
Overview of Android OS / Security
Mechanisms

1

Mobile devices

• Embedded

• Ubiquitous connectivity (wireless, cellular / 4G, NFC, …)
• Sensors: accelerometer, GPS, camera, …
• Computation: powerful CPUs (>1Ghz, multi-core)

• Two major OS: Android / iOS

Mobile devices

7.3
Billion

Is the Global Mobile Android Population

>1
 Billion

Is the number of Android devices sold annually

Smart Watches

Smart TVs

Smart Game Suites

Smart Auto Guidance

3

Mobile Devices: Trends

4

• Increased reliance on mobile devices
• Banking, work, personal data, communication
• Data security and authentication is thus highly important

• Used for work
• Bring your own device (BYOD)
• Mobile Device Management used to protect enterprise

• Relies on different technologies
• E.g., web
• Inherit limitations

What is Mobile Security?

5

• Or “What makes security different under the mobile platform?”

• Different communication channels
• WiFi, NFC, cellular, Bluetooth, …

• Different actors
• Broader range of users compared to traditional platforms
• More prone to social attacks

• Different side channels
• Examples: reflection, ..

What is Mobile Security?

6

• Or “What makes security different under the mobile platform?”

• (Relatively) limited computing power / resources
• Limited battery, memory, CPU, bandwidth
• Cannot deploy traditional security solutions right out of box

• Portable
• Non-conventional attack vectors, e.g., stealing, loss
• Subject to short range attacks (NFC, Bluetooth)

• Highly customized and fragmented
• The OS is customized by different parties:

• Original Equipment Manufacturers (OEMs), e.g., Samsung, Xiaomi
• Carriers, e.g., Bell, Telus, AT&T
• Hardware manufacturers, e.g., Qualcomm, MediaTek

What is Mobile Security?

7

• Or “What makes security different under the mobile platform?”

• Continuous and fast-paced evolution
• Since its introduction in 2009, Android has released 35 major versions
• Mobile users need to keep up with fast updates

• Wide range of software (mobile apps) than traditional platforms
• “there is an app for it”
• Preloaded (trusted) apps
• (untrusted) third-party apps (to be installed)

• …

Mobile Threats:
What is stored on mobile devices?

8

• Depends on the type of mobile devices

• SmartTVs store: streaming services credentials, viewing history, etc.
• Smartphones store:
• Contacts
• Email, social network chats
• Banking, financial apps data
• Multimedia data
• Location information and history
• …

Mobile Threats:
What is stored on mobile devices?

9

• Depends on the type of mobile devices

• SmartTVs store: streaming services credentials, viewing history, etc
• Smartphones store:
• Contacts
• Email, social network chats
• Banking, financial apps data
• Multimedia data
• Location information and history
• …

What would happen if an “entity” accesses your
mobile device?

Mobile Threats
Threat model

10

• Attackers with physical access
• Unlock device
• Exploit vulnerabilities to circumvent locking

Mobile Threats:

11

• Attackers with physical access
• Unlock device
• Exploit vulnerabilities to circumvent locking

• Attackers with remote access
• Get the user to install malicious app (malware)

• Use malware to steal sensitive data or perform malicious operations
• Exploit various flaws in the mobile ecosystem for distribution, propagation and

performing malicious functionality

• Send malicious / malformed content to the device
• Examples: send a malformed SMS,
• Exploit various vulnerabilities

Protection against Physical Attacker
Authentication

12

• Protect against physical attacker via (mobile-specific) authentication
• Something the user knows: PINs, Patterns, Passwords
• Something the user is: Biometrics

13

• Attacks:
• Smudge Attack

Protection against Physical Attacker
Authentication via Patterns

14

• Attacks:
• Smudge Attack

• Another problem: entropy:
• People tend to chose simple patterns
• With 4 strokes, there are 1600 patterns.

