
CS 453 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: Hardware Security
Lecture: side-channel attacks and countermeasures

Fall 2024



Intro Cache Const-time Covert

Outline

1 What is a side-channel?

2 Timing-based cache side channels

3 Constant-time programming

4 Covert channels

2 / 44



Intro Cache Const-time Covert

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 44



Intro Cache Const-time Covert

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 44



Intro Cache Const-time Covert

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 44



Intro Cache Const-time Covert

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 44



Intro Cache Const-time Covert

How to steal sensitive information?

Install a malware (spyware) on the victim’s computing device

e.g., screen hijacking, drive-by downloads

Exploit a vulnerability in victim’s software

e.g., heartbleed, log4j, etc.

Compromised operating system, hypervisor, or hardware

e.g., key logger, buggy virtualization layer, etc.

Side channels

e.g., timing, bandwidth, power, etc.

3 / 44



Intro Cache Const-time Covert

Locard’s exchange principle

In forensic science, Locard’s principle holds that: the perpetrator
of a crime will bring something into the crime scene and leave with
something from it, and that both can be used as forensic evidence.

−→ “Every contact leaves a trace”

Wherever he steps, whatever he touches, whatever he leaves,
even unconsciously, will serve as a silent witness against him.
Not only his fingerprints or his footprints, but his hair, the
fibres from his clothes, the glass he breaks, the tool mark he
leaves, the paint he scratches, the blood or semen he deposits
or collects. All of these and more, bear mute witness against
him. This is evidence that does not forget.

— Paul L. Kirk

4 / 44



Intro Cache Const-time Covert

Locard’s exchange principle

In forensic science, Locard’s principle holds that: the perpetrator
of a crime will bring something into the crime scene and leave with
something from it, and that both can be used as forensic evidence.

−→ “Every contact leaves a trace”

Wherever he steps, whatever he touches, whatever he leaves,
even unconsciously, will serve as a silent witness against him.
Not only his fingerprints or his footprints, but his hair, the
fibres from his clothes, the glass he breaks, the tool mark he
leaves, the paint he scratches, the blood or semen he deposits
or collects. All of these and more, bear mute witness against
him. This is evidence that does not forget.

— Paul L. Kirk

4 / 44



Intro Cache Const-time Covert

Locard’s exchange principle

In forensic science, Locard’s principle holds that: the perpetrator
of a crime will bring something into the crime scene and leave with
something from it, and that both can be used as forensic evidence.

−→ “Every contact leaves a trace”

Wherever he steps, whatever he touches, whatever he leaves,
even unconsciously, will serve as a silent witness against him.
Not only his fingerprints or his footprints, but his hair, the
fibres from his clothes, the glass he breaks, the tool mark he
leaves, the paint he scratches, the blood or semen he deposits
or collects. All of these and more, bear mute witness against
him. This is evidence that does not forget.

— Paul L. Kirk

4 / 44



Intro Cache Const-time Covert

Locard’s exchange principle (in code execution)

In forensic science, Locard’s principle holds that: the perpetrator
of a crime execution of code will bring something into the crime
scene hosting platform and leave with something from it, and that
both can be used as forensic evidence side channels.

−→ “Every contact leaves a trace”

Wherever he steps Every CPU instruction executed, whatever
he touches every memory access, whatever he leaves every IO
operation, even unconsciously, will serve as a silent witness
against him the code.

5 / 44



Intro Cache Const-time Covert

Locard’s exchange principle (in code execution)

In forensic science, Locard’s principle holds that: the perpetrator
of a crime execution of code will bring something into the crime
scene hosting platform and leave with something from it, and that
both can be used as forensic evidence side channels.

−→ “Every contact leaves a trace”

Wherever he steps Every CPU instruction executed, whatever
he touches every memory access, whatever he leaves every IO
operation, even unconsciously, will serve as a silent witness
against him the code.

