Overview of Android OS / Security
Mechanisms

Mobile devices

* Embedded

* Ubiquitous connectivity (wireless, cellular / 4G, NFC, ...)
* Sensors: accelerometer, GPS, camers, ...

* Computation: powerful CPUs (>1Ghz, multi-core)

* Two major OS: Android /iOS

Mobile devices

Is the Global Mobile Android Population

Is the number of Android devices sold annually

Smart TVs

Smart Watches
, Smart Auto Guidance
: .. Smart Game Suites “—‘——

Mobile Devices: Trends

* Increased reliance on mobile devices
* Banking, work, personal data, communication
* Data security and authentication is thus highly important

* Used for work
* Bring your own device (BYOD)
* Mobile Device Management used to protect enterprise

* Relies on different technologies
* E.g.,web
* Inherit limitations

What is Mobile Security!?

* Or “What makes security different under the mobile platform?”

e Different communication channels
 WiFi, NFC, cellular, Bluetooth, ...

* Different actors
* Broader range of users compared to traditional platforms
* More prone to social attacks

e Different side channels
* Examples: reflection, ..

What is Mobile Security!?

Or “What makes security different under the mobile platform?”

(Relatively) limited computing power / resources
* Limited battery, memory, CPU, bandwidth
* Cannot deploy traditional security solutions right out of box

Portable

* Non-conventional attack vectors, e.g., stealing, loss
* Subject to short range attacks (NFC, Bluetooth)

Highly customized and fragmented
* The OS is customized by different parties:

* Original Equipment Manufacturers (OEMs), e.g., Samsung, Xiaomi
* Carriers, e.g., Bell, Telus, AT&T
* Hardware manufacturers, e.g., Qualcomm, MediaTek

What is Mobile Security!?

* Or “What makes security different under the mobile platform?”

* Continuous and fast-paced evolution
* Since its introduction in 2009, Android has released 35 major versions
* Mobile users need to keep up with fast updates

* Wide range of software (mobile apps) than traditional platforms
* “there is an app for it”
* Preloaded (trusted) apps
* (untrusted) third-party apps (to be installed)

Mobile Threats:
What is stored on mobile devices?

* Depends on the type of mobile devices
* SmartTVs store: streaming services credentials, viewing history, etc.

* Smartphones store:
* Contacts

Email, social network chats
Banking, financial apps data
Multimedia data

Location information and history

Mobile Threats:
What is stored on mobile devices?

* Depends on the type of mobile devices
* SmartTVs store: streaming services credentials, viewing history, etc

* Smartphones store:

° NnNnfacte

‘ What would happen if an “entity” accesses your
. mobile device?

® IFTarunniedadrd adud

* Location information and history

Mobile Threats
Threat model

* Attackers with physical access
* Unlock device
* Exploit vulnerabilities to circumvent locking

Mobile Threats:

* Attackers with physical access
* Unlock device
* Exploit vulnerabilities to circumvent locking

e Attackers with remote access

* Get the user to install malicious app (malware)
* Use malware to steal sensitive data or perform malicious operations

* Exploit various flaws in the mobile ecosystem for distribution, propagation and
performing malicious functionality

* Send malicious / malformed content to the device
* Examples: send a malformed SMS,
* Exploit various vulnerabilities

Protection against Physical Attacker
Authentication

* Protect against physical attacker via (mobile-specific) authentication
* Something the user knows: PINs, Patterns, Passwords
* Something the user is: Biometrics

Protection against Physical Attacker
Authentication via Patterns

e Attacks:
* Smudge Attack

13

Protection against Physical Attacker
Authentication via Patterns | PINs

e Attacks:
* Smudge Attack

* Another problem: entropy:
* People tend to chose simple patterns
* With 4 strokes, there are 1600 patterns.

* Online brute forcing PINs

Protection against Physical Attacker
Biometric authentication

* Fingerprint scanners, iris scanners, face unlock

* Standard biometric security concerns:
* Subject to high false positives and false negatives

* Cannot be changed
* Not secret

* There is usually a fallback authentication (e.g., PIN)
* The authentication strength reduces to the weakest authentication method

Protection against Physical Attacker
Next Defense: Factory Reset and others

* Protect against brute force attacks by erasing data if too many tries.

* Protect a stolen phone
* Using GPS "where is my phone”
* Backup device
* Device wipe

16

Protection against Malware

* Goal of the attacker: Lure the user into installing malware
* Use malware to steal sensitive data or perform malicious operations

* Exploit various flaws in the mobile ecosystem for distribution, propagation
and performing malicious functionality

Characteristics of Mobile Apps / markets

Apps in Android are Self-Signed.

Apps can be downloaded from Google Play and from 3™ party markets

It is easier to distribute apps on markets

Although some markets perform automated scanning, malware is a serious issue

Malicious apps & Potentially Harmful
Apps (PHAs) may appear!

° =

(GIeJOIS Y 7| R :
appoke amazoncom —
OPERA S FIET '
Slide‘ ‘ ey o cant il < .
winsyde e I f E) o
G0o0gle play : v .
s Ee A] handango’

S HIESCI BErBs

18

Malicious Apps (malware) always on the Rise

172 malicious apps with 335M+
installs found on Google Play

®

Malicious apps exploit different vulnerabilities and
attack vectors,
introduced by different actors in the ecosystem

19

Malicious apps (malware)

* Malware exploit flaws in the mobile ecosystem

* The flaws may be introduced unintentionally:
* Development mistakes
* Improper market vetting
* Buggy tools

Malicious apps (malware)

* Malware exploit flaws in the mobile ecosystem

* The flaws may be introduced unintentionally:
* Development mistakes
* Improper market vetting
* Buggy tools

* The flaws may also be introduced intentionally
* Non-malicious OEM developers leaving debugging backdoors.
* Malicious libraries embedded in a benign app
* Malicious insiders planting backdoors in EOM codebases

Who introduces flaws in the Android mobile ecosystem!?
Background

Application Framework / System Apps

Native libs

(C/C++) Android Runtime

(Modified) Linux Kernel

22

Who introduces flaws in the Android mobile ecosystem!?
Actors in the Android ecosystem

Uses tool

Tool chain App Developer

(Cordova, App generator,...) Publi V \ublish app
’

Google Play

Sideloading

Administrators

m MOTOROLA

<0

Native libs : :
‘ (c/cw) Android Runtime B a SONY
Advertisement
networks (Modified) Linux Kernel @ LG 23

\

Who introduces flaws in the Android mobile ecosystem!?