• Online brute forcing PINs

Protection against Physical Attacker
Authentication via Patterns / PINs

15

• Fingerprint scanners, iris scanners, face unlock

• Standard biometric security concerns:
• Subject to high false positives and false negatives
• Cannot be changed
• Not secret

• There is usually a fallback authentication (e.g., PIN)
• The authentication strength reduces to the weakest authentication method

Protection against Physical Attacker
Biometric authentication

Protection against Physical Attacker
Next Defense: Factory Reset and others

16

• Protect against brute force attacks by erasing data if too many tries.

• Protect a stolen phone
• Using GPS ”where is my phone”
• Backup device
• Device wipe

Protection against Malware

17

• Goal of the attacker: Lure the user into installing malware
• Use malware to steal sensitive data or perform malicious operations
• Exploit various flaws in the mobile ecosystem for distribution, propagation

and performing malicious functionality

• Apps in Android are Self-Signed.
• Apps can be downloaded from Google Play and from 3rd party markets
• It is easier to distribute apps on markets
• Although some markets perform automated scanning, malware is a serious issue

Malicious apps & Potentially Harmful
Apps (PHAs) may appear!

18

Characteristics of Mobile Apps / markets

Malicious Apps (malware) always on the Rise

19

Malicious apps exploit different vulnerabilities and
attack vectors,

introduced by different actors in the ecosystem

Malicious apps (malware)

20

• Malware exploit flaws in the mobile ecosystem

• The flaws may be introduced unintentionally:
• Development mistakes
• Improper market vetting
• Buggy tools
• …

Malicious apps (malware)

21

• Malware exploit flaws in the mobile ecosystem
• The flaws may be introduced unintentionally:

• Development mistakes
• Improper market vetting
• Buggy tools
• …

• The flaws may also be introduced intentionally
• Non-malicious OEM developers leaving debugging backdoors.
• Malicious libraries embedded in a benign app
• Malicious insiders planting backdoors in EOM codebases
• …

22

Who introduces flaws in the Android mobile ecosystem?
Background

23

Who introduces flaws in the Android mobile ecosystem?
Actors in the Android ecosystem

24

Who introduces flaws in the Android mobile ecosystem?
Attack vectors

Protection against Malware

25

• How does Android protect various sensitive resources in the system?
• App sandboxing
• Access control based on permissions
• Traditional Linux DAC

JNI

Protecting Resources in the system

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

26

JNI

Protecting Resources in the system
App sandboxing

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

27

App Sandbox
Maps UID 13405

App Sandbox
Camera UID 13406

App Sandbox
Dialer UID 13407

• Android assigns a unique UID
to each Android app and runs it
in its own process

• System level processes are
assigned privileged UIDs

• The UIDs are used to set up a
kernel-level Application
Sandbox

System UID 1000

JNI

Protecting Resources in the system
App sandboxing

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

28

App Sandbox
Maps UID 13405

App Sandbox
Camera UID 13406

App Sandbox
Dialer UID 13407

System UID 1000

• By default, apps cannot interact
with each other and have
limited access to the OS

• By default, apps cannot read
other apps data or invoke its
functionality

• All communication goes
through monitored IPC

IPC

29

• Android relies on a number of protections to enforce the application
sandbox.
• The enforcements have evolved over time to strengthen the original UID-

based discretionary access control (DAC) sandbox

• Android 5.0: SELinux provided Mandatory Access Control (MAC) separation
between the system and apps
• Android 6.0: SELinux separation was extended to isolate apps based on the

running users.

Protecting Resources in the system
App sandboxing

30

• Android relies on a number of protections to enforce the application
sandbox.
• The enforcements have been evolved over time to strengthen the original

UID-based discretionary access control (DAC) sandbox

• Android 8.0: all apps were set to run with a seccomp-bpf to filter the system
calls that apps can use
• Android 9: SELinux separation was extended to provide a per-app isolation
• Android 10: apps have a restricted raw view of the filesystem

Protecting Resources in the system
App sandboxing

JNI

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

IPC

Permission Check

Linux Access Control

Permission Check

31

Protecting Resources at the Linux layer
Traditional Linux ACLs

• Android relies on Linux Discretionary Access Control (DAC) to protect resources at
Linux layer

• Protected objects: ??