5 / 44



Intro Cache Const-time Covert

My personal story

6 / 44



Intro Cache Const-time Covert

Examples of side channels

Bandwidth consumption

Reflections

Cache-timing channels

7 / 44



Intro Cache Const-time Covert

Bandwidth consumption: scenario

Eve observes communication going via Alice’s Router

Alice accesses health forum via encrypted connection

Eve knows that Alice connects to health forum

But cannot decrypt downloaded content

8 / 44



Intro Cache Const-time Covert

Bandwidth consumption: attack

Eve determines size of all pages on health forum

Eve measures size of Alice’s downloaded pages

Likely: Eve can uniquely map download to page

This attack is called webpage fingerprinting

- or website fingerprinting, when targeting landing pages

9 / 44



Intro Cache Const-time Covert

Bandwidth consumption: defense

Pad all pages to common size (inflexible + inefficient )

Dynamic personalized websites

(Finally a benefit of targeted advertisement)

10 / 44



Intro Cache Const-time Covert

Bandwidth consumption: another example

Re-identification of Netflix video streaming

Burst sizes of a streamed scene of “Reservoir Dogs”

- Very similar, even when watched over different networks

Schuster et al., USENIX SEC ’17

11 / 44

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-schuster.pdf


Intro Cache Const-time Covert

Reflections: scenario

Alice types her password on a device in a public place

Alice hides her screen

But there is a reflecting surface close by

12 / 44



Intro Cache Const-time Covert

Reflections: attack

Eve uses a camera and a telescope

Off-the-shelf: less than CA$2,000
Photograph reflection of screen through telescope

Reconstruct original image

Distance: 10–30 m

Depends on equipment and type of reflecting surface

13 / 44



Intro Cache Const-time Covert

Reflections: defense

14 / 44



Intro Cache Const-time Covert

Other potential attack vectors

Timing computations

Electromagnetic emission

Sound emissions

Power consumption

Differential power analysis

Differential fault analysis

15 / 44



Intro Cache Const-time Covert

Outline

1 What is a side-channel?

2 Timing-based cache side channels

3 Constant-time programming

4 Covert channels

16 / 44



Intro Cache Const-time Covert

Common hardware shared

Shared Hardware

Memory CPU

Memory
deduplication

Memory
bus

DRAM
row buffer

Branch
prediction

Data
cache

Instruction
cache

17 / 44



Intro Cache Const-time Covert

Cache timing side channels

Modern architectures use caches to speed up memory access

- Main memory access is slow. Cache access is faster.
- Caches are micro-architectural objects, not architectural: programs
typically unaware of caches.

- Caches are shared: by timing cache access, a process can learn
information about data used by another.

Micro-architectural features like speculative and out-of-order
execution can be exploited to leak information via caches.

- Spectre and Meltdown attacks (2017)

18 / 44

https://meltdownattack.com/


Intro Cache Const-time Covert

Cache timing side channels

Modern architectures use caches to speed up memory access

- Main memory access is slow. Cache access is faster.
- Caches are micro-architectural objects, not architectural: programs
typically unaware of caches.

- Caches are shared: by timing cache access, a process can learn
information about data used by another.

Micro-architectural features like speculative and out-of-order
execution can be exploited to leak information via caches.

- Spectre and Meltdown attacks (2017)

18 / 44

https://meltdownattack.com/


Intro Cache Const-time Covert

Why targeting cache?

Shared across cores

- agonistic to kernel, hypervisor, and emulators!

Observable effect

- data/instruction is cached → cache hit → fast
- data/instruction is not cached → cache miss → slow

=⇒ cross-core attacks!

19 / 44



Intro Cache Const-time Covert

Why targeting cache?

Shared across cores

- agonistic to kernel, hypervisor, and emulators!

Observable effect

- data/instruction is cached → cache hit → fast
- data/instruction is not cached → cache miss → slow

=⇒ cross-core attacks!

19 / 44



Intro Cache Const-time Covert

Measuring time differences caused by cache

1 build two cases: cache hits and cache misses

2 time each case many times (get rid of noise)

3 plot a histogram

4 find a threshold to distinguish the two cases

20 / 44



Intro Cache Const-time Covert

Side note: how to measure timing accurately?

rdtsc instruction: cycle-accurate timestamps

t1 := rdtsc

⟨ . . . operation . . . ⟩
t2 := rdtsc

duration := t2 - t1

Q: Is this correct?
Do you measure what you think you measure?