Attack vectors
g
Buggy Tools) . Uses tool — Mistakes

Tool chain App Developer
(Cordova, App generator,...)

Publish app Publish app

Google Play Alternative markets

,,,,,,,,,,,,,,,

. wrong
‘ : Configure) o Configurations
Improper Third party app /

1 Ad Lib
PI"OtECU on Administrators

Improper Vetting

—

Online services

Ar..l:..-n.:-.. Fuemmnaniirmaul, /1 Cuintman A..ps

System 0 MOTOROLA

/. () Malvertising vulnerabilities P g w

\EIVERITOS

Android Runtime o
C/C++ S() . .
ki a Customization

Advertisement Hazards
networks (Modified) Linux Kernel L
—

Protection against Malware

* How does Android protect various sensitive resources in the system!?
* App sandboxing

* Access control based on permissions
* Traditional Linux DAC

25

Protecting Resources in the system

getlLocation

Location Service @

requestLocation takePicture

E N

: NI

GPS Driver RIL Driver

26

Protecting Resources in the system
App sandboxing

App Sandbox App Sandbox App Sandbox
Maps UID 13405 Camera UID 13406 Dialer UID 13407
R B
!__o_ _! c * Android assigns a unique UID
0 f IpC to each Android app and runs it
H H ; in its own process
getLocation requestLocation takePicture
Framework ' * System level processes are
! Y Y _) Towm assigned privileged UIDs
I Location Service @ I Camera Serwceﬂ I
| — 1= o — o i The UIDs are usgdt.o set up a
: _ ; kernel-level Application
Linux K : 5 :
inux Kernel d H H Sandbox
GPS Driver Camera Driver RIL Driver

27

Protecting Resources in the system
App sandboxing

App Sandbox App Sandbox App Sandbox
Maps UID 13405 Camera UID 13406 Dialer UID 13407

e DR B

getlLocation requestLocation takePicture
Framework
r 28 2 \ .
System UID 1000
I i Location Service @ I I Camera Serwceﬂ I
I_ S _II—-—-J-N-|———l§ NI
Linux Kernel : ;]
v 4 \ 4
GPS Driver Camera Driver RIL Driver

* By default, apps cannot interact
with each other and have
limited access to the OS

* By default, apps cannot read
other apps data or invoke its
functionality

* All communication goes
through monitored IPC

28

Protecting Resources in the system
App sandboxing

* Android relies on a number of protections to enforce the application
sandbox.

* The enforcements have evolved over time to strengthen the original UID-
based discretionary access control (DAC) sandbox

* Android 5.0: SELinux provided Mandatory Access Control (MAC) separation
between the system and apps

* Android 6.0: SELinux separation was extended to isolate apps based on the
running users.

29

Protecting Resources in the system
App sandboxing

* Android relies on a number of protections to enforce the application
sandbox.

* The enforcements have been evolved over time to strengthen the original
UID-based discretionary access control (DAC) sandbox

* Android 8.0: all apps were set to run with a seccomp-bpf to filter the system
calls that apps can use

* Android 9: SELinux separation was extended to provide a per-app isolation
* Android 10: apps have a restricted raw view of the filesystem

30

Protecting Resources at the Linux layer
Traditional Linux ACLs

Permission Check l()‘ ‘

v ¥ v
getlLocation requestLocation takePicture

E N

Permission Check

Location Service @

N

Linux Access Control

GPS Driver RIL Driver

31

Protecting Resources at the Linux layer
Traditional Linux ACLs

* Android relies on Linux Discretionary Access Control (DAC) to protect resources at
Linux layer

* Protected objects: ??
* Subjects: ??
* Rights: !

Protecting Resources at the Linux layer
Traditional Linux ACLs

* Android relies on Linux Discretionary Access Control (DAC) to protect resources at
Linux layer

* Protected objects: Linux objects: Files (remember device drivers are special files).

* Subjects: Apps and system processes (remember each process is defined by unique
UID)

* Rights: RWX

33

Protecting Resources
Android Permissions

Applications

: : IPC
suEEEEN :'I'HI'I'I'Q'Q". :
L . L]
: ! :
v ¥ v
getlLocation requestLocation takePicture

Framework Permission Check
v

Location Service Q

1

Camera Service

Flags

Flashlight

B4°0L0 BN T4 11%04:01 PM

Google Maps
‘ App permissions

9 Location

* access approximate location
(network-based)

¥ Microphone

* record audio

§<uses-permission name=“ACCESS_FINE_LOCATION”/>
i cuses-permission name=“ACCESS_COARSE_LOCATION”/>

: NI

JNI
Linux Kernel : : :
v L 4 \ 4
GPS Driver Camera Driver RIL Driver

34

Protecting Resources
Android Permissions

Applications

v

Flags

getLocation

requestLocation

Framework

Location Service Q

Linux Kernel

4

ta kgPictu re

JNI

v

Permission Check TRRTTrrrrr T T [. >
\ 4 E
Camera Service :

: NI

v

GPS Driver

Camera Driver

RIL Driver

o

Allow Maps to
access this device'’s
location?