• Subjects: ??

• Rights: ??

32

Protecting Resources at the Linux layer
Traditional Linux ACLs

• Android relies on Linux Discretionary Access Control (DAC) to protect resources at
Linux layer

• Protected objects: Linux objects: Files (remember device drivers are special files).

• Subjects: Apps and system processes (remember each process is defined by unique
UID)

• Rights: RWX

33

Protecting Resources at the Linux layer
Traditional Linux ACLs

<uses-permission name=“ACCESS_FINE_LOCATION”/>
<uses-permission name=“ACCESS_COARSE_LOCATION”/>

JNI

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

IPC

Google Maps

Permission Check

34

Protecting Resources
 Android Permissions

JNI

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

IPC

Permission Check

35

Protecting Resources
 Android Permissions

36

LocationManagerService

Location getLastLocation(LocationProvider request, …)
{
 if(caller.hasPermission(“ACCESS_FINE_LOCATION”)
 || caller.hasPermission(“ACCESS_COARSE_LOCATION”))
 {
 …
 return mLastLocation.get(request.getProvider());
 }
 else
 // throw Security Exception
}

Protecting Resources
 Android Permissions

• Permission enforcement in Android APIs

• Three categories of permissions:
• Install-time permissions
• Runtime permissions
• Special permissions

• The categories indicate:
• The scope of data that an app can access
• The scope of functionality that an app can perform

37

Protecting Resources
Android Permissions

• The system grants these permissions automatically to apps during
install time

• Two types:
• Normal: Allow access to data/operations that present little risk
• Signature: Granted to an app only when the app is signed with the same

certificate as the entity (app / OS) defining the permission

38

Protecting Resources
Install-time Permissions

39

Protecting Resources
Examples of install-time permissions

NORMAL Signature

• Some signature permissions aren’t for use by third-party apps

• Also known as Dangerous permissions

• Allow an app additional access to restricted data
• Allow performing actions with more substantial effect on the system

or on other apps

• Apps need to request runtime permissions:
• The system will present a runtime permission prompt

40

Protecting Resources
Runtime Permissions

41

Protecting Resources
Examples of Runtime / Dangerous Permissions

• Location, Microphone and Camera permissions provide

access to particularly sensitive information.

• Android provides mechanisms to help users be aware

and monitor which apps use these permissions

• Android 12 or higher: Privacy dashboard
• Historical view of when different apps
have accesses data pertaining to these
permissions

• Android 12 or higher: indicators and toggles

42

Protecting Resources
Runtime Permissions

• Allow access to system resources that are highly sensitive

• Examples:
• displaying and drawing over other apps
• accessing all storage data

• Unlike the other categories of permissions, only the system or OEMs can
define special permissions

• An app cannot obtain a special permission unless the user explicitly grants
it through the Setting app.

43

Protecting Resources
Special Permissions

ü Multi-User Feature

New Security Requirements

Privilege Difference between users

Isolation of users’ apps and data

JNI

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

IPC

44

Protecting Framework Resources
 Multi-user Access Control

Restriction List:
 Cannot make call
 Cannot send SMS
 Cannot use Camera
 …

JNI

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

IPC

takePicture
User Check

45

New Security Requirements

Privilege Difference between users

Isolation of users’ apps and data

Protecting Framework Resources
 Multi-user Access Control

Android Application Security

46

• Recall, apps request permissions to access sensitive resources.
• request android.permission.SEND_SMS to send a text message
• request android.permission.WRITE_SECURE_SETTINGS to configure

sensitive device properties
• …

• All permissions requested / granted to an app are assigned to the
app’s UID

47

Protecting Framework and Apps
Permissions

• All permissions requested / granted to an app are assigned to the
app’s UID

• Example:

• An app’s UID remains unchanged while the app installed and updated on a
given device

48

Protecting Framework and Apps
Permissions

JNI

Protecting Framework and Apps
Permissions

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

Binder IPC

GPS Driver

JNI

49

Maps UID 13405:
Permissions: ACCESS_COARSE_LOCATION,
ACCESS_FINE_LOCATION

System UID 1000

• System service APIs enforce
access control.

