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Memory errors are prevalent

Source: BlackHat IL 2019 talk by Matt Miller from Microsoft

Around 70% of all the vulnerabilities in Microsoft products addressed through a security update each

year (2006 - 2018) are memory safety issues
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https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
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Memory errors are prevalent

Source: Chromium Memory Safety Report from Google.

Analysis based on 912 high or critical severity security bugs in Chromium reported in 2015 - 2020
4 / 53

https://www.chromium.org/Home/chromium-security/memory-safety/
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Memory errors are prevalent

Source: Blog post Memory Safe Languages in Android 13 from Google.

Memory safety vulnerabilities disproportionately represent Android’s most severe vulnerabilities
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https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
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Memory errors can lead to severe consequences

Heartbleed Vulnerability
(CVE-2014-0610)

A security bug in version 1.0.1 of
OpenSSL, which is a widely used
implementation of the Transport Layer
Security (TLS) protocol

It was introduced into OpenSSL in 2012
and publicly disclosed in April 2014

At the time of disclosure, some 17%
(around half a million) of the Internet’s
secure web servers certified by trusted
authorities were believed to be vulnerable
to the attack
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Memory errors can lead to severe consequences

Heartbleed Vulnerability
(CVE-2014-0610)

The Canada Revenue Agency (CRA)
reported a theft of social insurance
numbers belonging to 900 taxpayers, and
said that they were accessed through an
exploit of the bug during a 6-hour period
on 8 April 2014.

After the discovery of the attack, the
agency shut down its website and
extended the taxpayer filing deadline
from 30 April to 5 May.

On 16 April, the RCMP announced they
had charged a computer science student
in relation to the theft with unauthorized
use of a computer and mischief in
relation to data.
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Heartbleed explanation

Source: https://imgs.xkcd.com/comics/heartbleed explanation.png
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A simple C program

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(void) {
5 char buff[8];
6 int pass = 0;
7

8 printf("Enter the password: ");

9 gets(buff);

10

11 if(strcmp(buff, "warriors")) {
12 printf("Wrong password\n");
13 } else {
14 printf("Correct password\n");
15 pass = 1;

16 }

17

18 if(pass) {
19 printf ("Root privileges granted\n");
20 }

21 return 0;
22 }

Try with
gcc -m64 -fno-stack-protector

And password “golden-hawks”
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Stack layout (Linux x86-64 convention)

1 long foo(
2 long a, long b, long c,
3 long d, long e, long f,
4 long g, long h)
5 {

6 long xx = a * b * c;
7 long yy = d + e + f;
8 long zz = bar(xx, yy, g + h);
9 return zz + 20;

10 }

h
g

return address

saved rbp

xx
yy

zz

High address

Low address

RBP + 24

RBP + 16

RBP + 8

RBP

RBP - 8

RBP - 16

RBP - 24

Argument a to f passed by registers.
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Textbook exploitation of a stack overflow vulnerability

Demo
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Von Neumann architecture

PC CIR AC MAR MDR

Registers

Arithmetic / Logic Unit

Control Unit

Central Processing Unit

Memory

Computer

Input Output
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Implications of the Von Neumann architecture

Code and data reside in the same memory space and can be
addressed in a unified way

- If you manage to get the PC register to point to a memory address
contains your logic, you have effectively hijacked the control flow.

There is only one unified memory. It is the job of the compiler /
programming language / runtime to find a way to utilize the
memory efficiently.

- Variables declared in a program (e.g., int i = 0;) need to be
mapped to an address in the memory, and the mapping logic needs
to be (ideally) consistent on the same architecture.
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Definition: memory

Q: What is a conventional way of dividing up the “memory”?

A: Four types of memory on a conceptual level:

Text (where program code is initially loaded to)

Stack

Heap

Global (a.k.a., static)
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Memory layout (Linux x86-64 convention)

Environment

Stack

Heap

BSS

Data

Text
Low address

High address

Read from program binary

Initialized to zero
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Example

1 #include <stdlib.c>

2

3 //! where is this variable hosted?

4 const char *HELLO = "hello";
5

6 //! where is this variable hosted?

7 long counter;
8

9 void main() {
10 //! where is this variable hosted?

11 int val;
12

13 //! where is this variable hosted?

14 //! where is its content allocated?

15 char *msg = malloc(120);
16

17 //! what is freed here?

18 free(msg);

19

20 //! what is freed here (at end of function)?

21 }

22

23 //! what is freed here (at end of execution)?
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Example (and answers)

1 #include <stdlib.c>

2

3 // this is in the data section

4 const char *HELLO = "hello";
5

6 // this is in the BSS section

7 long counter;
8

9 void main() {
10 // this is in the stack memory

11 int val;
12

13 // the msg pointer is in the stack memory

14 // the msg content is in the heap memory

15 char *msg = malloc(120);
16

17 // msg content is explicitly freed here

18 free(msg);

19

20 // the val and msg pointer is implicitly freed here

21 }

22

23 // the global memory is only destroyed on program exit
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What is heap and why do we need it?