21 / 44



Intro Cache Const-time Covert

Side note: how to measure timing accurately?

rdtsc instruction: cycle-accurate timestamps

t1 := rdtsc

⟨ . . . operation . . . ⟩
t2 := rdtsc

duration := t2 - t1

Q: Is this correct?
Do you measure what you think you measure?

21 / 44



Intro Cache Const-time Covert

Side note: how to measure timing accurately?

rdtsc instruction: cycle-accurate timestamps

t1 := rdtsc

⟨ . . . operation . . . ⟩
t2 := rdtsc

duration := t2 - t1

Q: Is this correct?
Do you measure what you think you measure?

21 / 44



Intro Cache Const-time Covert

Side note: how to measure timing accurately?

rdtsc instruction: cycle-accurate timestamps

t1 := rdtsc

⟨ . . . operation . . . ⟩
t2 := rdtsc

duration := t2 - t1

Q: Is this correct?
Do you measure what you think you measure?

21 / 44



Intro Cache Const-time Covert

Side note: how to measure timing accurately?

A: Out-of-order execution

t1 := rdtsc

⟨ . . . operation . . . ⟩
t2 := rdtsc

duration := t2 - t1

⟨ . . . other-ops . . . ⟩

t1 := rdtsc

⟨ . . . other-ops . . . ⟩
t2 := rdtsc

duration := t2 - t1

⟨ . . . operation . . . ⟩

t1 := rdtsc

t2 := rdtsc

⟨ . . . operation . . . ⟩
⟨ . . . other-ops . . . ⟩
duration := t2 - t1

22 / 44



Intro Cache Const-time Covert

Side note: how to measure timing accurately?

A: Out-of-order execution

t1 := rdtsc

⟨ . . . operation . . . ⟩
t2 := rdtsc

duration := t2 - t1

⟨ . . . other-ops . . . ⟩

t1 := rdtsc

⟨ . . . other-ops . . . ⟩
t2 := rdtsc

duration := t2 - t1

⟨ . . . operation . . . ⟩

t1 := rdtsc

t2 := rdtsc

⟨ . . . operation . . . ⟩
⟨ . . . other-ops . . . ⟩
duration := t2 - t1

22 / 44



Intro Cache Const-time Covert

Side note: how to measure timing accurately?

A: Out-of-order execution

t1 := rdtsc

⟨ . . . operation . . . ⟩
t2 := rdtsc

duration := t2 - t1

⟨ . . . other-ops . . . ⟩

t1 := rdtsc

⟨ . . . other-ops . . . ⟩
t2 := rdtsc

duration := t2 - t1

⟨ . . . operation . . . ⟩

t1 := rdtsc

t2 := rdtsc

⟨ . . . operation . . . ⟩
⟨ . . . other-ops . . . ⟩
duration := t2 - t1

22 / 44



Intro Cache Const-time Covert

Side note: how to measure timing accurately?

use pseudo-serializing instruction rdtscp (recent CPUs)

and/or use serializing instructions like cpuid

and/or use fences like mfence

How to Benchmark Code Execution Times on Intel IA-32 and IA-64
Instruction Set Architectures White Paper, December 2010.

23 / 44



Intro Cache Const-time Covert

Timing difference on cache hit/miss

24 / 44



Intro Cache Const-time Covert

Cycle difference on cache hit/miss

On current Intel CPUs:

L1 cache: 4 cycles

L2 cache: 12 cycles

L3 cache: 26-31 cycles

DRAM memory: > 120 cycles

25 / 44



Intro Cache Const-time Covert

(Unprivileged) cache maintenance

User programs can (voluntarily) optimize cache usage:

prefetch: suggest CPU to load data into cache

clflush: throw out data from all caches

. . . based on virtual addresses

This is the enabler of any cache-based attack:
Attacker monitors its own activity to find cache accessed by victim.