• How does an API know
/resolve the calling app UID?

• Through Binder IPC
mechanism

• Essential to Android

• Originally from OpenBinder
• First implementation used in Palm Cobalt
• Binder was ported to Linux and open sourced in 2005
• Completely rewritten for Android in 2008

• Its design focuses on scalability, stability, flexibility, low-
latency/overhead, easy programming model

50

Binder IPC (Inter-Process Communication)

51

Binder IPC (Inter-Process Communication)

https://www.protechtraining.com/static/slides/Deep_Dive_Into_Binder_Presentation.html

• Why Binder IPC specifically?
• Follows a simple programming interface that clients and services

agree upon for communication
• Android Interface Definition Language (AIDL)
• APIs in remote service objects, defined in the interface, can be

invoked as if local.

52

Binder IPC (Inter-Process Communication)

53

Binder IPC (Inter-Process Communication)
Remote Binder Transactions

Process X (App X) Process Y (System Service Y)

AIDLAIDL

54

Binder IPC (Inter-Process Communication)
Remote Binder Transactions

Process X (App X) Process Y (System Service Y)

AIDLAIDL

Access control
enforcement

55

Binder IPC (Inter-Process Communication)
Remote Binder Transactions

Process X (App X) Process Y (System Service Y)

AIDLAIDL

Access control
enforcement
1. Obtain identity
of caller à
Process X with
UID 12345

56

Binder IPC (Inter-Process Communication)
Remote Binder Transactions

Process X (App X) Process Y (System Service Y)

AIDLAIDL

Access control
enforcement
2. Check if UID
12345 is assigned
the required
permission

57

Binder IPC (Inter-Process Communication)
Remote Binder Transactions

Process X (App X) Process Y (System Service Y)

AIDLAIDL

Access control
enforcement
If not, the
transaction will be
interrupted

58

Binder IPC (Inter-Process Communication)
Remote Binder Transactions

Process X (App X) Process Y (System Service Y)

AIDLAIDL

Access control
enforcement
Otherwise, access
to A’s
functionality is
granted

• Why Binder IPC specifically? Security reasons
• Identify UIDs (and PIDs) of senders and receivers
• Unique token for an object across boundaries

59

Binder IPC (Inter-Process Communication)

JNI

Protecting Apps

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

60

App Sandbox
Maps UID 13405

App Sandbox
Camera UID 13406

App Sandbox
Dialer UID 13407

• By default, apps cannot interact
with each other.

• By default, apps cannot read
other apps data or invoke its
functionality

• Android allows sharing between
apps via different forms of inter-
app communication

• Some app might not request permissions to access a sensitive
resource or perform a privilege operation
• Rather, they can delegate this job to other apps.

• Functionality sharing/reuse is highly encouraged in Android

• Functionality sharing/reuse occurs through app-level interactions

61

Protecting Apps
Inter-App Communication

• Functionality sharing/reuse

62

Open attachment.pdf

Can read PDF files

Display location
coordinates X and Y

Inter-app communication
Motivating examples

• Android apps can communicate with each other via different
mechanisms:
• Use traditional Linux mechanisms such as shared files, pipes, etc.
• Use Android specific mechanisms:
• Binder IPC
• Intents
• Messenger
• Content Providers

63

Inter-app communication
Available Mechanisms

• Android supports a simple form of IPC via Intents

• Intents are messaging objects that can be used by an app to request
an action from another app component

• Interaction between apps is done at their level of components
• Start Activities
• Start Services
• Delivering Broadcasts

64

IPC via Intents

• Intents pass a messaging object from a calling app to another app

• Steps:
1. An app needs to declare that it can handle a specific functionality
• PDF Viewer app can declare that it can open / display pdf files
• Google Maps app can declare that I can allow displaying a specific coordinate

on the app

2. Other apps will send intents to apps that can handle the
functionality

65

IPC via Intents

• Intents pass a messaging object from a calling app to another app

66

1. Declare the ability to handle pdf viewing

IPC via Intents

<activity android:name=".FileViewer">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType=“application/pdf" />
 </intent-filter>
</activity>