In C/C++, the heap is used to manually allocate (and free) new
regions of process memory during program execution.
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Heap vs stack

1 typedef struct Response {
2 int status;
3 char message[40];
4 } response_t;

5

6 response_t *say_hello() {

7 response_t* res =

8 malloc(sizeof(response_t));
9 if (res != NULL) {

10 res->status = 200;

11 strncpy(res->message, "hello", 6);

12 }

13 return res;
14 }

15 void send_back(response_t *res) {
16 // implementation omitted

17 }

18 void process() {
19 response_t *res = say_hello();

20 send_back(res);

21 free(res);

22 }

1 typedef struct Response {
2 int status;
3 char message[40];
4 } response_t;

5

6 void say_hello(response_t *res) {
7 res->status = 200;

8 strncpy(res->message, "hello", 6);

9 }

10 void send_back(response_t *res) {
11 // implementation omitted

12 }

13 void process() {
14 struct Response res;
15 say_hello(&res);

16 send_back(&res);

17 }

A stack-based implementation of
(roughly) the same functionality
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Heap: what happens after malloc()?

chunk size | used

user data

Low address Heap base pointer

p1 = malloc(50)

chunk size | used

user data
p2 = malloc(35)

chunk size | used

user data

p3 = malloc(64)

chunk size | used
user data

p4 = malloc(27)

⟨top of heap⟩

High address
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Heap: what happens after free()?

chunk size | used

user data

Low address Heap base pointer

p1 = malloc(50)

chunk size | used

user data
p2 = malloc(35); free(p2)

chunk size | used

user data

p3 = malloc(64)

chunk size | used
user data

p4 = malloc(27)

⟨top of heap⟩

High address
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Heap: what happens after free()?

chunk size | used

user data

Low address Heap base pointer

p1 = malloc(50)

chunk size | free

user data
p2 = malloc(35); free(p2)

chunk size | used

user data

p3 = malloc(64)

chunk size | used
user data

p4 = malloc(27)

⟨top of heap⟩

High address
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Real-world heap manager

For implementation details of the glibc1 memory allocator, refer to
the article from Azeria Labs.

1GNU C library
25 / 53

https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
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For exploitation of memory errors

Smashing The Stack For Fun And Profit

How2Heap — Educational Heap Exploitation
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https://insecure.org/stf/smashstack.html
https://github.com/shellphish/how2heap
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A quick recap

This presentation is about memory corruption, a.k.a.,

memory errors, or

violations of memory safety properties, or

unsafe programs

A program is memory safe if it is free of memory errors.
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Definition: safety

Q: What is “safe” in memory safety?

Observation 1: At runtime, memory is a pool of objects

Observation 2: Each object has known and limited size and lifetime

Observation 3: Once allocated, the size of an object never changes

Observation 4: A memory access is always object-oriented, i.e.

Memory read: (object_id, offset, length)

Memory write: (object_id, offset, length, value)

Wait..., in C/C++, pointers are just 32/64-bit integers. I can do:
int *p = 0xdeadbeef; int v = *p; Which object do I refer to
here?
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Definition: safety

Q: What is “safety” in memory safety?

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)
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Definition: spatial safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a violation of spatial safety if:

offset + length >= size or

offset < 0
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Example: spatial safety violations

1 int foo(int x) {
2 int arr[16] = {0};
3 return arr[x];
4 }

1 long foo() {
2 int a = 0;
3 return *(long *)(&a);
4 }
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Definition: NULL-pointer dereference

1 int foo(int *p) {
2 // it is possible that p == NULL

3 return *p + 42;
4 }

NULL-pointer dereference is sometimes considered as undefined
behavior — meaning, its behavior is not given in the C language
specification, although most operating systems chooses to panic the
program on such behavior.
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Definition: NULL-pointer dereference

At any point of time during the program execution,
for any object in memory, we know its
(object_id ̸= 0, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a NULL-pointer dereference if

object_id == 0
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Definition: temporal safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a violation of temporal safety if:

!alive
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Example: temporal safety violations

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;

4 free(p);

5 return *p;
6 }

1 int *ptr;
2

3 void foo() {
4 int p = 100;
5 ptr = &p;

6 }

7 int bar() {
8 return *ptr;
9 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 *p = 42;

4 free(p);

5 free(p);

6 return *p;
7 }
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Definition: temporal safety (revisited)

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a violation of temporal safety if:

Read: status != init

Write: status == dead

Free: status == dead
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Example: temporal safety violations

1 int foo() {
2 int p;
3 return p;
4 // what is the value returned?

5 }

1 int foo() {
2 int *p = malloc(sizeof(int));
3 return *p;
4 // what is the value returned?