35

Protecting Resources
Android Permissions

* Permission enforcement in Android APls

LocationManagerService

Location getlLastLocation(LocationProvider request, ..)

{
if(caller.hasPermission(“ACCESS_FINE_LOCATION>)

|| caller.hasPermission(“ACCESS_COARSE_LOCATION”))
{

return mLastlLocation.get(request.getProvider());

}

else
// throw Security Exception

36

Protecting Resources
Android Permissions

* Three categories of permissions:
* Install-time permissions
* Runtime permissions
* Special permissions

* The categories indicate:
* The scope of data that an app can access
* The scope of functionality that an app can perform

Protecting Resources
Install-time Permissions

* The system grants these permissions automatically to apps during
install time

* Two types:
* Normal: Allow access to data/operations that present little risk

* Signature: Granted to an app only when the app is sighed with the same
certificate as the entity (app / OS) defining the permission

Protecting Resources

Examples of install-time permissions

® ACCESS_NETWORK_STATE

® ACCESS_NOTIFICATION_POLICY
® ACCESS_WIFI_STATE

¢ BLUETOOTH

¢ BLUETOOTH_ADMIN

¢ BROADCAST_STICKY

® CHANGE_NETWORK_STATE

® CHANGE_WIFI_MULTICAST_STATE

¢ CHANGE_WIFI_STATE

o

NORMAL

BIND_AUTOFILL_SERVICE
BIND_CARRIER_SERVICES
BIND_CHOOSER_TARGET_SERVICE
BIND_CONDITION_PROVIDER_SERVICE
BIND_DEVICE_ADMIN
BIND_DREAM_SERVICE
BIND_INCALL_SERVICE
BIND_INPUT_METHOD
BIND_MIDI_DEVICE_SERVICE

BIND_NFC_SERVICE

* Some signature permissions aren’t for use by third-party apps

L_ Signature

39

Protecting Resources
. o Allow Notes to access
Runtlme PermlSSlonS @ your photo album?

DENY ALLOW

* Also known as Dangerous permissions

* Allow an app additional access to restricted data

* Allow performing actions with more substantial effect on the system
or on other apps

0

* Apps need to request runtime permissions: Allow Maps to
. . o access this device's
* The system will present a runtime permission prompt location?

40

Protecting Resources
Examples of Runtime / Dangerous Permissions

e WRITE_CALENDAR

o READ_CALL_LOG
e WRITE_CALL_LOG
o PROCESS_OUTGOING_CALLS

o CAMERA

o READ_CONTACTS
e WRITE_CONTACTS
o GET_ACCOUNTS

o ACCESS_FINE_LOCATION
o ACCESS_COARSE_LOCATION

41

Protecting Resources » .4 100

1 1 1 ermission histor |
Runtime Permissions € P history

\

* Location, Microphone and Camera permissions provide Microphone usage

access to particularly sensitive information.

TODAY

* Android provides mechanisms to help users be aware

WhatsApp
Stopped

and monitor which apps use these permissions

WhatsApp
Started

€

System Ul
Stopped

* Android |2 or higher: Privacy dashboard
* Historical view of when different apps
have accesses data pertaining to these e

PermiSSionS € Telegram

Stopped

#2 Manage permission

* Android |2 or higher: indicators and toggles

42

Protecting Resources
Special Permissions

* Allow access to system resources that are highly sensitive

* Examples:
* displaying and drawing over other apps
* accessing all storage data

* Unlike the other categories of permissions, only the system or OEMs can
define special permissions

* An app cannot obtain a special permission unless the user explicitly grants
it through the Setting app.

Protecting Framework Resources
Multi-user Access Control

4 v v
getlLocation requestLocation takePicture

Location Service Q
PN

: NI

GPS Driver RIL Driver

v" Multi-User Feature

2

@ New Security Requirements

% Privilege Difference between users

@ Isolation of users’ apps and data

44

Protecting Framework Resources
Multi-user Access Control Restriction st

Cannot make call

& Cannot send SMS
X Cannot use Camera

getLocation requestLocation takePicture

Location Service Q

User Check

E N

@ New Security Requirements

% Privilege Difference between users

% Isolation of users’ apps and data

GPS Driver RIL Driver

45

Android Application Security

Protecting Framework and Apps
Permissions

* Recall, apps request permissions to access sensitive resources.

* request android.permission.SEND_SMS to send a text message

* request android.permission.WRITE_SECURE_SETTINGS to configure
sensitive device properties

* All permissions requested / granted to an app are assigned to the
app’s UID

Protecting Framework and Apps
Permissions

* All permissions requested / granted to an app are assigned to the
app’s UID

. L] _
EXGmPIe. Package [com.google.android.apps.docs] (9el3ae4):
userId=10186
pkg=Package{7af35a4 com.google.android.apps.docs}
codePath=/product/app/Drive
install permissions:
android.permission.DOWNLOAD_WITHOUT_NOTIFICATION: granted=true
com.google.android.c2dm.permission.RECEIVE: granted=true
android.permission.USE_CREDENTIALS: granted=true
com.google.android.providers.gsf.permission.READ_GSERVICES: granted=true
android.permission.MANAGE_ACCOUNTS: granted=true
com.google.android.googleapps.permission.GOOGLE_AUTH.OTHER_SERVICES: granted=true
android.permission.NFC: granted=true
com.google.android.googleapps.permission.GOOGLE_AUTH.writely: granted=true
android.permission.FOREGROUND_SERVICE: granted=true
android.permission.WRITE_SYNC_SETTINGS: granted=true
android.permission.RECEIVE_BOOT_COMPLETED: granted=true