• Intents pass a messaging object from a calling app to another app

67

1. Declare the ability to handle pdf viewing

IPC via Intents

<activity android:name=".FileViewer">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType=“application/pdf" />
 </intent-filter>
</activity>

2. Send intent to pdf viewer

• There are two types of intents in Android:

1. Explicit intents
• Specify the target app component that should handle the intent

68

IPC via Intents

Intent intent = new Intent();
Intent.setComponent(“com.adobe.FileViewer”);

2. Implicit intents
• The target app component is not specified
• The action to be performed is specified

69

IPC via Intents

Intent intent = new Intent();
Intent.setAction(“android.intent.action.VIEW”);
intent.setType(“application/pdf”);

2. Implicit intents
• The target app component is not specified
• The action to be performed is specified
• The Android OS will resolve the components that can handle the request

• If more than one, the user may get to pick his preferred target
• Sometimes, the target is selected automatically

70

IPC via Intents

Intent intent = new Intent();
Intent.setAction(“android.intent.action.VIEW”);
intent.setType(“application/pdf”);

App components

• App components are the building blocks of an Android app.
• Each component is an entry point to the app, through which the system or

other apps can access the app.
• Activities, Services, Broadcast Receivers, and Content Providers

• Components are defined in the app Manifest
• AndroidManifest.xml

• describes information about the app
• defines the components using a specific syntax
• the set of permissions that the app needs to get access to the resources
• …

App components

• AndroidManifest.xml

Protecting app components

• Why should Android protect app components?

Granted
“android.permission.SEND_SMS”
by the user

<service android:name=“SendMessageService” >Send SMS on my behalf

Intent intent = new Intent();
Intent.putExtras(SMSMessage);
Intent.setComponent(“SendMessageService”);
startService(intent);

Protecting app components

• Why should Android protect app components?

Granted
“android.permission.SEND_SMS”
by the user

<service android:name=“SendMessageService” >

No permissions at all

Send SMS on my behalf

Send SMS on my behalf

• Android provides various security mechanisms to protect app
components:
• Enforced at Manifest declaration of components
• Exported Flag
• Permissions
• Broadcasts-specific protection: protected broadcasts

• Programmatic
• Permissions
• …

75

Protecting app components

• Setting exported flag to false ensures that a sensitive app component
is only accessible to the defining app.

76

Protecting app components
Exported Flag

• Apps can use permissions to protect components
• A calling app needs to request / be granted that permission to access

the component

• Activities, services and broadcast receivers can declare a
“android:permission” element at the component definition

77

Protecting app components
Permissions

Granted
“android.permission.SEND_SMS”
by the user

<service name=“SendMessageService”
android:permission = “android.permission.SEND_SMS” >

No permissions at all

Add Permission requirement!!

Granted
“android.permission.SEND_SMS”

Protecting app components
Permissions

• Apps can use permissions to protect sensitive components

Android Security -- Advanced Topics

79

• Framework Security
• Access control evaluation
• Access control enhancement

• App Security
• Detection of app-specific vulnerabilities
• Malware detection
• Privacy analysis

• User Authentication
• Biometric authentication

• Covert channels
• …

80

Research Trends in Mobile Security

Android Access Control Analysis
Permission Maps Extraction

81

82

Framework Security
Access Control Analysis

• Motivation
• Lack of an understanding of Android Access Control
• Incomplete / Missing security documentation and specification
• Highly customized ecosystem

• This could lead to:
• Access control anomalies
• Potential vulnerabilities !!

83

Framework Security
Access Control Analysis

• Lack of an understanding of Android Access Control

• Incomplete / Missing security documentation and specification

What Permissions
should be requested ?

DialPhone()

appendText()

sendSMS()

84

Framework Security
Access Control Analysis

• Lack of an understanding of Android Access Control

• Incomplete / Missing security documentation and specification

What Permissions
should be requested ?