5 }
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Definition: memory leak

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], status [alloc|init|dead])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

Memory free: (object_id)

It is a memory leak if exists one object_id whose:

status != dead
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Example: memory leak

1 int foo() {
2 int *p = malloc(sizeof(int));
3 int *q = malloc(sizeof(int));
4 *p = 42;

5 free(q);

6 return *p;
7 }
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Heartbleed vulnerability I

1 int dtls1_process_heartbeat(SSL *s) {
2 unsigned char *p = &s->s3->rrec.data[0], *pl;
3 unsigned short hbtype;
4 unsigned int payload;
5 unsigned int padding = 16; /* Use minimum padding */
6

7 /* Read type and payload length first */

8 hbtype = *p++;

9 n2s(p, payload);

10 pl = p;

11

12 /* ... redacted ... */

13

14 if (hbtype == TLS1_HB_REQUEST) {
15 unsigned char *buffer, *bp;
16

17 /* Allocate memory for the response */

18 buffer = OPENSSL_malloc(1 + 2 + payload + padding);

19 bp = buffer;

20

21 /* Enter response type, length and copy payload */

22 *bp++ = TLS1_HB_RESPONSE;
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Heartbleed vulnerability II

23 s2n(payload, bp);

24 memcpy(bp, pl, payload);

25

26 /* Random padding */

27 RAND_pseudo_bytes(bp, padding);

28

29 /* Send out the response */

30 r = dtls1_write_bytes(

31 s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding

32 );

33

34 /* ... redacted ... */

35

36 /* Clean-up used resources */

37 OPENSSL_free(buffer);

38 return r;
39 }

40

41 else { /* ... redacted ... */ }
42 }
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Patch for the Heartbleed vulnerability I

1 diff --git a/ssl/d1_both.c b/ssl/d1_both.c
2 index 7a5596a6b3..2e8cf681ed 100644
3 @@ -1459,26 +1459,36 @@ dtls1_process_heartbeat(SSL *s)
4 unsigned int payload;

5 unsigned int padding = 16; /* Use minimum padding */

6

7 - /* Read type and payload length first */

8 - hbtype = *p++;

9 - n2s(p, payload);

10 - pl = p;

11 -

12 if (s->msg_callback)

13 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,

14 &s->s3->rrec.data[0], s->s3->rrec.length,

15 s, s->msg_callback_arg);

16

17 + /* Read type and payload length first */

18 + if (1 + 2 + 16 > s->s3->rrec.length)

19 + return 0; /* silently discard */

20 + hbtype = *p++;

21 + n2s(p, payload);

22 +
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Patch for the Heartbleed vulnerability II

23 + if (1 + 2 + payload + 16 > s->s3->rrec.length)

24 + return 0; /* silently discard per RFC 6520 sec. 4 */

25 + pl = p;

26 +

27 if (hbtype == TLS1_HB_REQUEST)

28 {

29 unsigned char *buffer, *bp;

30 + unsigned int write_length = 1 /* heartbeat type */ +

31 + 2 /* heartbeat length */ + payload + padding;

32 int r;

33

34 + if (write_length > SSL3_RT_MAX_PLAIN_LENGTH)

35 + return 0;

36 +

37 /* Allocate memory for the response, size is 1 byte

38 * message type, plus 2 bytes payload length, plus

39 * payload, plus padding

40 */

41 - buffer = OPENSSL_malloc(1 + 2 + payload + padding);

42 + buffer = OPENSSL_malloc(write_length);

43 bp = buffer;
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Memory errors are prevalent

Source: Chromium Memory Safety Report from Google.

Analysis based on 912 high or critical severity security bugs in Chromium reported in 2015 - 2020
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Statistics can be misleading...

This is a personal note: one explanation why we have a
disproportionately high number of memory errors reported amongst
all security vulnerabilities is that — we know memory errors too well.

Memory errors have universally accepted definitions (e.g., why the
website is named Stack Overflow?)
- Once you find a memory error, you do not need to diligently argue
that this is a bug and not a feature

Memory errors often lead to a set of known consequences that are
generally considered severe (e.g., data leak or denial-of-service)
- Once you find a memory error, you do not need to construct a
working exploit to justify it

Finding memory errors typically do not require program-specific
domain knowledge (the bug is rooted in C/C++ language
semantics instead of program logic)
- If you have a technique that can find memory errors in one codebase,
you can scale it up to millions of codebases developed in C/C++.

In fact, very few types of vulnerabilities meet these requirements.
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Gradual adoption of memory-safe languages

Source: Blog post Memory Safe Languages in Android 13 from Google.

Number of memory safety vulnerabilities starts to decrease with the adoption of memory-safe languages
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Gradual adoption of memory-safe languages

Source: Blog post Memory Safe Languages in Android 13 from Google.

Number of memory safety vulnerabilities correlates to the portion of unsafe code
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Gradual adoption of memory-safe languages

Source: Blog post Memory Safe Languages in Android 13 from Google.

Rust on the rise in Android native implementations
51 / 53

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html


Introduction Background Definition Case Study Conclusion

Looking into the future

White House Press Release: Future Software Should Be Memory
Safe on February 26, 2024.

ONCD Technical Report: Back to the Building Blocks: A Path
Toward Secure and Measurable Software published in February 2024.

52 / 53

https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf


Introduction Background Definition Case Study Conclusion

⟨ End ⟩
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