* An app’s UID remains unchanged while the app installed and updated on a
given device

48

Protecting Framework and Apps
Permissions

Maps UID 13405:
Permissions: ACCESS_COARSE_LOCATION,
ACCESS_FINE_LOCATION

Applications ® e « System service APIs enforce
: ; access control.
______ : i BinderIPC : :
= H v
Framework et reguestLoction takePicture e How does an APl know
- — — \ 1 /resolve the calling app UID?
I y Location Service @ I Camera Service

| - : NI INI
* Through Binder IPC
v H v mechanism

GPS Driver Camera Driver RIL Driver

Linux Kernel

49

Binder IPC (Inter-Process Communication)

e Essential to Android

* Originally from OpenBinder
* First implementation used in Palm Cobalt
* Binder was ported to Linux and open sourced in 2005
* Completely rewritten for Android in 2008

* Its design focuses on scalability, stability, flexibility, low-
latency/overhead, easy programming model

Binder IPC (Inter-Process Communication)

[com.bar.app3

[com.foo.app2 |

co.mrkn.app1 |
(=

Package ‘
Activity Y
Manager

(SurfaceFlinger
mediaserver |

Audio '
Flinger

Package 5
Activity &

Manager

Service

(servicemanager

L FX _
Context ibbi ibbi libbinder
Manager libbinder 2 | libbinder I

(. . J

.

\ N—
/»(/::v/bi:der)‘/

Linux Kernel

https://www.protechtraining.com/static/slides/Deep_Dive_Into_Binder_Presentation.html

Binder IPC (Inter-Process Communication)

* Why Binder IPC specifically?

* Follows a simple programming interface that clients and services
agree upon for communication

* Android Interface Definition Language (AIDL)

* APIs in remote service objects, defined in the interface, can be
invoked as if local.

Binder IPC (Inter-Process Communication)

Remote Binder Transactions

1]
1 1
1 1
1 1
1 1
1 e 1
1 m 1
! =S !
!) 7] A 1
1 19p) 5 1
“ T o "
| E S |
i S5 i
1 am = 1
" OLHEN 1O, |
! L9 o !
| g 2 |
[mv 1
1 £ 1
Q| o 5 !
| - w llllllllllllllllllllllllll Y cepmmemmma- 1
L | A !
1 1
1 > 1
1) 1
1 - oy 1
“ g o "
[/2] i
L e e e e e e e e e e e e e e e e e = = - m IIIIIIIIIII -MI- IIIIIIIIIII 1
- £ @
3 2
2
S
raul P SR 2R
[} o SA
© =
2 8
m £
c @©
- 0
........ il
e o T .
1 mT 1
2 £ "
1 = 5 .
O
“ N > - X
“ S }----- R = e memae—————— Y..... !
1 S 1
1 o
i < w X
! 1
| c O C .
I o e 5 X
! g T ° !
! =} .MR 1
1 ('R ...m."a 1
“ = £G "
1 O [= 1
" .m_ = 1
1
“ S S - Nuu “
" O !
! 1
! 1
! 1
! 1
! 1

53

Process Y (System Service Y)

Binder IPC (Inter-Process Communication)

Remote Binder Transactions

°
R
cC o
g g
U
s e
Vv
n oo
9o
VU 4=
<5
()]
1 I
" “
1 1
1 1
1 e 1
X O v |
! A T s !
“) o A "
1 S ..@A 1
m ¥ m
! S % o !
[\ =
“ O IO, m
m .m () e !
[4 1
o 22 |
Q| 2 5 |
| - w llllllllllllllllllllllllll Y cepemammme |
L | A !
1 1
1 > 1
1 m 1
1 L) 1
" || W—
L e e e e e e e e e e e e e e e e = = = m IIIIIIIIIII MIu IIIIIIIIIII |
— = d
o S
=
a
vl DU NN, \ SRR
) o SA
2 85
- — eﬂ
2 € o
e
- - - Sell)
1 —
| e g = '
ra 52 |
I o) > 1
1 A y M c 1
1 X - 1
" S ----- S SMERLEELEEL LR, Yoo |
m o < = "
. c 0 c !
_ 2 c 5 "
1 ..nuv. ﬂ..nuw |
" £l Ok "
I (I = i
1 — T © 1
1 © €O 1
1 O [= 1
! 1= > "
S I SO .o
" &) !
! 1
1 1
1 1
1 1
1 1

54

Process Y (System Service Y)

Binder IPC (Inter-Process Communication)

Remote Binder Transactions

>N
s
—) -
(o] c)
- w0 omm
¥ Cp 3
n eolé 5
) £ c X <
7)) th n N
()] o (v} CD
VesO Vo
VU € , 4u b=
<, 0= 00QD
5 |
1 1
1 1
1 1
1 1
1 e 1
! 2 v !
“ S b meeeemeeeciemdceaeaaaaas “
! ()] (7] A 1
“ N o “
_ ? T _
| E o “
_ S 7 . _
1 [} =
“ ol© m
(1] o .
| iE: |
| £ 2 "
Q13 5 y m
L | b A !
“ - |
| - o “
“ g o "
S { I W—
— = 9
() (1]
= =
- \
m_lu TA
e, mm
= 39
a0 £ 0
c ©
e
I anu e
- | R |
'O B2 _
1 c 1
1 X - 1
“A O f=---- J-mmTmmmmmssmssssssemooso-e- Yo-u-- !
m - < = "
! 5 Q€ “
1 “ Im 1
“ 1S O}
| & 8 = |
| = 28 _
! S c |
i T = !
S [Y. “
" &) !
1 1
1 1
1 1

55

Process Y (System Service Y)

Binder IPC (Inter-Process Communication)

