
Module 3
Operating System Security

Fall 2024

CS 453 / 698
Software and Systems Security

3-2

Operating systems
• An operating system allows different “entities” to

access different resources in a shared way

• The operating system needs to control this sharing
and provide an interface to allow this access

• Identification and authentication are required for
this access control

• We will start with memory protection techniques
and then look at access control in more general
terms

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-3

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-4

3-5

History

• Operating systems evolved as a way to allow
multiple users use the same hardware

•
•

Sequentially (based on executives)
Interleaving (based on monitors)

Sequential Vs Interleaving Execution

User A

User B

User C

Sequential Execution

Interleaving Execution
User A

User B

User C

3-7

History

• Operating systems evolved as a way to allow
multiple users use the same hardware

•
•

Sequentially (based on executives)
Interleaving (based on monitors)

• OS makes resources available to users if required
by them and permitted by some policy

• OS also protects users from each other
why?

• Even for a single-user OS, protecting a user from
him/herself is a good thing

why?

3-8

History

• Operating systems evolved as a way to allow
multiple users use the same hardware

•
•

Sequentially (based on executives)
Interleaving (based on monitors)

• OS makes resources available to users if required
by them and permitted by some policy

• OS also protects users from each other
• Attacks, mistakes, resource overconsumption

• Even for a single-user OS, protecting a user from
him/herself is a good thing

• Mistakes, malware

3-6

Protected objects
• Memory

• Data

• CPU

• Programs

• I/O devices (disks, printers, keyboards, sensors, ...)

• Networks

• OS

3-10

Separation

• Keep one user’s objects separate from other users
• Physical separation

•
•

Use different physical resources for different users
Problems?

• Temporal separation
• Execute different users’ programs at different times

• Logical separation
•
•

User is given the impression that no other users exist
As done by an operating system

• Cryptographic separation
•
•

Encrypt data and make it unintelligible to outsiders
Complex

3-11

Separation

• Keep one user’s objects separate from other users
• Physical separation

•
•

Use different physical resources for different users
Easy to implement, but expensive and inefficient

• Temporal separation
• Execute different users’ programs at different times

• Logical separation
•
•

User is given the impression that no other users exist
As done by an operating system

• Cryptographic separation
•
•

Encrypt data and make it unintelligible to outsiders
Complex

3-12

Sharing

• Sometimes, users do want to share resources
•
•

Library routines (e.g., libc)
Files or database records

• OS should allow flexible sharing, not “all or
nothing”

•
•
•
•

Which files or records? Which part of a file/record?
Which other users?
Can other users share objects further?
What uses are permitted?

•
•

Read but not write, view but not print (Feasibility?)
Aggregate information only

• For how long?

3-13

Memory and address protection
• Prevent one program from corrupting other

programs or data, operating system and maybe
itself

• Often, the OS can exploit hardware support for
this protection, so it’s cheap

• See CS 350 memory management slides
• Memory protection is part of translation from

virtual to physical addresses
• Memory management unit (MMU) generates exception

if something is wrong with virtual address or associated
request

• OS maintains mapping tables used by MMU and deals
with raised exceptions

3-14

Protection techniques

• Fence register
• Exception if memory access below address in fence

register
• Protects operating system from user programs
• Single-user OS only

Fence
register

3-15

Protection techniques

• Base/bounds register pair
• Exception if memory access below/above address in

base/bounds register
• Different values for each user program
• Maintained by operating system during context switch
• Limited flexibility

Base Register

Bounds Register

3-16

Protection techniques
• Tagged architecture

• Each memory word has one or more extra bits that
identify access rights to word

• Very flexible
• Large overhead
• Difficult to port OS from/to other hardware

architectures

3-17

Protection techniques

• Tagged architecture
• Each memory word has one or more extra bits that

identify access rights to word
• Very flexible
• Large overhead
• Difficult to port OS from/to other hardware

architectures
• Segmentation
• Paging

3-18

Segmentation
• Each program has multiple address spaces

(segments)
• Different segments for code, data, and stack

• Or maybe even more fine-grained, e.g., different
segments for data with different access restrictions

• Virtual addresses consist of two parts:
• <segment name, offset within segment>

• OS keeps mapping from segment name to its base
physical address in Segment Table

• A segment table for each process
• OS can (transparently) relocate or resize segments

and share them between processes
• Segment table also keeps protection attributes

Segment table

Protection attributes and segment length are missing in table

3-19

3-20

Review of segmentation

• Advantages:

•

•

• Each address reference is checked for protection by
hardware

• Many different classes of data items can be assigned
different levels of protection
Users can share access to a segment, with potentially
different access rights
Users cannot access an unpermitted segment

• Disadvantages:
•
•

External fragmentation
Dynamic length of segments requires costly
out-of-bounds check for generated physical addresses
Segment names are difficult to implement efficiently•

3-21

Paging

• Program (i.e., virtual address space) is divided into
equal-sized chunks (pages)

• Physical memory is divided into equal-sized chunks
(frames)

• Frame size equals page size
• Virtual addresses consist of two parts:

•
•

<page # , offset within page>
bits for offset = log2(page size)