DialPhone()

appendText()

sendSMS()

permission.CALL_PHONE

permission.broadcast_SMS

permission.WRITE_SMS
permission.SEND_SMS

DialPhone()

appendText()

readSMS()

• An imprecise / incorrect security specification could lead to the following:
• Wrong specification to developers
• Over-privileged apps

Too Many
Permissions

85

permission.CALL_PHONE

permission.broadcast_SMS
permission.WRITE_SMS
permission.SEND_SMS

Framework Security
Access Control Analysis

86

Framework Security
Access Control Analysis

What Permissions
should be requested ?

DialPhone()

appendText()

sendSMS()

permission.CALL_PHONE

permission.broadcast_SMS
permission.WRITE_SMS
permission.SEND_SMS

Over privilege:
Apps requesting more permissions than what’s needed

• An imprecise / incorrect security specification could lead to the following:
• Wrong specification to developers
• Over-privileged apps

87

Framework Security
Access Control Analysis

• Solution: API to Permission Maps

DialPhone()

appendText()

sendSMS()

permission.CALL_PHONE

permission.SEND_SMS

API – Permission

Look up Permissions from
Map

88

Framework Security
Access Control Analysis

• Research Efforts have been proposed to construct the maps

• Dynamic Approaches
• Use feedback directed API fuzzing
• Dynamically log permission checks for an API execution

• Static Approaches
• Construct control flow graphs of APIs
• Report reachable permission checks from an API

89

Dynamic Analysis

• Dynamic analysis uses techniques that evaluate a program in real time

• Could be carried out in a virtual environment or on an actual device
• It executes (or emulates) and monitors programs to look for specific

behaviors characterizing a vulnerability or a property

• Under the context of Android, dynamic analysis has been used for
various tasks
• Assessing the security of Android apps (e.g., malware detection)
• Analyzing framework access control

90

• Static analysis uses techniques that parse program code (or bytecode)

• Traverses and analyzes the code to check some program properties

• Under the context of Android, static analysis has been used for
various tasks
• Assessing the security of Android apps (e.g., vulnerability identification,

detecting app clones)
• Analyzing framework access control (particularly, permissions).

Static Analysis

91

✚ More efficient

✚ Low computation cost (usually)

✚ Can provide a complete picture
of all possible program paths

- May report unfeasible paths

- Cannot handle obfuscated code

- Cannot handle dynamically
loaded code

Dynamic versus Static Analysis

✚ More informative, as it can
provide specific details about a
behavior during runtime.

✚ Can handle highly obfuscated
code.

- Coverage problems – may miss
to execute interesting behavior

Static Analysis Dynamic Analysis

92

Framework Security
Constructing Permission Maps through Dynamic Analysis

• Recap: Access control enforcement in Android

WifiService

Void setWifiApEnabled(…)
{

 if(caller.hasPermission(“android.permission.CHANGE_WIFI_STATE”) &&
caller.hasPermission(“android.permission.CONNECTIVITY_INTERNAL”))
 {
 …
 //perform actual enabling(…);
 }
 else
 // throw Security Exception
}

API setWifiApEnabled requires
android.permission.CHANGE_WIFI_STATE
AND android.permission.CONNECTIVITY_INTERNAL

93

Framework Security
Constructing Permission Maps through Dynamic Analysis

• Approach: Invoke the APIs from unprivileged apps and detect the
checks that protect them

Unprivileged
 APP

Target APITest Executor Execution
Log

Security Exception
Finder

Add permission X to app

API requires permission X

94

Framework Security
Constructing Permission Maps through Dynamic Analysis

• First testing iteration:

Unprivileged
 APP

setWifiAppEnabledTest Executor Execution
Log

Security Exception
Finder

Add permission CHANGE_WIFI_STATE to app

Caller does not have
CHANGE_WIFI_STATE

95

Framework Security
Constructing Permission Maps through Dynamic Analysis

• Second testing iteration:

Unprivileged
 APP

setWifiAppEnabledTest Executor Execution
Log

Security Exception
Finder

Add permission CONNECTIVITY_INTERNAL to app

Caller does not have
CONNECTIVITY_INTERNAL

96

Framework Security
Constructing Permission Maps through Dynamic Analysis

• Third testing iteration

Unprivileged
 APP

setWifiAppEnabledTest Executor Execution
Log

Security Exception
Finder

No exceptions

API setWifiApEnabled requires android.permission.CHANGE_WIFI_STATE
AND android.permission.CONNECTIVITY_INTERNAL

97

Framework Security
Constructing Permission Maps through Dynamic Analysis

• Certain permission enforcement might not be encountered unless specific inputs
are supplied.