26 / 44



Intro Cache Const-time Covert

(Unprivileged) cache maintenance

User programs can (voluntarily) optimize cache usage:

prefetch: suggest CPU to load data into cache

clflush: throw out data from all caches

. . . based on virtual addresses

This is the enabler of any cache-based attack:
Attacker monitors its own activity to find cache accessed by victim.

26 / 44



Intro Cache Const-time Covert

A concrete scenario

You run a secret program on machine, and the program does one
of two things

- encrypt()
- decrypt()

You do not want anyone to know whether your program is
encrypting a message or decrypting a message.

- assuming trust in operating system and hardware

The binary of your program is available.

Attackers can run their programs on the same machine.

Their goal is to infer which operation your program is running.

27 / 44



Intro Cache Const-time Covert

A concrete scenario

You run a secret program on machine, and the program does one
of two things

- encrypt()
- decrypt()

You do not want anyone to know whether your program is
encrypting a message or decrypting a message.

- assuming trust in operating system and hardware

The binary of your program is available.

Attackers can run their programs on the same machine.

Their goal is to infer which operation your program is running.

27 / 44



Intro Cache Const-time Covert

Access-driven attacks

Flush+Reload

Prime+Probe

28 / 44



Intro Cache Const-time Covert

Flush+Reload

Cache
Attacker

address space
Victim

address space

Init: victim program loaded while cache is empty
29 / 44



Intro Cache Const-time Covert

Flush+Reload

Cache
Attacker

address space
Victim

address space

Step 1: attacker loads the encrypt() code into its address space
29 / 44



Intro Cache Const-time Covert

Flush+Reload

Cache
Attacker

address space
Victim

address space

Step 2: attacker flushes the shared cache
29 / 44



Intro Cache Const-time Covert

Flush+Reload

Cache
Attacker

address space
Victim

address space

Step 3(a): victim performs operation encrypt()
29 / 44



Intro Cache Const-time Covert

Flush+Reload

Cache
Attacker

address space
Victim

address space

Step 3(b): victim performs operation decrypt()
29 / 44



Intro Cache Const-time Covert

Flush+Reload

Cache
Attacker

address space
Victim

address space

Step 4: attacker calls encrypt() after step 3(a) =⇒ fast!
29 / 44



Intro Cache Const-time Covert

Flush+Reload

Cache
Attacker

address space
Victim

address space

Step 4: attacker calls encrypt() after step 3(b) =⇒ slow!
29 / 44



Intro Cache Const-time Covert

Prime+Probe

Cache
Attacker

address space
Victim

address space

Init: victim program loaded while cache is empty
30 / 44



Intro Cache Const-time Covert

Prime+Probe

Cache
Attacker

address space
Victim

address space

Step 1: attacker fills all available cache (prime)
30 / 44



Intro Cache Const-time Covert

Prime+Probe

Cache
Attacker

address space
Victim

address space

Step 2(a): victim evicts cache lines while performing operation encrypt()
30 / 44



Intro Cache Const-time Covert

Prime+Probe

Cache
Attacker

address space
Victim

address space

Step 2(b): victim evicts cache lines while performing operation decrypt()
30 / 44



Intro Cache Const-time Covert

Prime+Probe

Cache
Attacker

address space
Victim

address space

Step 3: attacker calls encrypt() after step 2(a) =⇒ fast!
30 / 44



Intro Cache Const-time Covert

Prime+Probe

Cache
Attacker

address space
Victim

address space

Step 3: attacker calls encrypt() after step 2(b) =⇒ slow!
30 / 44



Intro Cache Const-time Covert

Potential countermeasures

Fuse the functionalities into a single code piece

1 if (flag) { encrypt_instruction_1(); }
2 else { decrypt_instruction_1(); }

3 if (flag) { encrypt_instruction_2(); }
4 else { decrypt_instruction_2(); }

5 ...

6 if (flag) { encrypt_instruction_N(); }
7 else { decrypt_instruction_N(); }

Voluntary cache eviction

Both at the expense of performance overhead.