• OS keeps mapping from page # to its base
physical address in Page Table

• Page table also keeps memory protection attributes

Paging

Source: CS 350 slides
3-22

3-23

Review of paging

• Advantages:

•
•

• Each address reference is checked for protection by
hardware

• Users can share access to a page, with potentially
different access rights
Users cannot access an unpermitted page
Unpopular pages can be moved to disk to free memory

• Disadvantages:
•
•

Internal fragmentation
Assigning different levels of protection to different
classes of data items not feasible

3-24

x86 architecture

• x86 architecture has both segmentation and
paging

• Linux and Windows use both
•
•

Only simple form of segmentation, helps portability
Segmentation cannot be turned off on x86

• Memory protection bits indicate no access,
read/write access or read-only access

• Most processors also include NX (No eXecute) bit,
forbidding execution of instructions stored in page

• E.g., make stack/heap non-executable
• Does this avoid all buffer overflow attacks?

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-25

3-26

Access control

• Memory is only one of many objects for which OS
has to run access control

• In general, access control has three goals:
• Check every access: Else OS might fail to notice that

access has been revoked

• Enforce least privilege: Grant program access only to
smallest number of objects required to perform a task

• Verify acceptable use: Limit types of activity that can
be performed on an object

• E.g., for integrity reasons (ADTs)

3-27

Access control structures

• Access control matrix
• Access control lists
• Privilege lists, Capabilities
• Role-based access control

3-28

Access control matrix

• Set of protected objects: O
• E.g., files or database records

• Set of subjects: S
• E.g., humans (users), processes acting on behalf of

humans or group of humans/processes
• Set of rights: R

• E.g., read, write, execute, own
• Access control matrix consists of entries a[s,o],

where s ∈ S, o ∈ O and a[s,o] ⊆ R

3-29

Example access control matrix

File 1 File 2 File 3

Alice orw rx o

Bob r orx

Carol rx

3-30

Implementing access control matrix

• Access control matrix is rarely implemented as a
matrix

• Why?
• Instead, an access control matrix is typically

implemented as
• a set of access control lists

• column-wise representation
• a set of capabilities

• row-wise representation
• or a combination

3-31

Access control lists (ACLs)
• Each object has a list of subjects and their access rights

•
•

File 1: Alice:orw, Bob:r, File 2: Alice:rx, Bob:orx, Carol:rx
ACLs are implemented in Windows file system (NTFS), user
entry can denote entire user group (e.g., “Students”)
Classic UNIX file system has simple ACLs. Each file lists its
owner, a group and a third entry representing all other users.
For each class, there is a separate set of rights.
Groups are system-wide defined in /etc/group, use
chmod/chown/chgrp for setting access rights to your files

•

/dev/input/ System input rwx rwx ---

Owner Owner’s
Rights

group
Group’
Rights

3-32

Access control lists (ACLs)
• Each object has a list of subjects and their access rights

•
•

File 1: Alice:orw, Bob:r, File 2: Alice:rx, Bob:orx, Carol:rx
ACLs are implemented in Windows file system (NTFS), user
entry can denote entire user group (e.g., “Students”)
Classic UNIX file system has simple ACLs. Each file lists its
owner, a group and a third entry representing all other users.
For each class, there is a separate set of rights.
Groups are system-wide defined in /etc/group, use
chmod/chown/chgrp for setting access rights to your files

•

• Which of the following can we do quickly for ACLs?
•
•
•

Determine set of allowed users per object
Determine set of objects that a user can access
Revoke a user’s access right to an object or all objects

3-33

Capabilities
• A capability is an unforgeable token that gives its owner

some access rights to an object
• Alice: File 1:orw, File 2:rx, File 3:o

• Unforgeability enforced by having OS store and
maintain tokens or by cryptographic mechanisms

• E.g., digital signatures (see later) allow tokens to be handed
out to processes/users. OS will detect tampering when
process/user tries to get access with modified token.

• Tokens might be transferable (e.g., if anonymous)
• Some research/experimental OSs (e.g., Hydra, Fuchsia)

have fine-grained support for tokens
• Caller gives callee procedure only minimal set of tokens

• Answer questions from previous slide for capabilities

3-34

Combined usage of ACLs and cap.

• In some scenarios, it makes sense to use both
ACLs and capabilities

• Why?
• In a UNIX file system, each file has an ACL, which

is consulted when executing an open() call
• If approved, caller is given a capability listing type

of access allowed in ACL (read or write)
• Capability is stored in memory space of OS

• Upon read()/write() call, OS looks at capability to
determine whether type of access is allowed

• Problem with this approach?

3-35

Announcement
• Reminder: A1 is due in 6 days!

