether);
20 }

21 }

22 }

27/35

Untrusted
[e]e] o]

Reentrancy attack (attacker’s contract)

1 import "EtherStore.sol";

2

3 contract {

4 EtherStore public etherStore;

5

6 constructor(address _etherStoreAddress) {
7 etherStore = EtherStore(_etherStoreAddress);
8 1}

9 function pwnEtherStore() public payable {
10 require(msg.value >= 1 ether);

11 etherStore.depositFunds.value(l ether)();
12 etherStore.withdrawFunds(1l ether);

13 }

14 function collectEther() public {

15 msg.sender. transfer(this.balance);

16 }

17 function () payable {

18 if (etherStore.balance > 1 ether) {

19 etherStore.withdrawFunds(1l ether);
20 }

21 }

22 }

The attacker can drain all balance from the victim contract. 27/35

Untrusted
[e]e]e])

Reentrancy attack (the fix)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

contract {
bool reentrancyMutex = false;
uint256 public withdrawalLimit = 1 ether;
mapping(address => uint256) public lastWithdrawTime;
mapping(address => uint256) public balances;

function depositFunds() public payable {
balances[msg.sender] += msg.value;

}

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiToWithdraw);
require(_weiToWithdraw <= withdrawalLimit);
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);

balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;
reentrancyMutex = true;
msg.sender. transfer (_weiToWithdraw);
reentrancyMutex = false;

28/35

Inherent
[]

Outline

© Inherent flaws in program logic (i.e., feature not bug)

29/35

Inherent
@00

Front-running

1 contract {

2 // the keccak-256 hash of some secret string

3 bytes32 constant public hash

4 = 0xb5b5b97fafd9855eec9b41£74dfh6c38£5951141f9%9a3ecd7£44d5479b630eela;
5

6 constructor() public payable {} // load with ether

7

8 function solve(string solution) public {

9 // If you can find the pre image of the hash, receive 1000 ether

10 require(hash == sha3(solution));

11 msg.sender. transfer (1000 ether);

12 }

13 }

Q: What is the secret string? J

30/35

Inherent
@00

Front-running

1 contract {

2 // the keccak-256 hash of some secret string

3 bytes32 constant public hash

4 = 0xb5b5b97fafd9855eec9b41£74dfh6c38£5951141f9%9a3ecd7£44d5479b630eela;
5

6 constructor() public payable {} // load with ether

7

8 function solve(string solution) public {

9 // If you can find the pre image of the hash, receive 1000 ether

10 require(hash == sha3(solution));

11 msg.sender. transfer (1000 ether);

12 }

13 }

Q: What is the secret string? J
A: Ethereum!)

30/35

Inherent
@00

Front-running

1 contract {

2 // the keccak-256 hash of some secret string

3 bytes32 constant public hash

4 = 0xb5b5b97fafd9855eec9b41£74dfh6c38£5951141f9%9a3ecd7£44d5479b630eela;
5

6 constructor() public payable {} // load with ether

7

8 function solve(string solution) public {

9 // If you can find the pre image of the hash, receive 1000 ether

10 require(hash == sha3(solution));

11 msg.sender. transfer (1000 ether);

12 }

13 }

Q: What is the secret string?)
A: Ethereum!)

A validator may see this solution, check it's validity, and then
submit an equivalent transaction with a much higher gas price than
the original transaction. 30,35

Inherent
oeo

Solution to the front-running problem

o Commit-reveal

@ Submarine send

31/35

https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract

Inherent
oeo

Solution to the front-running problem

o Commit-reveal

@ Submarine send

Perfectly Decentralized Lottery-Style Non-Malleable Commitment

31/35

https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract

Inherent
[o]e]]

Sandwich attack

Formal model of the automated market maker (AMM): x - y = K.

32/35

Inherent
[o]e]]

Sandwich attack

Formal model of the automated market maker (AMM): x - y = K.

Example:
@ Initial state: xg = 10, yo = 30, K = xp - yp = 300
@ Exchange: x3 =15, y3 =20, K = x1 - y1 = 300

- Expect —5 on Token X and +10 on token Y.

32/35

Inherent
[o]e]]

Sandwich attack

Formal model of the automated market maker (AMM): x - y = K.

Example:
@ Initial state: xg = 10, yo = 30, K = xp - yp = 300
@ Exchange: x3 =15, y3 =20, K = x1 - y1 = 300

- Expect —5 on Token X and +10 on token Y.

Attack:
@ Initial state: xg = 10, yo = 30, K = xp - yp = 300
@ Front-running: x3 = 15, y3 =20, K = x1 - y1 = 300
- Attacker now holds —5 Token X and +10 token Y.
@ Exchange: xo =20, y» =15, K = xu - y» = 300
- Victim now exchanged —5 Token X but only received +5 token Y.
@ Back-running: x3 =12, y3 =25, K = x3 - y3 = 300
- Attacker now holds 3 Token X and no token Y.

32/35

Conclusion
@00

Outline

@ Concluding remarks

33/35

Conclusion
(o] le}

Conclusion

All these bugs are violations of developers’ expectations.

34/35

Conclusion
(o] le}

Conclusion

All these bugs are violations of developers’ expectations.

34/35

Conclusion
(o] le}

Conclusion

All these bugs are violations of developers’ expectations.

34/35

Conclusion
(o] le}

Conclusion

All these bugs are violations of developers’ expectations.

34/35

Conclusion
(o] le}

Conclusion

All these bugs are violations of developers’ expectations.

34/35

Conclusion
(o] le}

Conclusion

All these bugs are violations of developers’ expectations.

34/35

(End)

35/35

	other typical and emerging bug types
	Introduction: why study these bug types?
	Undefined / counterintuitive behaviors
	Unsafe arithmetics
	Pointer comparison

	Insufficient sanitization on untrusted input
	SQL injection
	Format string vulnerability
	Cross-site scripting (XSS)

	Invocation of / by untrusted logic
	Reentrancy attack
	Invalid sequencing of APIs

	Inherent flaws in program logic (i.e., feature not bug)
	Front-running
	Blockchain extractable value (BEV)

	Concluding remarks