Remote Binder Transactions

®
. 2¢
SED23 T
§ 2= QLS5
() mk w =&
7
eSS =&
o
VeaelUmo .
VeE .0
A AN = w Q.
TS Tt T TS E ST TSI T T AT TITI T T TSIt T T T AT T T T T T T T T T T T |
1 1
1 1
1 1
1 1
1 e 1
! 2 v !
“ el L L L T T T P P P P “
! (0] (7] A 1
" w % < “
o |
| £ § |
| S5 - "
m OO |
! o « !
| 59 |
1 mm “
m B 2 / - “
L | &» A !
“ > |
| - o “
! g o !
s | — 4 [T— _
- £ @
() (3]
= =
- \
m_lu TA
e, mm
= 39
a0 £6
c ©
e
| I anu e
- | s = "
' 0 B2 _
1 [= 1
1 X - 1
"A O f=---- Q- mTTTmmTmmmmmsssssssssemee- Yo-u-- !
B R R z |
! 5 Q€ “
1 “ Im 1
“ © ©3
1 = 7] 1
1 L I 1
1 — T © 1
1 © €O 1
“ (&) c 1
| T = !
R - S .o
" &) !
1 1
1 1
1 1

56

Process Y (System Service Y)

Binder IPC (Inter-Process Communication)
Remote Binder Transactions

Client Proxy . | Binder Driver Stub Service

ExceptionCatcher keeps stopping

@ App info Access control
enforcement
If not, the
transaction will be
X Close SR interrupted

Process X (App X)

Process Y (System Service Y)

Binder IPC (Inter-Process Communication)

Remote Binder Transactions

(7]
0
b c .m
(o] (V)
| S (-] >
£5g £
Q _
SEZ2 &
7 m 3 Om
WL ENgw
ol ¢gqvuc
Ve £ c®
A e°tf (oT1]
e]
" “
1 1
1 1
1 e 1
X O v |
! S Jemmm e !
| o e 4 |
1 S ..@A 1
| ¥ m
! S o !
[\ =
“ @i 3o |
m L9 o !
0w X 1
o Z2 m
Q| 2 5 |
_I -w llllllllllllllllllllllllll K llllllllllll 1
L | A !
“ > |
1 m 1
1 L 1
“ | O
L e e e e e e e e e e e e e e e e e = = - m ||||||||||| -MI. ||||||||||| 1
— = d
() (1}
= =
a
| PP S \ ZR
) o SA
2 85
- — eﬂ
2 € o
Hlo
-~ EEEEEE - - - - - Sefl)
1 —

.| c - 1
o ix: |
I o aV 1
1 > = 1

X —
L B g Yoo m
m - < = "
. c 0 c !
! o o 5 “
1 ..nuv. _— |
| £l Ok "
i (T = i
1 — T © 1
1 © €O 1
1 (&} [= 1
" ..m = 1
S - OO R — .o
" &) !
1 1
1 1
1 1
1 1
! 1

58

Process Y (System Service Y)

Binder IPC (Inter-Process Communication)

* Why Binder IPC specifically? Security reasons
* |dentify UIDs (and PIDs) of senders and receivers
* Unique token for an object across boundaries

59

Protecting Apps

App Sandbox App Sandbox App Sandbox
Maps UID 13405 Camera UID 13406 Dialer UID 13407
Applications * By default, apps cannot interact
with each other.
\ 4 é \ .
getlLocation requestLocation takePicture o B)’ default apps cannot read
Framework l 1 : ’ . .
' : other apps data or invoke its
Location Service Q Camera Service functiona“ty
' N LN
Linux Kernel 5 . .
4 v y * Android allows sharing between
GPS Driver Camera Driver RIL Driver aPPS via different forms Of inter_

app communication
60

Protecting Apps

Inter-App Communication

* Some app might not request permissions to access a sensitive
resource or perform a privilege operation
* Rather, they can delegate this job to other apps.

* Functionality sharing/reuse is highly encouraged in Android

* Functionality sharing/reuse occurs through app-level interactions

Inter-app communication
Motivating examples

* Functionality sharing/reuse

Open attachment.pdf

Can read PDF files

Display location
coordinates X and Y

Ju

?

Google Maps

62

Inter-app communication
Available Mechanisms

* Android apps can communicate with each other via different
mechanisms:
* Use traditional Linux mechanisms such as shared files, pipes, etc.
* Use Android specific mechanisms:
* Binder IPC
* Intents
* Messenger
* Content Providers

63

IPC via Intents

* Android supports a simple form of IPC via Intents

* Intents are messaging objects that can be used by an app to request
an action from another app component

* Interaction between apps is done at their level of components
* Start Activities
* Start Services
* Delivering Broadcasts

64

IPC via Intents

* Intents pass a messaging object from a calling app to another app
* Steps:

|. An app needs to declare that it can handle a specific functionality
* PDF Viewer app can declare that it can open / display pdf files

* Google Maps app can declare that | can allow displaying a specific coordinate
on the app

2. Other apps will send intents to apps that can handle the
functionality

IPC via Intents

* Intents pass a messaging object from a calling app to another app

1. Declare the ability to handle pdf viewing

<activity android:name=".FileViewer">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<data android:mimeType="application/pdf" />
</intent-filter>
</activity>

66

IPC via Intents

* Intents pass a messaging object from a calling app to another app

2. Send intent to pdf viewer

Intent intent = new Intent();
intent.setAction("android.intent.action,VIEW");
intent.setType("application/pdf");
intent.setData(Uri.parse("content://enail/attachment/file.pdf"));
startActivity(intent);

1. Declare the ability to handle pdf viewing

<activity android:name=".FileViewer">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<data android:mimeType="application/pdf" />
</intent-filter>
</activity>