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-36

3-37

User authentication

• Computer systems often have to identify and
authenticate users before authorizing them

• Identification: Who are you?
• Authentication: Prove it!
• Identification and authentication is easy among

people that know each other
• For your friends, you do it based on their face or voice

• More difficult for computers to authenticate people
sitting in front of them

• Even more difficult for computers to authenticate
people accessing them remotely

User authentication

https://xkcd.com/1121/

3-38

https://xkcd.com/1121/

3-39

Authentication factors

• Three classes of authentication factors
• Something the user knows

• Password, PIN, answer to “secret question”
• Something the user has

• ATM card, badge, browser cookie, physical key,
uniform, smartphone

• Something the user is
•
•

Biometrics (fingerprint, voice pattern, face,. . .)
Have been used by humans forever, but only recently
by computers

3-40

Authentication factors

• Four classes of authentication factors
• Something the user knows

• Password, PIN, answer to “secret question”
• Something the user has

• ATM card, badge, browser cookie, physical key,
uniform, smartphone

• Something the user is
•
•

Biometrics (fingerprint, voice pattern, face,. . .)
Have been used by humans forever, but only recently
by computers

• Something about the user’s context
• Location, time, devices in proximity

3-41

Combination of auth. factors

• Different classes of authentication factors can be
combined for more solid authentication

• Two- or multi-factor authentication
• Using multiple factors from the same class might

not provide better authentication
• “Something you have” can become “something

you know”
• Token can be easily duplicated, e.g., magnetic strip on

ATM card
• SMS message

3-42

Passwords

• Probably oldest authentication mechanism used in
computer systems

• User enters user ID and password, maybe multiple
attempts in case of error

• Usability problems?

3-43

Passwords

• Probably oldest authentication mechanism used in
computer systems

• User enters user ID and password, maybe multiple
attempts in case of error

• Many usability problems, such as
• Entering passwords is inconvenient, in particular on

small screens
• Password composition/change rules
• Forgotten passwords might not be recoverable
• If password is shared among many people, password

updates become difficult

3-44

Security problems with passwords

• If password is disclosed to unauthorized individual,
the individual can immediately access protected
resource

• Unless we use multi-factor authentication
• How can an adversary try to learn your password?

3-45

Security problems with passwords

• If password is disclosed to unauthorized individual,
the individual can immediately access protected
resource

• Unless we use multi-factor authentication
• Shoulder surfing
• Keystroke logging
• Interface illusions / Phishing
• Password re-use across sites
• Password guessing

3-46

Password guessing attacks

• Brute-force: Try all possible passwords using
exhaustive search

• Can test 350 billion Windows NTLM passwords
per second on a cluster of 25 AMD Radeon
graphics cards

• Can try 958 combinations in 5.5 hours
• Enough to brute force every possible

eight-character password containing upper- and
lower-case letters, digits, and symbols

Brute-forcing passwords is exponential

http://erratasec.blogspot.ca/2012/08/common-misconceptions-of-password.html

3-47

http://erratasec.blogspot.ca/2012/08/common-misconceptions-of-password.html

3-48

Password guessing attacks
• Exhaustive search assumes that people choose

passwords randomly, which is often not the case
• Attacker can do much better by exploiting this
• For example, assume that a password consists of a

root and a pre- or postfix appendage
• “password1”, “abc123”, “123abc”

• Root is from dictionaries (passwords from previous
password leaks, names, English words, . . .)

• Appendage is combination of digits, date, single
symbol, . . .

• >90% of 6.5 million LinkedIn password hashes
leaked in June 2012 were cracked within six days

3-49

Password guessing attacks

• So should we just give up on passwords?
• Attack requires that attacker has encrypted

password file or encrypted document
• Offline attack

3-50

Password guessing attacks

• So should we just give up on passwords?
• Attack requires that attacker has encrypted

password file or encrypted document
• Offline attack

• Instead, attacker might want to guess your banking
password by trying to log in to your bank’s website

• Online attack
• Online guessing attacks are detectable; how?

3-51

Password guessing attacks

• So should we just give up on passwords?
• Attack requires that attacker has encrypted

password file or encrypted document
• Offline attack

• Instead, attacker might want to guess your banking
password by trying to log in to your bank’s website

• Online attack
• Online guessing attacks are detectable

• Bank shuts down online access to your bank account
after n failed login attempts (typically n ≤ 5)

• But! How can an attacker circumvent this lockout?

3-52

Password hygiene

• Use a password manager to create and store
passwords

•
•

At least for low- and medium-security passwords
• Prevents password re-use across sites
• Autofill option
• Problem?

• Use a pass phrase
• Phrase of randomly chosen words, avoid common

phrases (e.g., advertisement slogans)

3-53

Password hygiene

• Use a password manager to create and store
passwords

•
•

At least for low- and medium-security passwords
All (most) eggs are now in one basket, so keep your
computer’s software up to date

• Prevents password re-use across sites
• Autofill option

• Use a pass phrase
• Phrase of randomly chosen words, avoid common

phrases (e.g., advertisement slogans)

Password strength
https://xkcd.com/936/

3-54

https://xkcd.com/936/

3-55

Password hygiene

• Have site-specific passwords
• Don’t reveal passwords to others

• In email or over phone
• If your bank really wants your password over the phone,

switch banks
Studies have shown that people disclose passwords for
a cup of coffee, chocolate, or nothing at all

• Caveat of these studies?

•

• Don’t enter password that gives access to sensitive
information on a public computer (e.g., Internet
caf́ e) or over public networks.