• Solution: Fuzzing

98

Framework Security
Constructing Permission Maps through Dynamic Analysis

• Generate different inputs

Unprivileged
 APP

Target API

Input

Test Executor Execution
Log

Security Exception
Finder

Input : arg1 = callerUid
∨

Perm =CHANGE_ENABLED_SETTING

Input : arg0 = callerUserId
∨

Perm = INTERACT_ACROSS_USERS

99

Framework Security
Constructing Permission Maps through Dynamic Analysis

disableComponent(int userID, int appID) {
 if (callerUserId != userID())
 if (!hasPermission(INTERACT_ACROSS_USERS)) exception;

 if (callerUid != appID)
 if(!hasPermission(CHANGE_ENABLED_SETTING)) exception;

 disableState(...);

100

Framework Security
Constructing Permission Maps through Static Analysis

• Static analysis approaches proceed as follows:
• Identify entry points (i.e., APIs) defined in the framework.
• Build a control flow graph (cfg) of each API
• Perform a reachability analysis on the cfg
• Identify access control enforcement methods

• Path insensitive:
• Path sensitive

1: disableComponent(int userID, int appID, String name) {
2:

• Given a target API, static analysis approaches analyze its CFG to
identify access control checks

10: userID_eff = get(userID);

3: if (!Manager.exists(userID)) return;
4: if (name == null)
5: isApp = true;

6:
7: if(callerUid!= appID)
8: if(!hasPermission (CHANGE_ENABLED_SETTING) exception;
9:

11: if (callerUserId!= userID_eff)
12: if(!hasPermission(INTERACT_ACROSS_USERS)) exception;
13:
14: disableState(...);

1

3

4

5

7

8

10

11

12

14

Manager.exists(userID)

name == NULL

callerUid == appID

hasPermission(CHANGE..)

userID_eff = get(userID(

callerUserId == userID_eff

hasPermission(INTERACT..)

• CFG is quite complex
101

Framework Security
Constructing Permission Maps through Static Analysis

1

3

4

5

7

8

10

11

12

14

Manager.exists(userID)

name == NULL

callerUid == appID

hasPermission(CHANGE..)

userID_eff = get(userID(

callerUserId == userID_eff

hasPermission(INTERACT..)

102

Framework Security
Constructing Permission Maps through Static Analysis

• Not all nodes in the cfg are of interest
in the construction of the api -
permission maps

1

3

4

5

7

8

10

11

12

14

Manager.exists(userID)

name == NULL

callerUid == appID

hasPermission(CHANGE..)

userID_eff = get(userID(

callerUserId == userID_eff

hasPermission(INTERACT..)

103

Framework Security
Constructing Permission Maps through Static Analysis

• Permission Map can be constructed either in a path-
insensitive or path-sensitive fashion

• Path-insensitive:
• Report a union of all identified permissions

• Path-sensitive:
• Permission Map is constructed by extracting path

conditions of all paths from the entry point
• Each path denotes a way to acquire the needed

access.
• Permission map is a first-order logic formula

formed by the disjunction of these path
conditions

Android Access Control Analysis
Vulnerability Detection

104

JNI

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

IPC

• Recap: Protecting different resources in various layers of the OS

Permission Check

Linux Access Control

Permission Check

105

Framework Security
Access control enforcement

JNI

Linux Kernel

RIL Driver

Framework

Camera ServiceLocation Service

takePicturegetLocation requestLocation

Applications

Camera Driver

IPC

GPS Driver

JNI

IPC

Permission Check

106

Lack of an Oracle: It’s difficult to determine if a resource is correctly protected

Approximate Solution: Compare Access Control enforcement across multiple instances of the
same resource

Permission Check

Lack of an Oracle: It’s difficult to determine if a resource is correctly protected

Approximate Solution: Compare Access Control enforcement across multiple instances of the
same resource

Inconsistencies are
Potential Vulnerabilities

Framework Security
Access control enforcement: EFFECTIVE??