31 / 44



Intro Cache Const-time Covert

Potential countermeasures

Fuse the functionalities into a single code piece

1 if (flag) { encrypt_instruction_1(); }
2 else { decrypt_instruction_1(); }

3 if (flag) { encrypt_instruction_2(); }
4 else { decrypt_instruction_2(); }

5 ...

6 if (flag) { encrypt_instruction_N(); }
7 else { decrypt_instruction_N(); }

Voluntary cache eviction

Both at the expense of performance overhead.

31 / 44



Intro Cache Const-time Covert

Potential countermeasures

Fuse the functionalities into a single code piece

1 if (flag) { encrypt_instruction_1(); }
2 else { decrypt_instruction_1(); }

3 if (flag) { encrypt_instruction_2(); }
4 else { decrypt_instruction_2(); }

5 ...

6 if (flag) { encrypt_instruction_N(); }
7 else { decrypt_instruction_N(); }

Voluntary cache eviction

Both at the expense of performance overhead.

31 / 44



Intro Cache Const-time Covert

Potential countermeasures

Fuse the functionalities into a single code piece

1 if (flag) { encrypt_instruction_1(); }
2 else { decrypt_instruction_1(); }

3 if (flag) { encrypt_instruction_2(); }
4 else { decrypt_instruction_2(); }

5 ...

6 if (flag) { encrypt_instruction_N(); }
7 else { decrypt_instruction_N(); }

Voluntary cache eviction

Both at the expense of performance overhead.

31 / 44



Intro Cache Const-time Covert

More systematic countermeasures

Use constant-time programming techniques

Eliminate secret-dependent execution or branches

Hide/blind inputs

32 / 44



Intro Cache Const-time Covert

Outline

1 What is a side-channel?

2 Timing-based cache side channels

3 Constant-time programming

4 Covert channels

33 / 44



Intro Cache Const-time Covert

Example 1: matrix multiplication

1 int *matrix_multiply(
2 __secret__ int *A, size_t nrow_A, size_t ncol_A,
3 __secret__ int *B, size_t nrow_B, size_t ncol_B
4 ) {

5 assert(ncol_A == nrow_B);

6 int *C = malloc(nrow_A * ncol_B * sizeof(int));
7

8 for(int i = 0; i < nrow_A; i++) {
9 for(int j = 0; j < ncol_B; j++) {

10 for(int k = 0; k < A_ncol; k++) {
11 C[i * ncol_B + j] += A[i * ncol_A + k] * B[k * ncol_B + j];

12 }

13 }

14 }

15 return C;
16 }

Q: Is the above function constant-time (w.r.t secret input)?

A: Yes

34 / 44



Intro Cache Const-time Covert

Example 1: matrix multiplication

1 int *matrix_multiply(
2 __secret__ int *A, size_t nrow_A, size_t ncol_A,
3 __secret__ int *B, size_t nrow_B, size_t ncol_B
4 ) {

5 assert(ncol_A == nrow_B);

6 int *C = malloc(nrow_A * ncol_B * sizeof(int));
7

8 for(int i = 0; i < nrow_A; i++) {
9 for(int j = 0; j < ncol_B; j++) {

10 for(int k = 0; k < A_ncol; k++) {
11 C[i * ncol_B + j] += A[i * ncol_A + k] * B[k * ncol_B + j];

12 }

13 }

14 }

15 return C;
16 }

Q: Is the above function constant-time (w.r.t secret input)?

A: Yes

34 / 44



Intro Cache Const-time Covert

Example 1: find max

1 int *find_max(__secret__ int *arr, int n) {
2 int max_val = INT_MINIMUM;
3 for (int i = 0; i < n; i++) {
4 if (arr[i] > max_val) {
5 max_val = arr[i];

6 }

7 }

8 return max_val;
9 }

Q: Is the above function constant-time (w.r.t secret input)?