• Don’t do online banking (or anything sensitive) on
them

3-56

Advice for developers (NIST 2017)

• No password composition rules
• Otherwise everybody uses the same simple tricks to

follow rule
• At least 8 characters minimum length
• At least 64 characters maximum length
• Allow any characters, including space, Unicode,

and emoji
• Black list frequently used or compromised

passwords (from password leaks)
• Avoid password hints or “secret questions”

3-57

Advice for developers (NIST 2017)

• Don’t ask users to periodically change passwords
• Leads to password cycling and similar

•
•

“myFavoritePwd” -> “dummy” -> “myFavoritePwd”
goodPwd.”1” -> goodPwd.”2” -> goodPwd.”3”

• Allow passwords to be copy-pasted into password
fields

• Use two-factor authentication (but avoid
SMS-based second factor)

3-58

Attacks on password files

• Website/computer needs to store information
about a password in order to validate entered
password

• Storing passwords in plaintext is dangerous, even
when file is read protected from regular users

•
•
•

Password file might end up on backup tapes
Intruder into OS might get access to password file
System administrator has access to file and might use
passwords to impersonate users at other sites

• Many people re-use passwords across multiple sites

3-59

Cryptographic Tools

The following cryptographic tools are useful for storing
information about passwords (see Module 5 for details):
• Cryptographic hash: Compute a fixed-length,

deterministic output value from a variable-length
input value. Given an output value, it is hard to
find an input value with this output value, i.e., a
cryptographic hash is not reversible.

Hashpw fingerprint

One way

3-60

Cryptographic Tools

The following cryptographic tools are useful for storing
information about passwords (see Module 5 for details):
• MAC: Same as a cryptographic hash, but it takes a

secret key as another input value. Still
deterministic and not reversible. Changing the
secret key will change the output value.

MACpw tag

One way

Secret key

3-61

Cryptographic Tools

• (Symmetric) encryption: Compute a
non-deterministic output value that is an
encryption of the input value under a secret key.
Encryption is reversible if we know the secret key
(“decryption”).

encryptpw ciphertext

Secret key

3-62

Storing password fingerprints

• Store only a digital fingerprint of the password
(using a cryptographic hash) in the password file

• When logging in, system computes fingerprint of
entered password and compares it with user’s
stored fingerprint

• Still allows offline guessing attacks when password
file leaks

3-63

Defending against guessing attacks

• UNIX makes guessing attacks harder by including
user-specific salt in the password fingerprint

• Salt is initially derived from time of day and process ID
of /bin/passwd

• Salt is then stored in the password file in plaintext

Hashpw

One way

fingerprintsalt

3-64

Defending against guessing attacks

• UNIX makes guessing attacks harder by including
user-specific salt in the password fingerprint

• Salt is initially derived from time of day and process ID
of /bin/passwd

• Salt is then stored in the password file in plaintext
• Two users who happen to have the same password

will likely have different fingerprints
• Makes guessing attacks harder, can’t just build a

single table of fingerprints and passwords and use
it for any password file

3-65

Defending against guessing attacks
• Don’t use a standard cryptographic hash (like

SHA-1 or SHA-512) to compute the stored
fingerprint

• They are relatively cheap to compute
(microseconds)

• Instead use an iterated hash function that is
expensive to compute (e.g., bcrypt) and maybe
also uses lots of memory (e.g., scrypt)

• Hundreds of milliseconds
• This slows down a guessing attack significantly,

but is barely noticed when a users enters his/her
password

3-66

Defending against guessing attacks

• An additional defense is to use a MAC, instead of
a cryptographic hash

• A MAC mixes in a secret key to compute the
password fingerprint

• If the fingerprints leak, guessing attacks aren’t
useful anymore

• Can protect the secret key by embedding it in
tamper resistant hardware (Expensive?)

• If the key does leak, the scheme remains as secure
as a scheme based on a cryptographic hash

3-67

Password Recovery

• A password cannot normally be recovered from a
hash value (fingerprint)

• If password recovery is desired, it is necessary to
store an encrypted version of the password in the
password file

• We need to keep encryption key away from
attacker

3-68

Password Recovery

• As opposed to fingerprints, this approach allows
the system to (easily) re-compute a password if
necessary

• E.g., have system email password in the clear to
predefined email address when user forgets password

• There are many problems with this approach!
• Password reset is more common now.

3-69

The Adobe Password Hack (November
2013)

• In November 2013, 130 million encrypted
passwords for Adobe accounts were revealed.

• The encryption mechanism was the following:
1 First a NUL byte was appended to the password.
2 Next, additional NUL bytes were appended as required

to make the length a multiple of 8 bytes.
3 Then the padded passwords were encrypted 8

characters at a time using a fixed key. (This is called
ECB mode and it is the weakest possible encryption
mode.)

• The password hints were not encrypted.
• It turns out that many passwords can be

decrypted, without breaking the encryption and
not knowing the key.

3-70

The Adobe Password Hack (cont.)