Comparing API Access Control Enforcements
Android Access Control features Diversity / Complexity

API

Sink

System
Process?

Exit

NY

packageInfo(CallingAppUid).Signature ==
 [Platform_Signature]

packageInfo(CallingAppUid).Flags &
[FLAG_SYSTEM] != 0

CallingAppUid == SYSTEM_UID

CallingAppPid == Process.myPid()

…

Access Control

No Gold Standard to implement Access Control

107

shutdownOrRebootInternal()

Reboot()

checkPermission(perm.REBOOT)

Access ControlAccess Control

SYSTEM PERMISSION

RebootForMDM()

checkPermission(perm.
ENTERPRISE_API)

checkCallingUID
(uid_SYSTEM)

NORMAL PERMISSION

108

Framework Security
Detecting access control inconsistencies

Exploitable case

109

Framework Security
Detecting access control inconsistencies

• Approximate solutions:
• Perform convergence analysis for two APIs
• Extract access control enforcement for the APIs as a union
• Inconsistency is detected if the paths reveal different access control checks.

• More precise solutions:
• Perform convergence analysis for two APIs
• Extract access control enforcement along each individual execution path of an

API
• Normalize access control enforcement to account for diversity

• Normalizing access control based on program structures:

Case: Multiple permissions are enforced

Normalized Value = Max (NORMAL, SYSTEM)
 => SYSTEM

NORMAL
SYSTEM

110

Framework Security
Detecting access control inconsistencies

Case: Either permission is enforced

Normalized Value = Min (DANGEROUS, SYSTEM)
 => DANGEROUS

DANGEROUS

SYSTEM

• Normalizing access control based on program structures:

Framework Security
Detecting access control inconsistencies

App Security
Component Hijacking Vulnerabilities

112

113

• Class of attacks that seek to gain unauthorized access to protected
sensitive resources through under-protected app components

• Unauthorized access could reflect:
• Invocation of a sensitive API (i.e., an API that enforces access control).
• Read sensitive data (attack a.k.a. Content Leaks)
• Write to sensitive data (attack a.k.a. Content Pollution)
• Combination of the above.

Security concerns in mobile apps
Component Hijacking (or permission re-delegation attacks)

Setting U
pdate Receiver

Accepts external
updates

App Internal DB is
permission
protected

Write to critical area

Unauthorized access to private resources

Contact Manager App

Android Framework

Setting Update
Receiver

Private
Storage

Key Value

VoIP_Prefix “1234”

Is_App_Lisenced false

Security concerns in mobile apps
Example of Component Hijacking

115

• Identify sensitive resources reachable from an app component

• Compare the protection specification of the app component against
that of the sensitive resource

• If the component’s protection is weaker, a hijack-enabling flow is
detected

Security concerns in mobile apps
Vetting apps for Component Hijacking

App

Android Framework

Sensitive resources

• Challenges:
• Component hijacking is also possible on a chain of components
• Hijack-enabling flows could span across component boundaries

Security concerns in mobile apps
Vetting apps for Component Hijacking

• Challenge:
• Component hijacking is also possible on a chain of components
• Hijack-enabling flows could span across component boundaries

• Addressing this challenge requires:
• Tracking flows across components
• Assessing the collective effect of individual flows and identify the target flow

of interest
• Modeling the asynchronous nature of inter-app component interaction

Security concerns in mobile apps
Vetting apps for Component Hijacking

• Overview of Android security model
• Framework
• App

• Research topics in Android
• Android framework permission mapping
• Component hijacking in apps

Recap