35 / 44



Intro Cache Const-time Covert

Example 1: find max (patched)

1 int *find_max(__secret__ int *arr, int n) {
2 int max_val = INT_MINIMUM;
3 for (int i = 0; i < n; i++) {
4 int predicate = arr[i] > max_val;
5 max_val = (predicate * arr[i])

6 | (!predicate * max_val);

7 }

8 return max_val;
9 }

36 / 44



Intro Cache Const-time Covert

Example 2: get element

1 int *get_element(
2 int *arr, int size, __secret__ int index
3 ) {

4 int element = arr[index];
5 return element;
6 }

Q: Is the above function constant-time (w.r.t secret input)?

37 / 44



Intro Cache Const-time Covert

Example 2: get element (patched)

1 int *get_element(
2 int *arr, int size, __secret__ int index
3 ) {

4 int element = 0;
5 for (int i = 0; i < size; i++) {
6 int value = arr[i];
7 element = select(i == index, value, element);

8 }

9 return element;
10 }

38 / 44



Intro Cache Const-time Covert

Example 3: constant-time instructions

1 void foo(double x) {
2 double z, y = 1.0;
3 for (long i = 0; i < 100000000; i++) {
4 z = y * x;

5 }

6 }

Q: Which of the following execution is faster?

1 foo(1.0)

2 foo(1.0e-323)

3 they are the same

A: foo(1.0)

39 / 44



Intro Cache Const-time Covert

Example 3: constant-time instructions

1 void foo(double x) {
2 double z, y = 1.0;
3 for (long i = 0; i < 100000000; i++) {
4 z = y * x;

5 }

6 }

Q: Which of the following execution is faster?

1 foo(1.0)

2 foo(1.0e-323)

3 they are the same

A: foo(1.0)

39 / 44



Intro Cache Const-time Covert

Rules of thumb for constant-time programming

Avoid variable-time instructions

If-statements on secrets are unsafe

Memory accesses indexed by secrets are unsafe

There are tools to help but most constant-time code is still
written by hand

40 / 44



Intro Cache Const-time Covert

Outline

1 What is a side-channel?

2 Timing-based cache side channels

3 Constant-time programming

4 Covert channels

41 / 44



Intro Cache Const-time Covert

How to secretly exchange information?

An attacker creates a capability to transfer sensitive/unauthorized
information through a channel that is not supposed to transmit that
information.

What information can/cannot be transmitted through a channel
may be determined by a policy/guidelines/physical limitations, etc.

42 / 44



Intro Cache Const-time Covert

How to secretly exchange information?

An attacker creates a capability to transfer sensitive/unauthorized
information through a channel that is not supposed to transmit that
information.

What information can/cannot be transmitted through a channel
may be determined by a policy/guidelines/physical limitations, etc.

42 / 44



Intro Cache Const-time Covert

How can we create a covert channel?

Assume that Eve can arrange for malicious code to be running on
Alice’s machine

- But Alice closely watches all Internet traffic from her computer
- Better, she doesn’t connect her computer to the Internet at all!

Suppose Alice publishes a weekly report summarizing some
(nonsensitive) statistics

Eve can “hide” the sensitive data in that report!

- e.g., modifications to spacing, wording, or the statistics itself

43 / 44



Intro Cache Const-time Covert

How can we create a covert channel?

Assume that Eve can arrange for malicious code to be running on
Alice’s machine

- But Alice closely watches all Internet traffic from her computer
- Better, she doesn’t connect her computer to the Internet at all!

Suppose Alice publishes a weekly report summarizing some
(nonsensitive) statistics

Eve can “hide” the sensitive data in that report!

- e.g., modifications to spacing, wording, or the statistics itself

43 / 44



Intro Cache Const-time Covert

How can we create a covert channel?

Assume that Eve can arrange for malicious code to be running on
Alice’s machine

- But Alice closely watches all Internet traffic from her computer
- Better, she doesn’t connect her computer to the Internet at all!

Suppose Alice publishes a weekly report summarizing some
(nonsensitive) statistics

Eve can “hide” the sensitive data in that report!

- e.g., modifications to spacing, wording, or the statistics itself

43 / 44



Intro Cache Const-time Covert

⟨ End ⟩

44 / 44


	side-channel attacks and countermeasures
	What is a side-channel?
	Timing-based cache side channels
	Constant-time programming
	Covert channels