3-71

Interception attacks

• Attacker intercepts password while it is in
transmission from client to server

• One-time passwords make intercepted password
useless for later logins

•
•

Fobs (e.g., RSA SecurID), Authenticator apps
Challenge-response protocols

Android unlock patterns

3-72

3-73

Graphical passwords

• Graphical passwords are an alternative to
text-based passwords

• Multiple techniques, e.g.,
• User chooses a picture; to log in, user has to re-identify

this picture in a set of pictures
• User chooses set of places in a picture; to log in, user

has to click on each place
• Issues?

3-74

Graphical passwords

• Graphical passwords are an alternative to
text-based passwords

• Multiple techniques, e.g.,
• User chooses a picture; to log in, user has to re-identify

this picture in a set of pictures
• User chooses set of places in a picture; to log in, user

has to click on each place
• Issues similar to text-based passwords arise

• E.g., choice of places is not necessarily random

• Shoulder surfing becomes a problem
• Ongoing research

3-75

Server authentication
• With the help of a password, system authenticates

user (client)
• But user should also authenticate system (server)

else password might end up with attacker!
• Classic attack:

•
•

Program displays fake login screen
When user “logs in”, programs prints error message,
sends captured user ID/password to attacker, and ends
current session (which results in real login screen)
That’s why Windows trains you to press
<CTRL-ALT-DELETE> for login, key combination
cannot be overridden by attacker

•

• Today’s attack:
• Phishing

3-76

Announcement
• Grace period for A1
• You could submit by Oct 5th (EOD) without

penalty
• No need for documentation

• Since this is a grace period, you cannot use 48
absence on top of it :)

3-76

Biometrics

• Biometrics have been hailed as a way to get rid of
the problems with passwords

• Idea: Authenticate user based on physical
characteristics

• Fingerprints, iris scan, voice, handwriting, typing
pattern,. . .

• Unfortunately, they have their own problems
• If observed trait is sufficiently close to previously

stored trait, accept user
• Observed fingerprint will never be completely identical

to a previously stored fingerprint of the same user

3-77

Local vs. remote authentication

• Biometrics work well for local authentication, but
are less suited for remote authentication or for
identification

• In local authentication, a guard can ensure that:
• I put my own finger on a fingerprint scanner, not one

made out of gelatin
• I stand in front of a camera and don’t just hold up a

picture of somebody else
• In remote authentication, this is much more

difficult

3-78

Authentication vs. identification

• Authentication: Does a captured trait correspond
to a particular stored trait?

• Identification: Does a captured trait correspond to
any of the stored traits?

• Identification is an (expensive) search problem, which is
made worse by the fact that in biometrics, matches are
based on closeness, not on equality (as for passwords)

• False positives can make biometrics-based
identification useless

•
•

False positive: Alice is accepted as Bob
False negative: Alice is incorrectly rejected as Alice

Biometrics-based identification

• Example (from Bruce Schneier’s “Beyond Fear”):
• Face-recognition software with (unrealistic) accuracy of

99.9% is used in a football stadium to detect terrorists
•
•

1-in-1,000 chance that a terrorist is not detected
1-in-1,000 chance that innocent person is flagged as
terrorist

• If one in 10 million stadium attendees is a known
terrorist, there will be 10,000 false alarms for every real
terrorist

Other problems with biometrics

• Privacy
• Why should my employer (or a website) have

information about my fingerprints, iris,..?
• Aside: Why should a website know my date of birth, my

mother’s maiden name,. . . for “secret questions”?
• What if this information leaks? Getting a new

password is easy, but much more difficult for biometrics
• Accuracy: False negatives are annoying

•
•

What if there is no other way to authenticate?
What if I grow a beard, hurt my finger,. . . ?

3-81

Other problems with biometrics

• Secrecy: Some of your biometrics are not
particularly secret

• Face, fingerprints,...
• Legal protection: The law may allow the police to

put your finger on your phone’s fingerprint reader
(or simply hold your phone’s camera in front of
you). But the law may protect you from you
having to reveal your password (depending on the
country).

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

3-82

Trusted operating systems

• Trusting an entity means that if this entity
misbehaves, the security of the system fails

• We trust an OS if we have confidence that it
provides security services, i.e.,

•
•

Memory and file protection
Access control and user authentication

Trusted operating systems

Typically a trusted operating system builds on four
factors:
• Policy: A set of rules outlining what is secured and

why
• Model: A model that implements the policy and

that can be used for reasoning about the policy
• Design: A specification of how the OS implements

the model
• Trust: Assurance that the OS is implemented

according to design

Trusted software
• Software that has been rigorously developed and

analyzed, giving us reason to trust that the code
does what it is expected to do and nothing more

• Functional correctness
• Software works correctly

• Enforcement of integrity
• Wrong inputs don’t impact correctness of data

• Limited privilege
• Access rights are minimized

• Appropriate confidence level
• Software has been rated as required by environment

• Trust can change over time, e.g., based on
experience

Security policies
• Many OS security policies have their roots in

military security policies
• Each object/subject has a sensitivity/clearance

level
• “Top Secret” >C “Secret” >C “Confidential” >C

“Unclassified”
where “>C ” means “more sensitive”

• Each object/subject might also be assigned to one
or more compartments

•
•

E.g., “Soviet Union”, “East Germany”
Need-to-know rule

• Subject s can access object o iff level(s) ≥ level(o)
and compartments(s) ⊇ compartments(o)

• s dominates o, short “s ≥dom o”

3-87

Example

• Secret agent James Bond has clearance “Top
Secret” and is assigned to compartment “East
Germany”

• Can he read a document with sensitivity level
“Secret” and compartments “East Germany” and
“Soviet Union”?