67

IPC via Intents

* There are two types of intents in Android:

|. Explicit intents
* Specify the target app component that should handle the intent

Ju

Intent intent = new Intent();
Intent.setComponent(“com.adobe.FileViewer”) ;

68

IPC via Intents

2. Implicit intents
* The target app component is not specified
* The action to be performed is specified

Intent intent = new Intent();
Intent.setAction(“android.intent.action.VIEW”) ;
intent.setType(“application/pdf”) ;

69

IPC via Intents

2. Implicit intents
* The target app component is not specified

* The action to bp—==fmmmdiommnnibind
+ The Android O CPENIL

* If more than
e Sometimes, t }Q

Remember my choice

G

READER

Intent intent = new In Cancel

Intent.setAction(“androij

dle the request
get

Fu

G

intent.setType(“application/pdf”];

70

App components

* App components are the building blocks of an Android app.

* Each component is an entry point to the app, through which the system or
other apps can access the app.

e Activities, Services, Broadcast Receivers, and Content Providers

* Components are defined in the app Manifest

* AndroidManifest.xml
* describes information about the app
* defines the components using a specific syntax
* the set of permissions that the app needs to get access to the resources

App components

* AndroidManifest.xml

<?xml version="1.0" encoding="utf-g"?>
<manifest xmlns:android="http:/ schemas.android.com/apk/res/android"

<application android:icon="@drawable/icon" android: label="@string/app name">

</a lication>

</manifest>

Protecting app components

* Why should Android protect app components!?

, Send SMS on my behalf <service android:name="“SendMessageService” >

Granted
“‘android.permission.SEND_SMS”

_ by the user
Intent intent = new Intent();

Intent.putExtras(SMSMessage);
Intent.setComponent(“SendMessageService”);
startService(intent);

Protecting app components

* Why should Android protect app components!?

, Send SMS on my behalf <service android:name="“SendMessageService” >

., Granted
Send SMS on my behalf “‘android.permission.SEND_SMS”
by the user

No permissions at all

Protecting app components

* Android provides various security mechanisms to protect app
components:
* Enforced at Manifest declaration of components
* Exported Flag
* Permissions
* Broadcasts-specific protection: protected broadcasts

* Programmatic
* Permissions

75

Protecting app components
Exported Flag

* Setting exported flag to false ensures that a sensitive app component
is only accessible to the defining app.

<receiver android:name=".MyBroadcastReceiver" android:exported="false">
<intent-filter>
<action android:name="ACTION_BATTERY_CHANGED 7" />

</intent-filter>
</receiver>

76

Protecting app components
Permissions

* Apps can use permissions to protect components

* A calling app needs to request / be granted that permission to access
the component

o Activities, services and broadcast receivers can declare a
“android:permission” element at the component definition

77

Protecting app components
Permissions

* Apps can use permissions to protect sensitive components

Add Permission requirement!!

<service name=“SendMessageService”
y android:permission = “android.permission.SEND_SMS” >

Granted
“android.permission.SEND_SMS”

|'| ., Granted
“‘android.permission.SEND_SMS”

No permissions at all by the user

Android Security -- Advanced Topics

Research Trends in Mobile Security

* Framework Security
e Access control evaluation
* Access control enhancement

* App Security
* Detection of app-specific vulnerabilities
* Malware detection
* Privacy analysis

 User Authentication
* Biometric authentication

* Covert channels

Android Access Control Analysis

Permission Maps Extraction

81

Framework Security
Access Control Analysis

* Motivation
* Lack of an understanding of Android Access Control
* Incomplete / Missing security documentation and specification
* Highly customized ecosystem

* This could lead to:
* Access control anomalies
* Potential vulnerabilities !!

82

Framework Security
Access Control Analysis

* Lack of an understanding of Android Access Control

* Incomplete / Missing security documentation and specification

What Permissions
should be requested ?

DialPhone()
——

sendSMS ()

83

Framework Security
Access Control Analysis

* Lack of an understanding of Android Access Control

* Incomplete / Missing security documentation and specification

What Permissions
should be requested ?

permission.CALL_PHONE

a DialPhone() —— permission.broadcast_SMS
sendSMS ()
@ esmm=— permission.WRITE_SMS

permission.SEND_SMS 84

Framework Security
Access Control Analysis

* An imprecise / incorrect security specification could lead to the following:
* Wrong specification to developers
* Over-privileged apps

Too Many
Permissions

(&

N\ permission.CALL_PHONE &

DialPhone()

: readsms ()) permission.broadcast_SMS
permission.WRITE_SMS

permission.SEND_SMS o

Framework Security
Access Control Analysis

* An imprecise / incorrect security specification could lead to the following:
* Wrong specification to developers
* Over-privileged apps

What Permissions
should be requested ?

by

Over privilege:
Apps requesting more permissions than what’s needed

permission.CALL_PHONE

DialPhone() . o
o e) permission.broadcast_SMS
@ esmm=— permission.WRITE_SMS

permission.SEND_SMS

oo ©

86

Framework Security
Access Control Analysis

* Solution: API to Permission Maps

x T
¢ O -» Look up Permissions from
¢ At N Map

APl — Permission

DialPhone()

|

sendSMS ()

permission.CALL_PHONE {:’

permission.SEND_SMS

v

87

Framework Security
Access Control Analysis

* Research Efforts have been proposed to construct the maps

* Dynamic Approaches
* Use feedback directed API fuzzing
* Dynamically log permission checks for an APl execution

* Static Approaches
* Construct control flow graphs of APIs
* Report reachable permission checks from an API

88

Dynamic Analysis

* Dynamic analysis uses techniques that evaluate a program in real time
* Could be carried out in a virtual environment or on an actual device

* |t executes (or emulates) and monitors programs to look for specific
behaviors characterizing a vulnerability or a property

* Under the context of Android, dynamic analysis has been used for
various tasks
* Assessing the security of Android apps (e.g., malware detection)
* Analyzing framework access control

Static Analysis

* Static analysis uses techniques that parse program code (or bytecode)

* Traverses and analyzes the code to check some program properties

* Under the context of Android, static analysis has been used for
various tasks

* Assessing the security of Android apps (e.g., vulnerability identification,
detecting app clones)

* Analyzing framework access control (particularly, permissions).