• Which documents can he read?

Commercial security policies

• Rooted in military security policies
• Different classification levels for information

• E.g., external vs. internal
• Different departments/projects can call for

need-to-know restrictions
• Assignment of people to clearance levels typically

not as formally defined as in military
• Maybe on a temporary/ad hoc basis

Other security policies

• So far we’ve looked only at confidentiality policies

• Integrity of information can be as or even more
important than its confidentiality

•
•

E.g., Clark-Wilson Security Policy
Based on well-formed transactions that transition
system from a consistent state to another one

• Also supports Separation of Duty

• Another issue is dealing with conflicts of interests
•
•

Chinese Wall Security Policy
Once you’ve decided for a side of the wall, there is no
easy way to get to the other side

Chinese Wall security policy
• Once you have been able to access information

about a particular kind of company, you will no
longer be able to access information about other
companies of the same kind

•
•
•

Useful for consulting, legal or accounting firms
Need history of accessed objects
Access rights change over time

• ss-property: Subject s can access object o iff each
object previously accessed by s either belongs to
the same company as o or belongs to a different
kind of company than o does

• *-property: For a write access to o by s, we also
need to ensure that all objects readable by s either
belong to the same company as o or have been
sanitized

Example
• Fast Food Companies = {McDonalds, Wendy’s}
• Book Stores = {Chapters, Amazon}
• Alice has accessed information about McDonalds
• Bob has accessed information about Wendy’s
• ss-property prevents Alice from accessing

information about Wendy’s, but not about
Chapters or Amazon

• Similar for Bob
• Suppose Alice could write information about

McDonalds to Chapters and Bob could read this
information from Chapters

•
•

Indirect information flow violates Chinese Wall Policy
*-property forbids this kind of write

Security models

• Many security models have been defined and
interesting properties about them have been proved

• Unfortunately, for many models, their relevance to
practically used security policies is not clear

• We’ll focus on two prominent models
•
•

Bell-La Padula Confidentiality Model
Biba Integrity Model

• Targeted at Multilevel Security (MLS) policies,
where subjects/objects have
clearance/classification levels

Lattices
• Dominance relationship ≥dom defined in military

security model is transitive and antisymmetric
• Therefore, it defines a partial order (neither a ≥dom

b nor b ≥dom a might hold for two levels a and b)
• In a lattice, for every a and b, there is a unique

lowest upper bound u for which u ≥dom a and u
≥dom b and a unique greatest lower bound l for
which a ≥dom l and b ≥dom l

• There are also two elements U and L that
dominate/are dominated by all levels

• U = (“Top Secret”, {“Soviet Union”, “East
Germany”})

L = (“Unclassified”, ∅)

Example lattice

(U, ∅)

3-94

(S, ∅)

(TS, ∅)

Compartments:
SU = Soviet Union
EG = East Germany

Sensitivity levels:
TS = Top Secret
S = Secret
U = Unclassified

(TS, {SU})

(TS, {SU, EG})

(S, {SU, EG}) (TS, {EG})

(S, {EG})

(U, {EG})

(U, {SU, EG})(S, {SU})

(U, {SU})

Bell-La Padula confidentiality model
• Regulates information flow in MLS policies, e.g.,

lattice-based ones
• Users should get information only according to

their clearance
• Should subject s with clearance C(s) have access

to object o with sensitivity C(o)?
• Underlying principle: Information can only flow up
• ss-property (“no read up”): s should have read

access to o only if C(s) ≥dom C(o)
• *-property (“no write down”): s should have write

access to o only if C(o) ≥dom C(s)

Example
• No read up is straightforward
• No write down avoids the following leak:

• James Bond reads secret document and summarizes it
in a confidential document

• Miss Moneypenny with clearance “confidential” now
gets access to secret information

• In practice, subjects are programs (acting on
behalf of users)

•
•

• Else James Bond couldn’t even talk to Miss
Moneypenny

• If program accesses secret information, OS ensures that
it can’t write to confidential file later
Even if program does not leak information
Might need explicit declassification operation for
usability purposes

Biba integrity model

• Prevent inappropriate modification of data
• Dual of Bell-La Padula model
• Subjects and objects are ordered by an integrity

classification scheme, I(s) and I(o)
• Should subject s have access to object o?
• Write access: s can modify o only if I(s) ≥dom I(o)

• Unreliable person cannot modify file containing high
integrity information

• Read access: s can read o only if I(o) ≥dom I(s)
• Unreliable information cannot “contaminate” subject

Low Watermark Property

• Biba’s access rules are very restrictive, a subject
cannot ever read lower integrity object

• Can use dynamic integrity levels instead
• Subject Low Watermark Property:

If subject s reads object o, then I(s) = glb(I(s), I(o)),
where glb() = greatest lower bound

• Object Low Watermark Property:
If subject s modifies object o, then I(o) = glb(I(s), I(o))

• Integrity of subject/object can only go down,
information flows down

Review of Bell-La Padula & Biba

• Very simple, which makes it possible to prove
properties about them

• E.g., can prove that if a system starts in a secure state,
the system will remain in a secure state

• Probably too simple for great practical benefit
•
•
•

Need declassification
Need both confidentiality and integrity, not just one
What about object creation?

• Information leaks might still be possible through
covert channels in an implementation of the model

3-100

Information flow control
• An information flow policy describes authorized

paths along which information can flow
• For example, Bell-La Padula describes a

lattice-based information flow policy
• In compiler-based information flow control, a

compiler checks whether the information flow in a
program could violate an information flow policy

• How does information flow from a variable x to a
variable y?

• Explicit flow: E.g., y:= x; or y:= x / z;
• Implicit flow: If x = 1 then y := 0;
else y := 1

Module outline

1 Protection in general-purpose operating systems

2 Access control

3 User authentication

4 Security policies and models

5 Trusted operating system design

Trusted system design elements
• Design must address which objects are accessed

how and which subjects have access to what
• As defined in security policy and model

• Security must be part of design early on
• Hard to retrofit security, see Windows 95/98

Android Security Evolution

• Single User • Multi User

• New security requirement “added” in the OS

Android Security Evolution

3-106

Trusted system design elements
• Design must address which objects are accessed

how and which subjects have access to what
• As defined in security policy and model

• Security must be part of design early on
• Hard to retrofit security, see Windows 95/98

• Eight design principles for security
• Least privilege

• Operate using fewest privileges possible
• Economy of mechanism

• Protection mechanism should be simple and
straightforward

• Open design
•
•

Avoid security by obscurity
Secret keys or passwords, but not secret algorithms

Security design principles (cont.)

• Complete mediation
• Every access attempt must be checked

Weakest link: Incomplete mediation

1-108

Security design principles (cont.)

• Complete mediation
• Every access attempt must be checked

• Permission based / Fail-safe defaults /
• Default deny
• Default should be denial of access

Default Allow Vs Default Deny

• Default Allow / Blacklist
• Allow everything, unless malice is spotted

• Default Deny / whitelist
• Deny everything, allow if safe

Security design principles (cont.)

• Complete mediation
• Every access attempt must be checked

• Permission based / Fail-safe defaults
• Default should be denial of access

• Separation of privileges
• Two or more conditions must be met to get access

• Least common mechanism
• Every shared mechanism could potentially be used as a

covert channel
• Ease of use

• If protection mechanism is difficult to use, nobody will
use it or it will be used in the wrong way

Principle of ease of use

• (Prior) Android permission granting model

Principle of ease of use

• (New) Android permission granting model

Security features of trusted OS

• Identification and authentication
• See earlier

• Access control
• Object reuse protection
• Trusted path
• Accountability and audit

Access control

• Mandatory access control (MAC)
•
•
•

Central authority establishes who can access what
Good for military environments
For implementing Chinese Wall, Bell-La Padula, Biba

• Discretionary access control (DAC)
• Owners of an object have (some) control over who can

access it
• You can grant others access to your home directory
• e.g., UNIX and Windows

• Possible to use combination of these mechanisms

Object reuse protection
• Alice allocates memory from OS and stores her

password in this memory
• After using password, she returns memory to OS

• By calling free() or simply by exiting procedure if
memory is allocated on stack

• Later, Bob happens to be allocated the same piece
of memory and he finds Alice’s password in it

• OS should erase returned memory before handing
it out to other users

• How can we defend against this?

Object reuse protection
• Alice allocates memory from OS and stores her

password in this memory
• After using password, she returns memory to OS

• By calling free() or simply by exiting procedure if
memory is allocated on stack

• Later, Bob happens to be allocated the same piece
of memory and he finds Alice’s password in it

• OS should erase returned memory before handing
it out to other users

• Defensive programming: Erase sensitive data
yourself before returning it to OS

• How can compiler interfere with your good intentions?
• Similar problem exists for files, registers and

storage media

Object reuse protection

• Install app that creates a db

Sms messages DB SMS APP: “com.defaultsms”

Object reuse protection

• Uninstall the app: db remains

Sms messages DB

Object reuse protection

• Install a new app

Sms messages DB Uninstall: SMS APP: “com.defaultsms”

Uninstall: Malicious APP: “com.defaultsms”

Hidden data

• Hidden data is related to object reuse protection

• You think that you deleted some data, but it is still
hidden somewhere

Examples?

Hidden data

• Hidden data is related to object reuse protection

• You think that you deleted some data, but it is still
hidden somewhere

•
•

Deleting a file will not physically erase file on disk
Deleting an email in GMail will not remove email from
Google’s backups
Deleting text in MS Word might not remove text from
document
Putting a black box over text in a PDF leaves text in
PDF
Shadow Copy feature of Windows 7 keeps file
snapshots to enable restores

•

•

•

Trusted path

• Give assurance to user that her keystrokes and
mouse clicks are sent to legitimate receiver
application

• Remember the fake login screen?