Dynamic versus Static Analysis

Static Analysis
=+ More efficient

+ Low computation cost (usually)

+ Can provide a complete picture
of all possible program paths

- May report unfeasible paths
- Cannot handle obfuscated code

- Cannot handle dynamically
loaded code

Dynamic Analysis

+ More informative, as it can
provide specific details about a
behavior during runtime.

+ Can handle highly obfuscated
code.

- Coverage problems — may miss
to execute interesting behavior

91

Framework Security
Constructing Permission Maps through Dynamic Analysis

* Recap: Access control enforcement in Android

WifiService

Void setWifiApEnabled(..)
{

if(caller.hasPermission(“android.permission.CHANGE WIFI STATE”) &&
caller.hasPermission(“android.permission.CONNECTIVITY_INTERNAL”))

1

//perform actual enabling(..);

ilse API setWifiApEnabled requires
android.permission.CHANGE_WIFI_STATE

P Enre SREIrAL) Rt AND android.permission.CONNECTIVITY_ INTERNAL

92

Framework Security
Constructing Permission Maps through Dynamic Analysis

* Approach: Invoke the APIs from unprivileged apps and detect the

checks that protect them

Add permission X to app

v

2

Test Executor

Target API

Unprivileged
APP

API requires permission X

=©\\)

|
Execution Security Exception
Log Finder

93

Framework Security
Constructing Permission Maps through Dynamic Analysis

* First testing iteration:

Add permission CHANGE_WIFI_STATE to app
v

Unprivileged

8 ' \ E N GQ

||
Test Executor SetWiﬁAppEnable;]‘] Execution Security Exception
Log Finder

Caller does not have
CHANGE_WIFI_STATE

94

Framework Security
Constructing Permission Maps through Dynamic Analysis

* Second testing iteration:

Add permission CONNECTIVITY_INTERNAL to app
v

Unprivileged

@ ' \ E N GQ

||
Test Executor SetWiﬁAppEnable;]‘] Execution Security Exception
Log Finder

Caller does not have
CONNECTIVITY_INTERNAL

95

Framework Security
Constructing Permission Maps through Dynamic Analysis

* Third testing iteration

Tes

‘ Unprivileged I

J APl setWifiApEnabled requires android.permission.CHANGE_WIFI_STATE

AND android.permission.CONNECTIVITY_INTERNAL

p

- Log J Finder

No exceptions

96

Framework Security
Constructing Permission Maps through Dynamic Analysis

* Certain permission enforcement might not be encountered unless specific inputs
are supplied.

* Solution: Fuzzing

97

Framework Security
Constructing Permission Maps through Dynamic Analysis

* Generate different inputs

] o ‘1 Unprivileged I

o) — & | = Q

Test Executor Target APT ‘]‘] Execution ‘]‘] Security Exception

Log Finder

98

Framework Security
Constructing Permission Maps through Dynamic Analysis

disableComponent(int userID, int appID) { Input .al"gO = callerUserld

if (callerUserId != userID()) \Y
if (!hasPermission(INTERACT_ACROSS USERS)) exception; Perm = INTERACT _ACROSS USERS

if (calleruid != appID)

if(!'hasPermission(CHANGE_ENABLED_SETTING)) exception;

disableState(...); A

Input : argl = callerUid
\%
Perm =CHANGE_ENABLED_SETTING

99

Framework Security
Constructing Permission Maps through Static Analysis

* Static analysis approaches proceed as follows:

* |dentify entry points (i.e.,APIls) defined in the framework.

* Build a control flow graph (cfg) of each API
* Perform a reachability analysis on the cfg

* |dentify access control enforcement methods

e Path insensitive:
* Path sensitive

100

Framework Security
Constructing Permission Maps through Static Analysis

* Given a target API, static analysis approaches analyze its CFG to

identify access control checks (3/ Manager.exists(userID)
@ name == NULL
3: IManager.exists(userID)) return;
a; dli¢b ﬁg%@poneﬂgiigt userID, 1int appIﬁ String name) {
5% isApp = true; N
. (7) callerUid == appID
7 if(calleruid!= appID)
8 if(!'hasPermission (CHANGE_ENABLED_SETTING) exception; (:E:) hasPermission (CHANGE. .)
9:
10: userID eff = get(userID); (EEE) userID _eff = get(userID(
11: if (callerUserId!= userID_eff)
12: if(!'hasPermission(INTERACT_ACROSS_USERS)) exception;
13:
14: disableState(...); G_D callerUserId == userID_eff

@ hasPermission(INTERACT..)

* CFG is quite complex
101

Framework Security
Constructing Permission Maps through Static Analysis

* Not all nodes in the cfg are of interest (3)) Manager-exists(userio)
in the construction of the api - (4 mame == NuLL
permission maps l /@
7) calleruUid == appID
I

° hasPermission(CHANGE. .)
@ userID_eff = get(userID(

11)} callerUserld == userID_eff

T
hasPermission(INTERACT..)

102

Framework Security
Constructing Permission Maps through Static Analysis

* Permission Map can be constructed either in a path- e Manager. exists(userID)
insensitive or path-sensitive fashion
° name == NULL

* Path-insensitive: l
JO,

7

|

* Report a union of all identified permissions eruid o
callerUid == app

e Path-sensitive: ° hasPermission(CHANGE. .)

* Permission Map is constructed by extracting path @
conditions of all paths from the entry point

* Each path denotes a way to acquire the needed
access. 11) callerUserld == userID eff

T

userID_eff = get(userID(

* Permission map is a first-order logic formula
formed by the disjunction of these path

conditions

hasPermission(INTERACT..)

103

Android Access Control Analysis
Vulnerability Detection

104

Framework Security
Access control enforcement

* Recap: Protecting different resources in various layers of the OS

Permission Check O ‘

v ¥ v
getlLocation requestLocation takePicture

E N

Permission Check

Location Service @

N

Linux Access Control

GPS Driver RIL Driver

105

Framework Security
Access control enforcement: EFFECTIVE??

@ Lack of an Oracle: It’s difficult to determine if a resource is correctly protected

=y . Approximate Solution: Compare Access Control enforcement across multiple instances of the
@ same resource

Applications
® O
. H E
getLocation requestLocation tak_ePicture Inconsistencies are
Framework | : i
Potential Vulnerabilities
Location Service Q Camera Service :
: INI LN
Linux Kernel : : :
v v v

GPS Driver Camera Driver RIL Driver

106

Comparing APl Access Control Enforcements

@ Android Access Control features Diversity / Complexity
@ No Gold Standard to implement Access Control

Applications e /
¥

API

Framework g sy

System Service

Linux Kernel

Driver

System
Process?

—

. packageInfo(CallingAppUid).Signature ==
[Platform_Signature]

‘ packageInfo(CallingAppUid).Flags &
[FLAG_SYSTEM] != @

. CallingAppUid == SYSTEM_UID

. CallingAppPid == Process.myPid()

107

Framework Security
Detecting access control inconsistencies

@

' \

@ Exploitable case

- I
(Reboot() RebootForMDM() SOQ

I
Applications '

Power off :
v
Reboot reboot
Screenshot Access Control checkCallingUID checkPermission(perm.
PowerService checkPerm|SS|on (perm.REBOOT) (Uid_SYSTEM) ENTERPRISE_API)

Airplane mode
Awplare mode is OF SYSTEM PERMISSION NORMAL PERMISSION

Linux Kernel :
V \
Power
Management

shutdownOrRebootInternal()

108

Framework Security
Detecting access control inconsistencies

* Approximate solutions:
* Perform convergence analysis for two APls
* Extract access control enforcement for the APIs as a union
* Inconsistency is detected if the paths reveal different access control checks.

* More precise solutions:
* Perform convergence analysis for two APIs

* Extract access control enforcement along each individual execution path of an
API

* Normalize access control enforcement to account for diversity

Framework Security
Detecting access control inconsistencies

* Normalizing access control based on program structures:

@ Case: Multiple permissions are enforced

public boolean requestRouteToHostAddress(5 1|
enforceCallingPermission ("permission.(:.'-.t::i;':;_t:':1':".*.‘::1:‘3{2«(_ STATE") ; NORMAL
enforceCallingPermission ("permission. :ﬁf"{_",‘f-.IfI.?.f'TT"‘.'T"x'_TfIfH" NAL") ; SYSTEM

addRouteToAddress (...);

\

Normalized Value = Max (NORMAL, SYSTEM)
=> SYSTEM

110

Framework Security
Detecting access control inconsistencies

* Normalizing access control based on program structures:

%(Case: Either permission is enforced

public boolean getSubscriberId(...) {
tryf
enforceCallingPermission ("READ_PRIVILEGED_PHONE_STATE"); SYSTEM
}catch (SecurityException) {
enforceCallingPermission ("READ_PHONE_STATE"); DANGEROUS
}
return mPhone.getSubscriberId(); v

Normalized Value = Min (DANGEROUS, SYSTEM)
=> DANGEROUS

App Security

Component Hijacking Vulnerabilities

112

Security concerns in mobile apps
Component Hijacking (or permission re-delegation attacks)

* Class of attacks that seek to gain unauthorized access to protected
sensitive resources through under-protected app components

* Unauthorized access could reflect:
* Invocation of a sensitive API (i.e., an API that enforces access control).
* Read sensitive data (attack a.k.a. Content Leaks)
* Write to sensitive data (attack a.k.a. Content Pollution)
* Combination of the above.

113

Security concerns in mobile apps
Example of Component Hijacking

Unauthorized access to private resources

Accepts external

updates

M Setting Update Private
Receiver Storage

App Internal DB is
permission
protected

J9A1929Y 91epdn Su1N1aS

Write to critical area
Android Framework

VolP_Prefix “1234”

Is_App_Lisenced false

Security concerns in mobile apps
Vetting apps for Component Hijacking

* |dentify sensitive resources reachable from an app component

* Compare the protection specification of the app component against
that of the sensitive resource

* If the component’s protection is weaker, a hijack-enabling flow is
detected

115

Security concerns in mobile apps
ops for Component Hijacking

Vetting a

e Cha

lenges:

* Component hijacking is also possible on a chain of components

* Hijack-enabling flows could span across component boundaries

Android Framework

Sensitive resources

Security concerns in mobile apps
Vetting apps for Component Hijacking

* Challenge:
* Component hijacking is also possible on a chain of components
* Hijack-enabling flows could span across component boundaries

* Addressing this challenge requires:
* Tracking flows across components

* Assessing the collective effect of individual flows and identify the target flow
of interest

* Modeling the asynchronous nature of inter-app component interaction

Recap

* Overview of Android security model
* Framework

* App
* Research topics in Android

* Android framework permission mapping
* Component hijacking in apps