Accountability and audit

• Keep an audit log of all security-related events
• Provides accountability if something goes bad

•
•

Who deleted the sensitive records in the database?
How did the intruder get into the system?

• An audit log does not give accountability if
attacker can modify the log

• At what granularity should events be logged?
• For fine-grained logs, we might run into

space/efficiency problems or finding actual attack can
be difficult

• For coarse-grained logs, we might miss attack entirely
or don’t have enough details about it

3-100

Trusted computing base (TCB)

• TCB consists of the part of a trusted OS that is
necessary to enforce OS security policy

• Changing non-TCB part of OS won’t affect OS
security, changing its TCB-part will

• TCB better be complete and correct
• TCB can be implemented either in different parts

of the OS or in a separate security kernel
• Separate security kernel makes it easier to validate

and maintain security functionality
• Security kernel runs below the OS kernel, which

makes it more difficult for an attacker to subvert it

Security kernel

3-101

3-102

Rings

• Some processors support this kind of layering
based on “rings”

• If processor is operating in ring n, code can access
only memory and instructions in rings ≥ n

• Accesses to rings < n trigger interrupt/exception
and inner ring will grant or deny access

• x86 architecture supports four rings, but Linux and
Windows use only two of them

•
•

user and supervisor mode
i.e., don’t have security kernel

3-103

Reference monitor

• Crucial part of the TCB
• Collection of access controls for devices, files,

memory, IPC,. . .
• Not necessarily a single piece of code
• Must be tamperproof, unbypassable, and

analyzable
• Interacts with other security mechanism, e.g., user

authentication

3-104

Virtualization
• Virtualization is a way to provide logical separation

(isolation)
• Different degrees of virtualization
• Virtual memory

• Page mapping gives each process the impression of
having a separate memory space

• Virtual machines
Also virtualize I/O devices, files, printers,. . .
Examples?
Security usage scenarios?

3-104

Virtualization
• Virtualization is a way to provide logical separation

(isolation)
• Different degrees of virtualization
• Virtual memory

• Page mapping gives each process the impression of
having a separate memory space

• Virtual machines
•
•
•

Also virtualize I/O devices, files, printers,. . .
Currently very popular (VMware, Xen, Parallels,...)
If Web browser runs in a virtual machine, browser-based
attacks are limited to the virtual environment
On the other hand, a rootkit could make your OS run
in a virtual environment and be very difficult to detect
(“Blue Pill”)

•

3-108

Chroot

• Sandbox/jail a command by changing its root
directory

• chroot /new/root command

• Command cannot access files outside of its jail

• Some commands/programs are difficult to run in a
jail

• But there are ways to break out of the jail

3-109

Containers
• Files (as in chroot) are not the only thing you

might want to isolate from one process to another
• Some OSes (e.g., Linux) support namespaces for

various resources
• process IDs, user IDs, network configuration, filesystem

mounts, ...
• A container can run processes in a set of

namespaces isolated from other containers on the
same physical (“host”) machine

• Example container systems: lxc, docker
• Having a privilege inside a container does not

imply having the privilege in other containers, or
on the host machine

Compartmentalization
• Split application into parts and apply least privilege

to each part

Single LOCK SCREEN APP:

Permission:
• Read Screen TAPS
• Internet

Compartmentalization
• Split application into parts and apply least privilege

to each part

LOCK SCREEN APP – Main comp:

Permission:
• Read Screen TAPS

LOCK SCREEN APP – adv comp:

Permission:
• Internet

3-112

Assurance

• How can we convince others to trust our OS?
• Testing

• Can demonstrate existence of problems, but not their
absence

• Might be infeasible to test all possible inputs
• Ask outside experts to break into your OS

• Formal verification

•
•
•

Use mathematical logic to prove correctness of OS
Has made lots of progress recently
Unfortunately, OSs are probably growing faster in size
than research advances

3-113

Assurance (cont.)

• Validation
•
•

Traditional software engineering methods
Requirements checking, design and code reviews,
system testing

3-114

Evaluation
• Have trusted entity evaluate OS and certify that

OS satisfies some criteria
• Two well-known sets of criteria are the “Orange

Book” of the U.S. Department of Defence and the
Common Criteria

• Orange Book lists several ratings, ranging from
“D” (failed evaluation, no security) to “A1”
(requires formal model of protection system and
proof of its correctness, formal analysis of covert
channels)

•
•

See text for others
Windows NT has C2 rating, but only when it is not
networked and with default security settings changed
Most UNIXes are roughly C1•

3-115

Common criteria
• Replace Orange Book, more international effort
• Have Protection Profiles, which list security

threats and objectives
• Products are rated against these profiles
• Ratings range from EAL 1 (worst) to EAL 7 (best)
• Windows XP has been rated EAL 4+ for the

Controlled Access Protection Profile (CAPP)
• Windows 7, Red Hat Enterprise Linux 6 were also

rated EAL 4+

3-116

Recap

• Protection in general-purpose operating systems

• Access control

• User authentication

• Security policies and models

• Trusted operating system design

